New Horizons in Venous Thromboembolism Management: A Narrative Review
Abstract
1. Introduction
2. Evolving Landscape of VTE Guidelines in 2024
3. Innovations in VTE Diagnostics: Towards Speed and Precision
4. Novel Paradigms in Pharmacological Therapy
5. The Next Therapeutic Frontier: Factor XI(a) Inhibitors
6. Advancements in Interventional Management of Acute VTE
7. Advances in VTE Prevention and Risk Stratification
8. Future Directions and Unmet Needs
9. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kearon, C.; Akl, E.A.; Ornelas, J.; Blaivas, A.; Jimenez, D.; Bounameaux, H.; Huisman, M.; King, C.S.; Morris, T.A.; Sood, N.; et al. Antithrombotic therapy for VTE disease: CHEST guideline and expert panel report. Chest. 2016, 149, 315–352. [Google Scholar] [CrossRef] [PubMed]
- Heit, J.A.; Spencer, F.A.; White, R.H. The epidemiology of venous thromboembolism. J. Thromb. Haemost. 2016, 14, 3–14. [Google Scholar] [CrossRef]
- Wendelboe, A.M.; Weitz, J.I. Global health burden of venous thromboembolism. Arterioscler. Thromb. Vasc. Biol. 2024, 44, 1007–1011. [Google Scholar] [CrossRef]
- Gervaso, L.; Dave, H.; Khorana, A.A. Venous and arterial thromboembolism in patients with cancer: JACC: CardioOncology state-of-the-art review. JACC CardioOncol. 2021, 3, 173–190. [Google Scholar] [CrossRef]
- Vedantham, S.; Goldhaber, S.Z.; Julian, J.A.; Kahn, S.R.; Jaff, M.R.; Cohen, D.J.; Magnuson, E.; Razavi, M.K.; Comerota, A.J.; Gornik, H.L.; et al. Pharmacomechanical catheter-directed thrombolysis for deep-vein thrombosis. N. Engl. J. Med. 2017, 377, 2240–2252. [Google Scholar] [CrossRef]
- Kim, N.H.; D’Armini, A.M.; Delcroix, M.; Jaïs, X.; Jevnikar, M.; Madani, M.M.; Matsubara, H.; Palazzini, M.; Wiedenroth, C.B.; Simonneau, G.; et al. Chronic thromboembolic pulmonary hypertension. Eur. Respir. J. 2019, 53, 1801915. [Google Scholar] [CrossRef]
- Grosse, S.D.; Nelson, R.E.; Nyarko, K.A.; Richardson, L.C.; Raskob, G.E. The economic burden of incident venous thromboembolism in the United States: A review of estimated attributable healthcare costs. Thromb. Res. 2016, 137, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Monagle, P.; Azzam, M.; Bercovitz, R.; Betensky, M.; Bhat, R.; Biss, T.; Branchford, B.; Brandão, L.R.; Chan, A.K.C.; Faustino, E.V.S.; et al. American Society of Hematology/International Society on Thrombosis and Haemostasis 2024 updated guidelines for treatment of venous thromboembolism in pediatric patients. Blood Adv. 2025, 9, 2587–2636. [Google Scholar] [CrossRef]
- Streiff, M.B.; Holmstrom, B.; Angelini, D.; Ashrani, A.; Bockenstedt, P.L.; Chesney, C.; Fanikos, J.; Fenninger, R.B.; Fogerty, A.E.; Gao, S.; et al. NCCN Guidelines Insights: Cancer-associated venous thromboembolic disease, Version 2.2024. J. Natl. Compr. Canc Netw. 2024, 22, 483–494. [Google Scholar] [CrossRef] [PubMed]
- Samama, C.M.; Afshari, A.; Grønlykke, L.; Madsen, M.H.; Wiberg, S.; Romero, C.S. European guidelines on peri-operative venous thromboembolism prophylaxis: First update. Executive summary. Eur. J. Anaesthesiol. 2024, 41, 561–569. [Google Scholar] [CrossRef]
- Linkins, L.A.; Bates, S.M.; Lang, E.; Kahn, S.R.; Douketis, J.D.; Julian, J.; Parpia, S.; Gross, P.; Weitz, J.I.; Spencer, F.A.; et al. Selective D-dimer testing for diagnosis of a first suspected episode of deep venous thrombosis. Ann. Intern. Med. 2013, 158, 93–100. [Google Scholar] [CrossRef] [PubMed]
- Yadav, R.; Kumari, K.; Joshi, R.; Verma, K.; Paliwal, S.; Dwivedi, J.; Sharma, S. P-selectin and E-selectin: Key macromolecules in thrombus formation and resolution. Int. J. Biol. Macromol. 2025, 13, 145259. [Google Scholar] [CrossRef] [PubMed]
- Oblitas, C.M.; Galeano-Valle, F.; Lago-Rodríguez, M.O.; López-Rubio, M.; Baltasar-Corral, J.; García-Gámiz, M.; Zamora-Trillo, A.; Walther, L.-A.A.-S.; Demelo-Rodríguez, P. The potential role of CA-125 as a biomarker for short-term mortality risk in patients with acute symptomatic pulmonary embolism. J. Clin. Med. 2024, 13, 3601. [Google Scholar] [CrossRef]
- Kingsley, A.; Akaba, E.; Adie, A. Theophilus Pius Cancer-associated venous thromboembolism and P-selectin: A review. Oncol. Radiother. 2024, 18, 1–6. [Google Scholar]
- Huang, X.; Chen, H.; Meng, S.; Pu, L.; Xu, X.; Xu, P.; He, S.; Hu, X.; Li, Y.; Wang, G. External validation of the Khorana score for the prediction of venous thromboembolism in cancer patients: A systematic review and meta-analysis. Int. J. Nurs. Stud. 2024, 159, 104867. [Google Scholar] [CrossRef]
- Turizo, M.J.F.; Patell, R.; Zwicker, J.I. Identifying novel biomarkers using proteomics to predict cancer-associated thrombosis. Bleeding Thromb. Vasc. Biol. 2024, 3 (Suppl. S1), 120. [Google Scholar] [CrossRef]
- Roy, D.C.; Wang, T.F.; Lun, R.; Zahrai, A.; Mallick, R.; Burger, D.; Zitikyte, G.; Hawken, S.; Wells, P. Circulating blood biomarkers and risk of venous thromboembolism in cancer patients: A systematic review and meta-analysis. Thromb. Haemost. 2024, 124, 1117–1133. [Google Scholar] [CrossRef]
- Febra, C.; Saraiva, J.; Vaz, F.; Macedo, J.; Al-Hroub, H.M.; Semreen, M.H.; Maio, R.; Gil, V.; Soares, N.; Penque, D. Acute venous thromboembolism plasma and red blood cell metabolomic profiling reveals potential new early diagnostic biomarkers: Observational clinical study. J. Transl. Med. 2024, 22, 200. [Google Scholar] [CrossRef]
- Shaw, J.R.; Nopp, S.; Stavik, B.; Youkhana, K.; Michels, A.L.; Kennes, S.; Rak, J.; Cate, H.T. Thrombosis, translational medicine, and biomarker research: Moving the needle. J. Am. Heart Assoc. 2025, 14, e038782. [Google Scholar] [CrossRef] [PubMed]
- Triggiani, S.; Pellegrino, G.; Mortellaro, S.; Bubba, A.; Lanza, C.; Carriero, S.; Biondetti, P.; Angileri, S.A.; Fusco, R.; Granata, V.; et al. Comprehensive review of pulmonary embolism imaging: Past, present and future innovations in computed tomography and other diagnostic techniques. Jpn. J. Radiol. 2025, 43, 1575–1589. [Google Scholar] [CrossRef]
- Khairallah, R.; Mekov, E.V.; Mihalova, T.; Kurtelova, N.; Yamakova, Y.; Petkov, R.E. Multiorgan ultrasound for the diagnosis of submassive pulmonary embolism in a critically ill patient. Cureus 2025, 17, e77742. [Google Scholar] [CrossRef]
- de Jong, C.M.M.; Kroft, L.J.M.; van Mens, T.E.; Huisman, M.V.; Stöger, J.L.; Klok, F.A. Modern imaging of acute pulmonary embolism. Thromb. Res. 2024, 238, 105–116. [Google Scholar] [CrossRef]
- Andersen, M.B. Photon-counting CT for pulmonary embolisms—When radiologists don’t have to choose between image quality or motion artifacts. Eur. Radiol. 2024, 34, 7829–7830. [Google Scholar] [CrossRef]
- Mudrik, A.; Efros, O. Artificial intelligence and venous thromboembolism: A narrative review of applications, benefits, and limitations. Acta Haematol. 2025, 148, 556–565. [Google Scholar] [CrossRef]
- Ammari, S.; Camez, A.O.; Ayobi, A.; Quenet, S.; Zemmouri, A.; Mniai, E.M.; Chaibi, Y.; Franciosini, A.; Clavel, L.; Bidault, F.; et al. Contribution of an artificial intelligence tool in the detection of incidental pulmonary embolism on oncology assessment scans. Life 2024, 14, 1347. [Google Scholar] [CrossRef]
- Batra, K.; Xi, Y.; Bhagwat, S.; Espino, A.; Peshock, R.M. Radiologist worklist reprioritization using artificial intelligence: Impact on report turnaround times for CTPA examinations positive for acute pulmonary embolism. AJR Am. J. Roentgenol. 2023, 221, 324–333. [Google Scholar] [CrossRef]
- Singh, S.; Kumar, P.; Yadav, S.K.; Jaffer, F.A.; Reed, G.L. Recent pathophysiological insights are advancing the treatment of venous thromboembolism. JACC Basic Transl. Sci. 2025, 10, 689–703. [Google Scholar] [CrossRef]
- Allan, O. ISTH 2025: Apixaban Superior to Rivaroxaban for Acute VTE. The Limbic (Haematology). 2025. Available online: https://thelimbic.com/haematology/isth-2025-apixaban-superior-to-rivaroxaban-for-acute-vte/ (accessed on 4 August 2025).
- Fu, W.; Zhao, M.; Ding, S.; Xin, M.; Yang, K.; Jiang, L.; Wu, F.; Wu, X.; Wang, J.; Chen, J.; et al. Efficacy and safety of anticoagulants on venous thromboembolism: A systematic review and network meta-analysis of randomized controlled trials. Front. Pharmacol. 2025, 15, 1519869. [Google Scholar] [CrossRef] [PubMed]
- Fujisaki, T.; Sueta, D.; Yamamoto, E.; Buckley, C.; Sacchi de Camargo Correia, G.; Aronson, J.; Tallón de Lara, P.; Fujisue, K.; Usuku, H.; Matsushita, K.; et al. Comparing anticoagulation strategies for venous thromboembolism associated with active cancer: A systematic review and meta-analysis. JACC CardioOncol. 2024, 6, 99–113. [Google Scholar] [CrossRef] [PubMed]
- Lyon, A.R.; López-Fernández, T.; Couch, L.S.; Asteggiano, R.; Aznar, M.C.; Bergler-Klein, J.; Boriani, G.; Cardinale, D.; Cordoba, R.; Cosyns, B.; et al. 2022 ESC guidelines on cardio-oncology developed in collaboration with the European Hematology Association (EHA), the European Society for Therapeutic Radiology and Oncology (ESTRO) and the International Cardio-Oncology Society (IC-OS). Eur. Heart J. 2022, 43, 4229–4361. [Google Scholar] [CrossRef] [PubMed]
- Lyman, G.H.; Carrier, M.; Ay, C.; Di Nisio, M.; Hicks, L.K.; Khorana, A.A.; Leavitt, A.D.; Lee, A.Y.Y.; Macbeth, F.; Morgan, R.L.; et al. American Society of Hematology 2021 guidelines for management of venous thromboembolism: Prevention and treatment in patients with cancer. Blood Adv. 2021, 5, 927–974. [Google Scholar] [CrossRef]
- Wan, T.; Song, J.; Zhu, D. Cancer-associated venous thromboembolism: A comprehensive review. Thromb. J. 2025, 23, 35. [Google Scholar] [CrossRef]
- Mahé, I.; Mayeur, D.; Chidiac, J.; Vicaut, E.; Falvo, N.; Sanchez, O.; Grange, C.; Monreal, M.; López-Núñez, J.J.; Otero-Candelera, R.; et al. Extended reduced-dose apixaban for cancer-associated venous thromboembolism. N. Engl. J. Med. 2025, 392, 1363–1373. [Google Scholar] [CrossRef]
- Fan, G.; Wang, D.; Zhang, M.; Luo, X.; Zhai, Z.; Wu, S. Anticoagulant for treatment and prophylaxis of venous thromboembolism patients with renal dysfunction: A systematic review and network meta-analysis. Front. Med. 2022, 9, 979911. [Google Scholar] [CrossRef]
- Calderon Martinez, E.; Sanchez Cruz, C.; Diarte Acosta, E.Y.; Aguirre Cano, D.A.; Espinosa, A.M.; Othón Martínez, D.; Furman, F.; Vera, S.O. Efficacy and safety of novel anticoagulant therapies in patients with chronic kidney disease: A systematic review and meta-analysis. J. Nephrol. 2025, 38, 111–126. [Google Scholar] [CrossRef] [PubMed]
- Elenjickal, E.J.; Travlos, C.K.; Marques, P.; Mavrakanas, T.A. Anticoagulation in patients with chronic kidney disease. Am. J. Nephrol. 2024, 55, 146–164. [Google Scholar]
- Mismetti, P.; Bertoletti, L.; Gouin, I.; Emmerich, J.; Monreal, M. Elderly patients with venous thromboembolism: Insights from the RIETE registry. Presse Med. 2024, 53, 104246. [Google Scholar] [CrossRef] [PubMed]
- Potere, N. Reduced-dose direct oral anticoagulants for the extended treatment of venous thromboembolism: Results from the GARFIELD-VTE Registry [conference presentation]. In Proceedings of the ISTH 2024 Congress, Bangkok, Thailand, 22–26 June 2024; ISTH Academy: Charlotte, NC, USA, 2024. Available online: https://academy.isth.org/isth/2024/isth-2024-congress/4137581/nicola.potere.reduced-dose.direct.oral.anticoagulants.for.the.extended.html (accessed on 4 August 2025).
- Weitz, J.I.; Haas, S.; Ageno, W.; Angchaisuksiri, P.; Bounameaux, H.; Nielsen, J.D.; Goldhaber, S.Z.; Goto, S.; Kayani, G.; Mantovani, L.; et al. Global Anticoagulant Registry in the Field—Venous Thromboembolism (GARFIELD-VTE): Rationale and design. Thromb. Haemost. 2016, 116, 1172–1179. [Google Scholar] [PubMed]
- Pessôa, R.L.; Kessler, V.G.; Becker, G.G.; Garcia, G.M.; Duarte Araldi, P.V.; Aver, P.V. Efficacy and safety of direct oral anticoagulants for acute treatment of venous thromboembolism in older adults: A network meta-analysis of randomised controlled trials. Vasc. Endovasc. Surg. 2024, 58, 633–639. [Google Scholar] [CrossRef]
- Thrombosis Canada. Pregnancy: Venous Thromboembolism Treatment. Available online: https://thrombosiscanada.ca/clinical-guides/pregnancy-venous-thromboembolism-treatment (accessed on 12 July 2025).
- Middeldorp, S.; Ganzevoort, W. How I treat venous thromboembolism in pregnancy. Blood 2020, 136, 2133–2142. [Google Scholar] [CrossRef]
- Malik, A.; Ha, N.B.; Barnes, G.D. Choice and duration of anticoagulation for venous thromboembolism. J. Clin. Med. 2024, 13, 301. [Google Scholar] [CrossRef]
- Nopp, S.; Kraemmer, D.; Ay, C. Factor XI inhibitors for prevention and treatment of venous thromboembolism: A review on the rationale and update on current evidence. Front. Cardiovasc. Med. 2022, 9, 903029. [Google Scholar] [CrossRef] [PubMed]
- Gailani, D. Factor XI as a target for preventing venous thromboembolism. J. Thromb. Haemost. 2022, 20, 550–555. [Google Scholar] [CrossRef] [PubMed]
- Verhamme, P.; Yi, B.A.; Segers, A.; Salter, J.; Bloomfield, D.; Büller, H.R.; Raskob, G.E.; Weitz, J.I.; ANT-005 TKA Investigators. Abelacimab for prevention of venous thromboembolism. N. Engl. J. Med. 2021, 385, 609–617. [Google Scholar] [CrossRef] [PubMed]
- Anthos Therapeutics. Our Science. Available online: https://www.anthostherapeutics.com/our-science/ (accessed on 12 July 2025).
- Ruff, C.T.; Patel, S.M.; Giugliano, R.P.; Morrow, D.A.; Hug, B.; Kuder, J.F.; Goodrich, E.L.; Chen, S.-A.; Goodman, S.G.; Joung, B.; et al. Abelacimab versus rivaroxaban in patients with atrial fibrillation. N. Engl. J. Med. 2025, 392, 361–371. [Google Scholar] [CrossRef]
- Weitz, J.I.; Bauersachs, R.; Becker, B.; Berkowitz, S.D.; Freitas, M.C.S.; Lassen, M.R.; Metzig, C.; Raskob, G.E. Effect of osocimab in preventing venous thromboembolism among patients undergoing knee arthroplasty: The FOXTROT randomized clinical trial. JAMA 2020, 323, 130–139. [Google Scholar] [CrossRef]
- Vanassche, T.; Rosovsky, R.P.; Moustafa, F.; Büller, H.R.; Segers, A.; Patel, I.; Shi, M.; Miyoshi, N.; Mani, V.; Fayad, Z.; et al. DS-1040 Study Group Inhibition of thrombin-activatable fibrinolysis inhibitor via DS-1040 to accelerate clot lysis in patients with acute pulmonary embolism: A randomized phase 1b study. J. Thromb. Haemost. 2023, 21, 2929–2940. [Google Scholar] [CrossRef]
- Jeong, S.Y. Novel α2-Antiplasmin Inactivation for Lysis of Intravascular Thrombi (NAIL-IT) Trial; Project Number 5R44HL158376-02; National Institutes of Health: Bethesda, MD, USA, 2024. Available online: https://reporter.nih.gov/project-details/10443870 (accessed on 12 July 2025).
- Jaber, W.A.; Gonsalves, C.F.; Stortecky, S.; Horr, S.; Pappas, O.; Gandhi, R.T.; Pereira, K.; Giri, J.; Khandhar, S.J.; Ammar, K.A.; et al. Large-bore mechanical thrombectomy versus catheter-directed thrombolysis in the management of intermediate-risk pulmonary embolism: Primary results of the PEERLESS randomized controlled trial. Circulation 2025, 151, 260–273. [Google Scholar] [CrossRef]
- Jaber, W.A.; Secemsky, E.A. Peripheral Matters: Putting the PEERLESS Trial in Perspective. In Cardiology Magazine; American College of Cardiology: Washington, DC, USA, 2025; Available online: https://www.acc.org/latest-in-cardiology/articles/2025/03/01/01/Peripheral-Matters-Putting-the-PEERLESS-Trial-in-Perspective (accessed on 4 August 2025).
- Klok, F.A.; Piazza, G.; Sharp, A.S.P.; Ainle, F.N.; Jaff, M.R.; Chauhan, N.; Patel, B.; Barco, S.; Goldhaber, S.Z.; Kucher, N.; et al. Ultrasound-facilitated, catheter-directed thrombolysis vs anticoagulation alone for acute intermediate-high-risk pulmonary embolism: Rationale and design of the HI-PEITHO study. Am. Heart J. 2022, 251, 43–53. [Google Scholar] [CrossRef]
- Kahn, S.R.; Galanaud, J.P.; Vedantham, S.; Ginsberg, J.S. Guidance for the prevention and treatment of the post-thrombotic syndrome. J. Thromb. Thrombolysis. 2016, 41, 144–153. [Google Scholar] [CrossRef]
- Notten, P.; de Smet, A.A.E.A.; Tick, L.W.; van de Poel, M.H.W.; Wikkeling, O.R.M.; Vleming, L.J.; Koster, A.; Jie, K.G.; Jacobs, E.M.G.; Ebben, H.P.; et al. CAVA (Ultrasound-Accelerated Catheter-Directed Thrombolysis on Preventing Post-Thrombotic Syndrome) trial: Long-term follow-up results. J. Am. Heart Assoc. 2021, 10, e018973. [Google Scholar] [CrossRef]
- Plotnik, A.N.; Haber, Z.; Kee, S. Current evidence for endovascular therapies in the management of acute deep vein thrombosis. Cardiovasc. Interv. Radiol. 2024, 47, 1571–1579. [Google Scholar] [CrossRef]
- Argon Medical. Argon Medical Launches CLEANER™ Vac Thrombectomy System to Remove Blood Clot in the Peripheral Venous Vasculature. 2024. Available online: https://www.argonmedical.com/argon-medical-launches-cleaner-vac-thrombectomy-system-to-remove-blood-clot-in-the-peripheral-venous-vasculature/ (accessed on 12 July 2025).
- AngioDynamics. AngioVac System. Available online: https://www.angiodynamics.com/product/angiovac/ (accessed on 12 July 2025).
- Arakaki, D.; Iwata, M.; Terasawa, T. External validation of the Padua and IMPROVE-VTE risk assessment models for predicting venous thromboembolism in hospitalized adult medical patients: A retrospective single-center study in Japan. Ann. Vasc. Dis. 2023, 16, 60–68. [Google Scholar] [CrossRef] [PubMed]
- Mulder, F.I.; Candeloro, M.; Kamphuisen, P.W.; Di Nisio, M.; Bossuyt, P.M.; Guman, N.; Smit, K.; Büller, H.R.; van Es, N. The Khorana score for prediction of venous thromboembolism in cancer patients: A systematic review and meta-analysis. Haematologica 2019, 104, 1277–1287. [Google Scholar] [CrossRef] [PubMed]
- Vladić, N.; Englisch, C.; Berger, J.M.; Moik, F.; Berghoff, A.S.; Preusser, M.; Pabinger, I.; Ay, C. Validation of risk assessment models for venous thromboembolism in patients with cancer receiving systemic therapies. Blood Adv. 2025, 9, 3340–3349. [Google Scholar] [CrossRef] [PubMed]
- Mittman, B.G.; Sheehan, M.; Kojima, L.; Casacchia, N.J.; Lisheba, O.; Hu, B.; Pappas, M.A.; Rothberg, M.B. Development and internal validation of the Cleveland Clinic Bleeding Model to predict major bleeding risk at admission in medical inpatients. J. Thromb. Haemost. 2024, 22, 2855–2863. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Yang, Y.Q.; Hong, X.Y.; Liu, S.-H.; Li, J.-C.; Chen, T.; Shi, J.-H. A new risk assessment model of venous thromboembolism by considering fuzzy population. BMC Med. Inform. Decis. Mak. 2024, 24, 413. [Google Scholar] [CrossRef]
- Douillet, D.; Penaloza, A.; Viglino, D.; Banihachemi, J.J.; Abboodi, A.; Helderlé, M.; Montassier, E.; Balen, F.; Brice, C.; Laribi, S.; et al. Targeted prophylactic anticoagulation based on the TRiP(cast) score in patients with lower limb immobilisation: A multicentre, stepped wedge, randomised implementation trial. Lancet 2024, 403, 1051–1060. [Google Scholar] [CrossRef]
| Agent Name | Target/Class | Mechanism of Action | Key Clinical Trial (Year) & Findings |
|---|---|---|---|
| Abelacimab | Factor XI/XIa Inhibitor | Prevents activation of Factor XI, inhibiting the intrinsic coagulation pathway while preserving hemostasis. | AZALEA-TIMI 71 (2025): In AF, reduced major/CRNM bleeding by 67% vs. rivaroxaban. |
| Osocimab | Factor XIa Inhibitor | Directly inhibits activated Factor XIa. | FOXTROT (2020): Non-inferior to enoxaparin/apixaban for VTE prevention post-TKA. |
| Milvexian | Factor XIa Inhibitor | Directly inhibits activated Factor XIa. | Phase 3 trials ongoing; represents an oral option in this class. |
| DS1040 | TAFI Inhibitor | Inhibits Thrombin-Activatable Fibrinolysis Inhibitor, promoting natural clot breakdown. | Phase 1b PE Trial (2023): Safe but no significant benefit in reducing thrombus burden in intermediate-risk PE. |
| TS23/BAY3018250 | α2-Antiplasmin Inhibitor | Inhibits the primary inhibitor of plasmin, enhancing fibrinolysis. | NAIL-IT/SIRIUS (2023/2024): Phase 2 trials recruiting for PE and DVT; represents a novel pro-fibrinolytic approach. |
| Feature | PEERLESS Trial | HI-PEITHO Trial |
|---|---|---|
| Status | Completed (Results presented 2024) | Ongoing (Recruiting) |
| Population | Intermediate-risk PE | Intermediate-high-risk PE |
| Intervention | Large-Bore Mechanical Thrombectomy (FlowTriever) | Ultrasound-Assisted Catheter-Directed Thrombolysis (EKOS) |
| Comparator | Catheter-Directed Thrombolysis (CDT) | Anticoagulation Alone |
| Primary Endpoint | 5-component hierarchical win ratio (mortality, ICH, major bleed, clinical deterioration, ICU use) | 7-day composite of PE-related death, cardiorespiratory collapse, or recurrent PE |
| Key Finding/Question Addressed | Finding: LBMT is superior to CDT, driven by less ICU use and clinical deterioration. | Question: Is USCDT + Anticoagulation superior to Anticoagulation alone? |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bedrouni, W.; Bedrouni, M.; Douketis, J. New Horizons in Venous Thromboembolism Management: A Narrative Review. J. Clin. Med. 2025, 14, 7668. https://doi.org/10.3390/jcm14217668
Bedrouni W, Bedrouni M, Douketis J. New Horizons in Venous Thromboembolism Management: A Narrative Review. Journal of Clinical Medicine. 2025; 14(21):7668. https://doi.org/10.3390/jcm14217668
Chicago/Turabian StyleBedrouni, Wassim, Mahdi Bedrouni, and James Douketis. 2025. "New Horizons in Venous Thromboembolism Management: A Narrative Review" Journal of Clinical Medicine 14, no. 21: 7668. https://doi.org/10.3390/jcm14217668
APA StyleBedrouni, W., Bedrouni, M., & Douketis, J. (2025). New Horizons in Venous Thromboembolism Management: A Narrative Review. Journal of Clinical Medicine, 14(21), 7668. https://doi.org/10.3390/jcm14217668
