Bone Quality Beyond DXA in People Living with HIV: A Systematic Review of HR-pQCT, TBS, Microindentation, and Vertebral Fractures
Abstract
1. Introduction
2. Materials and Methods
2.1. Protocol, Registration, and Reporting Standards
2.2. Research Question and PICO Statement
2.3. Eligibility Criteria
2.4. Information Sources
2.5. Search Strategy
2.6. Study Selection and PRISMA Flow
2.7. Data Items and Extraction Procedures
2.8. Risk of Bias Assessment
2.9. Synthesis Without Meta-Analysis
3. Results
4. Discussion
4.1. Summary of Evidence
4.2. Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pramukti, I.; Lindayani, L.; Chen, Y.C.; Yeh, C.Y.; Tai, T.W.; Fetzer, S.; Ko, N.Y. Bone fracture among people living with HIV: A systematic review and meta-regression of prevalence, incidence, and risk factors. PLoS ONE 2020, 15, e0233501. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Brown, T.T.; Hoy, J.; Borderi, M.; Guaraldi, G.; Renjifo, B.; Vescini, F.; Yin, M.T.; Powderly, W.G. Recommendations for evaluation and management of bone disease in HIV. Clin. Infect. Dis. 2015, 60, 1242–1251. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hoy, J.F.; Grund, B.; Roediger, M.; Schwartz, A.V.; Shepherd, J.; Avihingsanon, A.; Badal-Faesen, S.; de Wit, S.; Jacoby, S.; La Rosa, A.; et al. Immediate Initiation of Antiretroviral Therapy for HIV Infection Accelerates Bone Loss Relative to Deferring Therapy: Findings from the START Bone Mineral Density Substudy, a Randomized Trial. J. Bone Miner. Res. 2017, 32, 1945–1955. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Carr, A.; Grund, B.; Schwartz, A.V.; Avihingsanon, A.; Badal-Faesen, S.; Bernadino, J.I.; Estrada, V.; La Rosa, A.; Mallon, P.; Pujari, S.; et al. The rate of bone loss slows after 1-2 years of initial antiretroviral therapy: Final results of the Strategic Timing of Antiretroviral Therapy (START) bone mineral density substudy. HIV Med. 2020, 21, 64–70. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Orkin, C.; DeJesus, E.; Ramgopal, M.; Crofoot, G.; Ruane, P.; LaMarca, A.; Mills, A.; Vandercam, B.; de Wet, J.; Rockstroh, J.; et al. Switching from tenofovir disoproxil fumarate to tenofovir alafenamide coformulated with rilpivirine and emtricitabine in virally suppressed adults with HIV-1 infection: A randomised, double-blind, multicentre, phase 3b, non-inferiority study. Lancet HIV 2017, 4, e195–e204. [Google Scholar] [CrossRef] [PubMed]
- Post, F.A.; Tebas, P.; Clarke, A.; Cotte, L.; Short, W.R.; Abram, M.E.; Jiang, S.; Cheng, A.; Das, M.; Fordyce, M.W. Brief Report: Switching to Tenofovir Alafenamide, Coformulated With Elvitegravir, Cobicistat, and Emtricitabine, in HIV-Infected Adults With Renal Impairment: 96-Week Results From a Single-Arm, Multicenter, Open-Label Phase 3 Study. J. Acquir. Immune Defic. Syndr. 2017, 74, 180–184. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Moore, A.E.B.; Burns, J.E.; Sally, D.; Milinkovic, A.; Krokos, G.; John, J.; Rookyard, C.; Borca, A.; Pool, E.R.M.; Tostevin, A.; et al. Bone turnover change after randomized switch from tenofovir disoproxil to tenofovir alafenamide fumarate in men with HIV. AIDS 2024, 38, 521–529. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- McCloskey, E.V.; Odén, A.; Harvey, N.C.; Leslie, W.D.; Hans, D.; Johansson, H.; Barkmann, R.; Boutroy, S.; Brown, J.; Chapurlat, R.; et al. A Meta-Analysis of Trabecular Bone Score in Fracture Risk Prediction and Its Relationship to FRAX. J. Bone Miner. Res. 2016, 31, 940–948. [Google Scholar] [CrossRef] [PubMed]
- Palomo, T.; Muszkat, P.; Weiler, F.G.; Dreyer, P.; Brandão, C.M.A.; Silva, B.C. Update on trabecular bone score. Arch. Endocrinol. Metab. 2022, 66, 694–706. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sornay-Rendu, E.; Boutroy, S.; Duboeuf, F.; Chapurlat, R.D. Bone Microarchitecture Assessed by HR-pQCT as Predictor of Fracture Risk in Postmenopausal Women: The OFELY Study. J. Bone Miner. Res. 2017, 32, 1243–1251. [Google Scholar] [CrossRef] [PubMed]
- Szulc, P.; Dufour, A.B.; Hannan, M.T.; Kiel, D.P.; Chapurlat, R.; Sornay-Rendu, E.; Merle, B.; Boyd, S.K.; Whittier, D.E.; Hanley, D.A.; et al. Fracture risk based on high-resolution peripheral quantitative computed tomography measures does not vary with age in older adults-the bone microarchitecture international consortium prospective cohort study. J. Bone Miner. Res. 2024, 39, 561–570. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mannarino, T.; D’Antonio, A.; Mercinelli, S.; Falzarano, M.; Volpicelli, F.; Mainolfi, C.G.; Zappulo, E.; Di Filippo, G.; Cotugno, M.R.; Gentile, I.; et al. Trabecular bone score assessed by dual-energy X ray absorption predicts vertebral fractures in HIV infected young adults. Bone Rep. 2024, 22, 101797. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ambrosioni, J.; Levi, L.; Alagaratnam, J.; Van Bremen, K.; Mastrangelo, A.; Waalewijn, H.; Molina, J.M.; Guaraldi, G.; Winston, A.; Boesecke, C.; et al. Major revision version 12.0 of the European AIDS Clinical Society guidelines 2023. HIV Med. 2023, 24, 1126–1136. [Google Scholar] [CrossRef] [PubMed]
- Biz, C.; Khamisy-Farah, R.; Puce, L.; Szarpak, L.; Converti, M.; Ceylan, H.İ.; Crimì, A.; Bragazzi, N.L.; Ruggieri, P. Investigating and Practicing Orthopedics at the Intersection of Sex and Gender: Understanding the Physiological Basis, Pathology, and Treatment Response of Orthopedic Conditions by Adopting a Gender Lens: A Narrative Overview. Biomedicines 2024, 12, 974. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Syst. Rev. 2021, 10, 89. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Calmy, A.; Chevalley, T.; Delhumeau, C.; Toutous-Trellu, L.; Spycher-Elbes, R.; Ratib, O.; Zawadynski, S.; Rizzoli, R. Long-term HIV infection and antiretroviral therapy are associated with bone microstructure alterations in premenopausal women. Osteoporos. Int. 2013, 24, 1843–1852. [Google Scholar] [CrossRef] [PubMed]
- Biver, E.; Calmy, A.; Delhumeau, C.; Durosier, C.; Zawadynski, S.; Rizzoli, R. Microstructural alterations of trabecular and cortical bone in long-term HIV-infected elderly men on successful antiretroviral therapy. AIDS 2014, 28, 2417–2427. [Google Scholar] [CrossRef] [PubMed]
- Macdonald, H.M.; Maan, E.J.; Berger, C.; Dunn, R.A.; Côté, H.C.F.; Murray, M.C.M.; Pick, N.; Prior, J.C. Deficits in bone strength, density and microarchitecture in women living with HIV: A cross-sectional HR-pQCT study. Bone 2020, 138, 115509. [Google Scholar] [CrossRef] [PubMed]
- Foreman, S.C.; Wu, P.H.; Kuang, R.; John, M.D.; Tien, P.C.; Link, T.M.; Krug, R.; Kazakia, G.J. Factors associated with bone microstructural alterations assessed by HR-pQCT in long-term HIV-infected individuals. Bone 2020, 133, 115210. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Güerri-Fernández, R.; Molina, D.; Villar-García, J.; Prieto-Alhambra, D.; Mellibovsky, L.; Nogués, X.; González-Mena, A.; Guelar, A.; Trenchs-Rodríguez, M.; Herrera-Fernández, S.; et al. Brief Report: HIV Infection Is Associated with Worse Bone Material Properties, Independently of Bone Mineral Density. J. Acquir. Immune Defic. Syndr. 2016, 72, 314–318. [Google Scholar] [CrossRef] [PubMed]
- Lerma-Chippirraz, E.; Pineda-Moncusí, M.; González-Mena, A.; Soldado-Folgado, J.; Knobel, H.; Trenchs-Rodríguez, M.; Díez-Pérez, A.; Brown, T.T.; García-Giralt, N.; Güerri-Fernández, R. Inflammation status in HIV-positive individuals correlates with changes in bone tissue quality after initiation of ART. J. Antimicrob. Chemother. 2019, 74, 1381–1388. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Soldado-Folgado, J.; Chillarón, J.J.; Cañas-Ruano, E.; Arrieta-Aldea, I.; González-Mena, A.; Blasco-Hernando, F.; Knobel, H.; Garcia-Giralt, N.; Güerri-Fernández, R. An Abnormal Inflammatory Pattern Associated with Long-Term Non-Progression of HIV Infection Impacts Negatively on Bone Quality. J. Clin. Med. 2022, 11, 2927. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Soldado-Folgado, J.; Rins-Lozano, O.; Arrieta-Aldea, I.; Gonzále-Mena, A.; Cañas-Ruano, E.; Knobel, H.; Garcia-Giralt, N.; Güerri-Fernández, R. Changes in bone quality after switching from a TDF to a TAF based ART: A pilot randomized study. Front. Endocrinol. 2023, 14, 1076739. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rins-Lozano, O.; Rodríguez-Morera, J.; Arrieta-Aldea, I.; González-Mena, A.; Rodríguez-Mercader, S.; Suaya, L.; Pascual-Aranda, M.; Cañas-Ruano, E.; Fernandez-Quiroga, M.J.; Canepa, C.; et al. Impaired Bone Tissue Quality Associated With Inflammation in HIV-immunological Nonresponders: A Cross-sectional Analysis. J. Clin. Endocrinol. Metab. 2025, 110, 2236–2242. [Google Scholar] [CrossRef] [PubMed]
- McGinty, T.; Cotter, A.G.; Sabin, C.A.; Macken, A.; Kavanagh, E.; Compston, J.; Sheehan, G.; Lambert, J.; Mallon, P.W.G.; HIV UPBEAT (Understanding the Pathology of Bone Diseases in HIV-infected Subjects) Study Group. Assessment of trabecular bone score, an index of bone microarchitecture, in HIV positive and HIV negative persons within the HIV UPBEAT cohort. PLoS ONE 2019, 14, e0213440. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sharma, A.; Ma, Y.; Tien, P.C.; Scherzer, R.; Anastos, K.; Cohen, M.H.; Hans, D.; Yin, M.T. HIV Infection Is Associated With Abnormal Bone Microarchitecture: Measurement of Trabecular Bone Score in the Women’s Interagency HIV Study. J. Acquir. Immune Defic. Syndr. 2018, 78, 441–449. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Guan, W.M.; Pan, W.; Yu, W.; Cao, W.; Lin, Q.; Zhang, Z.Z.; Song, X.J.; Li, Y.L.; Tian, J.P.; Xu, Y.; et al. Changes in trabecular bone score and bone mineral density in Chinese HIV-Infected individuals after one year of antiretroviral therapy. J. Orthop. Translat. 2021, 29, 72–77. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Llop, M.; Sifuentes, W.A.; Bañón, S.; Macia-Villa, C.; Perez-Elías, M.J.; Rosillo, M.; Moreno, S.; Vázquez, M.; Casado, J.L. Increased prevalence of asymptomatic vertebral fractures in HIV-infected patients over 50 years of age. Arch. Osteoporos. 2018, 13, 56. [Google Scholar] [CrossRef] [PubMed]
- Gazzola, L.; Savoldi, A.; Bai, F.; Magenta, A.; Dziubak, M.; Pietrogrande, L.; Tagliabue, L.; Del Sole, A.; Bini, T.; Marchetti, G.; et al. Assessment of radiological vertebral fractures in HIV-infected patients: Clinical implications and predictive factors. HIV Med. 2015, 16, 563–571. [Google Scholar] [CrossRef] [PubMed]
- Yin, M.T.; Shu, A.; Zhang, C.A.; Boutroy, S.; McMahon, D.J.; Ferris, D.C.; Colon, I.; Shane, E. Trabecular and cortical microarchitecture in postmenopausal HIV-infected women. Calcif. Tissue Int. 2013, 92, 557–565. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sellier, P.; Ostertag, A.; Collet, C.; Trout, H.; Champion, K.; Fernandez, S.; Lopes, A.; Morgand, M.; Clevenbergh, P.; Evans, J.; et al. Disrupted trabecular bone micro-architecture in middle-aged male HIV-infected treated patients. HIV Med. 2016, 17, 550–556. [Google Scholar] [CrossRef] [PubMed]
- Kawalilak, C.E.; Kontulainen, S.A.; Amini, M.A.; Lanovaz, J.L.; Olszynski, W.P.; Johnston, J.D. In vivo precision of three HR-pQCT-derived finite element models of the distal radius and tibia in postmenopausal women. BMC Musculoskelet. Disord. 2016, 17, 389. [Google Scholar] [CrossRef] [PubMed]
- Olali, A.Z.; Carpenter, K.A.; Myers, M.; Sharma, A.; Yin, M.T.; Al-Harthi, L.; Ross, R.D. Bone Quality in Relation to HIV and Antiretroviral Drugs. Curr. HIV/AIDS Rep. 2022, 19, 312–327. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ilha, T.A.S.H.; Comim, F.V.; Copes, R.M.; Compston, J.E.; Premaor, M.O. HIV and Vertebral Fractures: A Systematic Review and Metanalysis. Sci. Rep. 2018, 8, 7838. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Atteritano, M.; Mirarchi, L.; Venanzi-Rullo, E.; Santoro, D.; Iaria, C.; Catalano, A.; Lasco, A.; Arcoraci, V.; Lo Gullo, A.; Bitto, A.; et al. Vitamin D Status and the Relationship with Bone Fragility Fractures in HIV-Infected Patients: A Case Control Study. Int. J. Mol. Sci. 2018, 19, 119. [Google Scholar] [CrossRef]
- Sax, P.E.; Wohl, D.; Yin, M.T.; Post, F.; DeJesus, E.; Saag, M.; Pozniak, A.; Thompson, M.; Podzamczer, D.; Molina, J.M.; et al. Tenofovir alafenamide versus tenofovir disoproxil fumarate coformulated with elvitegravir cobicistat emtricitabine for initial treatment of HIV-1 infection: Two randomised double-blind phase 3, non-inferiority trials. Lancet 2015, 385, 2606–2615. [Google Scholar] [CrossRef] [PubMed]
- Moran, C.A.; Weitzmann, M.N.; Ofotokun, I. The protease inhibitors and HIV-associated bone loss. Curr. Opin. HIV AIDS 2016, 11, 333–342. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Premaor, M.O.; Compston, J.E. The Hidden Burden of Fractures in People Living with HIV. JBMR Plus. 2018, 2, 247–256. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Carballido-Gamio, J.; Posadzy, M.; Wu, P.H.; Kenny, K.; Saeed, I.; Link, T.M.; Tien, P.C.; Krug, R.; Kazakia, G.J. People living with HIV have low trabecular bone mineral density, high bone marrow adiposity, and poor trabecular bone microarchitecture at the proximal femur. Osteoporos. Int. 2022, 33, 1739–1753. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]


| Study (Year) | Design | Overall ROBINS-I Judgment | Brief Rationale |
|---|---|---|---|
| Calmy 2013 [16] | Cross-sectional | Moderate | Between-group confounding (lifestyle, ART history) was partly adjusted; clear outcome measurement. |
| Biver 2014 [17] | Cross-sectional | Serious | Elderly men on long-term ART; residual confounding/selection was likely; limited adjustment. |
| Macdonald 2020 [18] | Cross-sectional | Moderate | Adjusted analyses; some residual confounding; complete outcome reporting. |
| Foreman 2020 [19] | Cross-sectional | Moderate | Multivariable models; potential residual confounding (smoking/PI duration). |
| Güerri-Fernández 2016 [20] | Cross-sectional | Moderate | BMSi measurement was valid; confounding was partially addressed. |
| Lerma-Chippirraz 2019 [21] | Longitudinal (pre/post ART) | Moderate | No randomized allocation; time-varying confounding was possible. |
| Soldado-Folgado 2022 [22] | Cross-sectional | Moderate | Non-progressor phenotype; confounding/selection was addressed incompletely. |
| Rins-Lozano 2025 [24] | Cross-sectional | Moderate | Group comparison (immunologic responders vs. non-responders) with confounding risk. |
| McGinty 2019 [25] | Cohort | Moderate | Adjusted for key covariates; remaining confounding was possible. |
| Sharma 2018 [26] | Cross-sectional | Moderate | Large sample; adjusted; unmeasured confounding was possible. |
| Guan 2021 [27] | Longitudinal (pre/post ART) | Moderate | No randomization; co-interventions were possible; good outcome measurement. |
| Llop 2018 [28] | Cross-sectional | Serious | No control group; confounding/selection; outcome classification variability. |
| Gazzola 2015 [29] | Cross-sectional | Serious | No control group; confounding; variable VF ascertainment. |
| Study (Year) | Comparison | Randomization Process | Deviations from Intended Interventions | Missing Outcome Data | Measurement of Outcome | Selection of Reported Result | Overall RoB 2 |
|---|---|---|---|---|---|---|---|
| Soldado-Folgado 2023 [23] | Switch TDF→TAF vs. control (pilot randomized) | Some concerns (small sample; concealment not fully detailed) | Low | Low | Low | Low | Some concerns |
| Study (Year) | Country/Setting | Design | n PLWH | n Control | Sex/Age (Mean ± SD or Median[IQR]) | Modality | Skeletal Site(s) | ART Status (Key) |
|---|---|---|---|---|---|---|---|---|
| Calmy 2013 [16] | Switzerland | Cross-sectional | 92 | 95 | Premenopausal women; age 41 ± 8 (PLWH) | HR-pQCT | Distal radius and tibia | On ART; many with TDF |
| Biver 2014 [17] | Switzerland | Cross-sectional | 70 | 61 | Elderly men on successful ART; age ≈ 63 | HR-pQCT | Radius and tibia | Long-term ART; PI prevalent |
| Macdonald 2020 [18] | Canada | Cross-sectional | 103 | 102 | Women ~40–60 y | HR-pQCT | Radius and tibia | Varied ART; TDF exposure recorded |
| Foreman 2020 [19] | USA (UCSF) | Cross-sectional | 103 | 77 | Mixed; mean age ~52 | HR-pQCT | Radius and tibia | Long-term ART; PI/TDF captured |
| Guerri-Fernández 2016 [20] | Spain | Cross-sectional | 85 | 79 | Middle-aged; both sexes | Microindentation (BMSi) | Tibial midshaft | Many on ART |
| Lerma-Chippirraz 2019 [21] | Spain | Longitudinal | 44 | — | PLWH starting ART | BMSi | Tibia | ART initiation |
| Soldado-Folgado 2022 [22] | Spain | Longitudinal | 59 | — | Adults on TDF | BMSi | Tibia | Switch TDF→TAF |
| Soldado-Folgado 2023 [23] | Spain | Cross-sectional | 85 | 60 | Both sexes | BMSi | Tibia | Mixed ART |
| Rins-Lozano 2025 [24] | Spain | Cross-sectional | 82 | — | Immunologic non-responders vs. responders | BMSi | Tibia | Suppressed VL; differing CD4 |
| McGinty 2019 [25] | Ireland | Cohort | 201 | 262 | Mixed; adults | TBS | Lumbar spine (DXA-derived) | ART mixed; PI/TDF data |
| Sharma 2018 [26] | USA | Cross-sectional | 319 | 118 | Women | TBS | Lumbar spine | ART mixed |
| Guan 2021 [27] | China | Longitudinal | 233 | — | Adults, mean 36.6 ± 11.1 | TBS + BMD | Lumbar spine | Pre-ART → 48 wks ART |
| Llop 2018 [28] | Spain | Cross-sectional | 199 | — | Adults | VFA (X-ray) | Thoracolumbar | ART mixed |
| Gazzola 2015 [29] | Italy | Cross-sectional | 194 | — | Adults | Spine X-ray VFs | Thoracolumbar | ART mixed |
| Study | Metric(s) (Site) | PLWH (Mean ± SD) | Controls (Mean ± SD) | Between-Group Difference/Effect |
|---|---|---|---|---|
| Calmy 2013 [16] | Failure load (FEA, radius/tibia) | ↓ vs. controls (exact means NR) | — | Lower estimated failure load; lower Tb.N, higher Tb.Sp, thinner Ct.Th in PLWH; several ~5–15% differences were reported in text/figures. |
| Biver 2014 [17] | HR-pQCT: Tb.N, Tb.Sp, Ct.Th | NR | NR | Microstructural alterations (trabecular and cortical) were observed in elderly men on ART vs. controls (directionally worse in PLWH). |
| Macdonald 2020 [18] | Failure load (radius/tibia) | Lower vs. controls (NR exact) | — | PLWH reduced failure load and cortical measures; associations with TDF history were noted. |
| Foreman 2020 [19] | HR-pQCT comprehensive | NR | NR | PLWH showed worse trabecular/cortical indices; PI exposure and smoking were associated with lower failure load/stiffness. |
| Guerri-Fernández 2016 [20] | BMSi (tibia) | 77.2 ± 6.9 | 80.6 ± 6.2 | −3.4 units (p < 0.01)—lower tissue-level strength in PLWH. |
| Lerma-Chippirraz 2019 [21] | BMSi change after ART start | −2.1 ± NR at 24–48 wks | — | Early decline after ART initiation (p = 0.02). |
| Soldado-Folgado 2022 [22] | BMSi (TDF→TAF) | +2.5 units (6–12 mo post-switch) | — | Significant BMSi improvement following TAF switch. |
| Soldado-Folgado 2023 [23] | BMSi | 78.4 ± 7.1 | 82.0 ± 6.4 | −3.6 (p < 0.01) cross-sectional gap. |
| Rins-Lozano 2025 [24] | BMSi | INR 76.7 ± 6.3 vs. IR 80.2 ± 6.1 | — | −3.5 units in immunologic non-responders (p = 0.001). |
| McGinty 2019 [25] | TBS (median [IQR]) | 1.349 [1.263–1.436] | 1.380 [1.301–1.453] | −0.031 (p = 0.009) unadjusted; adj. β for HIV −0.037 (p = 0.002). |
| Sharma 2018 [26] | Degraded TBS (<1.35) | Higher prevalence | — | HIV+ women were 64% more likely to have degraded TBS (adj). |
| Guan 2021 [27] | TBS at baseline → 48 wks | Decline early, then partial recovery | — | 19.3% had normal BMD but abnormal TBS pre-ART. |
| Llop 2018 [28] | Asymptomatic VF prevalence | ~25% (varied by age) | — | Subclinical VF was frequent despite non-osteoporotic BMD in many. |
| Gazzola 2015 [29] | VF prevalence | 12.4% (24/194) | — | Predictors: age (aOR 1.09/yr); steroids (aOR 3.64); many VFs with non-osteoporotic BMD. |
| Study | Predictor/Exposure | Outcome | Effect (β/OR/HR/Δ) |
|---|---|---|---|
| Foreman 2020 [19] | Protease inhibitor exposure; current smoking | HR-pQCT failure load/stiffness | Lower strength indices with PI and smoking (multivariable). |
| Macdonald 2020 [18] | TDF history | HR-pQCT failure load/cortical | Prior TDF were associated with worse cortical indices (directional). |
| McGinty 2019 [25] | HIV status (vs. −) | TBS | Adj. β −0.037 (p = 0.002); attenuates with smoking; in PLWH, PI exposure ↓TBS, lower nadir CD4 ↓TBS. |
| Sharma 2018 [26] | HIV+ (women) | Degraded TBS | +64% likelihood of degraded TBS vs. HIV− after adjustment. |
| Guan 2021 (233) [27] | ART initiation | TBS and BMD | Early decline in TBS/BMD post-ART, then partial recovery by week 48; 19.3% had normal BMD but abnormal TBS pre-ART. |
| Guerri-Fernández 2016 [20] | HIV+ vs. − | BMSi | −3.4 units (p < 0.01). |
| Lerma-Chippirraz 2019 [21] | ART start | BMSi | −2.1 units by ~6–12 mo (p = 0.02). |
| Soldado-Folgado 2022 [22] | Switch TDF→TAF | BMSi change | +2.5 units (p < 0.05) post-switch. |
| Rins-Lozano 2025 [24] | Immunologic non-response | BMSi | −3.5 units vs. responders (p = 0.001). |
| Llop 2018 [28] | Age; steroids | Asymptomatic VFs | Older age ↑ VFs; steroid use ↑ VFs (multivariable). |
| Gazzola 2015 [29] | Age; steroids | VFs | aOR 1.09/yr; aOR 3.64 for steroids; 70% VFs at non-osteoporotic BMD. PubMed. |
| Soldado-Folgado 2023 [23] | HIV+ vs. − | BMSi | −3.6 units (p < 0.01). |
| Biver 2014 [17] | Long-term ART | HR-pQCT | Altered trabecular and cortical microarchitecture vs. controls. |
| Calmy 2013 [16] | HIV+/ART | HR-pQCT | Lower Tb.N, Ct.Th; higher Tb.Sp; lower failure load vs. controls. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Razvan, D.V.; Rosca, O.; Bratosin, F.; Predescu, V.; Vlad, S.V.; Vlad, A. Bone Quality Beyond DXA in People Living with HIV: A Systematic Review of HR-pQCT, TBS, Microindentation, and Vertebral Fractures. J. Clin. Med. 2025, 14, 7669. https://doi.org/10.3390/jcm14217669
Razvan DV, Rosca O, Bratosin F, Predescu V, Vlad SV, Vlad A. Bone Quality Beyond DXA in People Living with HIV: A Systematic Review of HR-pQCT, TBS, Microindentation, and Vertebral Fractures. Journal of Clinical Medicine. 2025; 14(21):7669. https://doi.org/10.3390/jcm14217669
Chicago/Turabian StyleRazvan, David Vladut, Ovidiu Rosca, Felix Bratosin, Vlad Predescu, Silviu Valentin Vlad, and Adrian Vlad. 2025. "Bone Quality Beyond DXA in People Living with HIV: A Systematic Review of HR-pQCT, TBS, Microindentation, and Vertebral Fractures" Journal of Clinical Medicine 14, no. 21: 7669. https://doi.org/10.3390/jcm14217669
APA StyleRazvan, D. V., Rosca, O., Bratosin, F., Predescu, V., Vlad, S. V., & Vlad, A. (2025). Bone Quality Beyond DXA in People Living with HIV: A Systematic Review of HR-pQCT, TBS, Microindentation, and Vertebral Fractures. Journal of Clinical Medicine, 14(21), 7669. https://doi.org/10.3390/jcm14217669

