Liver-Related COVID-19 Consequences: Dynamics of Liver Health in 2.5 Years
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Baseline Assessment
2.3. The Follow-Up Assessment
2.4. mpUS at Follow-Up
2.5. Markers of Liver Disease
2.6. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. LT Abnormalities in the Acute COVID-19
3.3. Health Status After 2.5 Years
3.4. Dynamics of LT
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nardo, A.D.; Schneeweiss-Gleixner, M.; Bakail, M.; Dixon, E.D.; Lax, S.F.; Trauner, M. Pathophysiological mechanisms of liver injury in COVID-19. Liver Int. 2021, 41, 20–32. [Google Scholar] [CrossRef]
- Baldelli, L.; Marjot, T.; Barnes, E.; Webb, G.J.; Moon, A.M. SARS-CoV-2 Infection and Liver Disease: A Review of Pathogenesis and Outcomes. Gut Liver 2023, 17, 12–23. [Google Scholar] [CrossRef]
- Marjot, T.; Webb, G.J.; Barritt, A.S.; Moon, A.M.; Stamataki, Z.; Wong, V.W.; Barnes, E. COVID-19 and liver disease: Mechanistic and clinical perspectives. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 348–364. [Google Scholar] [CrossRef] [PubMed]
- Nasir, N.; Khanum, I.; Habib, K.; Wagley, A.; Arshad, A.; Majeed, A. Insight into COVID-19 associated liver injury: Mechanisms, evaluation, and clinical implications. Hepatol. Forum 2024, 5, 139–149. [Google Scholar] [CrossRef] [PubMed]
- Brilakis, L.; Theofilogiannakou, E.; Lykoudis, P.M. Current remarks and future directions on the interactions between metabolic dysfunction-associated fatty liver disease and COVID-19. World J. Gastroenterol. 2024, 30, 1480–1487. [Google Scholar] [CrossRef]
- Gao, X.; Lv, F.; He, X.; Zhao, Y.; Liu, Y.; Zu, J.; Henry, L.; Wang, J.; Yeo, Y.H.; Ji, F.; et al. Impact of the COVID-19 pandemic on liver disease-related mortality rates in the United States. J. Hepatol. 2024, 78, 16–27. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Danpanichkul, P.; Wijarnpreecha, K.; Cholankeril, G.; Loomba, R.; Ahmed, A. The burden of steatotic liver disease before and during the COVID-19 pandemic: Correspondence to editorial on “Current burden of steatotic liver disease and fibrosis among adults in the United States, 2017–2023”. Clin. Mol. Hepatol. 2025, 31, e183–e185. [Google Scholar] [CrossRef]
- Karlsen, T.H.; Sheron, N.; Zelber-Sagi, S.; Carrieri, P.; Dusheiko, G.; Bugianesi, E.; Pryke, R.; Hutchinson, S.J.; Sangro, B.; Martin, N.K.; et al. The EASL-Lancet Liver Commission: Protecting the next generation of Europeans against liver disease complications and premature mortality. Lancet 2022, 399, 61–116. [Google Scholar] [CrossRef]
- Ren, X.; Zhou, J.; Guo, J.; Hao, C.; Zheng, M.; Zhang, R.; Huang, Q.; Yao, X.; Li, R.; Jin, Y. Reinfection in patients with COVID-19: A systematic review. Glob. Health Res. Policy 2022, 7, 12. [Google Scholar] [CrossRef]
- Efe, C.; Kulkarni, A.V.; Terziroli Beretta-Piccoli, B.; Magro, B.; Stättermayer, A.; Cengiz, M.; Clayton-Chubb, D.; Lammert, C.; Bernsmeier, C.; Gül, Ö.; et al. Liver injury after SARS-CoV-2 vaccination: Features of immune-mediated hepatitis, role of corticosteroid therapy and outcome. Hepatology 2022, 76, 1576–1586. [Google Scholar] [CrossRef]
- Ji, D.; Qin, E.; Xu, J.; Zhang, D.; Cheng, G.; Wang, Y.; Lau, G. Non-alcoholic fatty liver diseases in patients with COVID-19: A retrospective study. J. Hepatol. 2020, 73, 451–453. [Google Scholar] [CrossRef]
- Lopez-Mendez, I.; Aquino-Matus, J.; Murua-Beltrán Gall, S.; Prieto-Nava, J.D.; Juarez-Hernandez, E.; Uribe, M.; Castro-Narro, G. Association of liver steatosis and fibrosis with clinical outcomes in patients with SARS-CoV-2 infection (COVID-19). Ann. Hepatol. 2021, 2, 100271. [Google Scholar] [CrossRef] [PubMed]
- Fan, Z.; Chen, L.; Li, J.; Cheng, X.; Yang, J.; Tian, C.; Zhang, Y.; Huang, S.; Liu, Z.; Cheng, J. Clinical Features of COVID-19-Related Liver Functional Abnormality. Clin. Gastroenterol. Hepatol. 2020, 18, 1561–1566. [Google Scholar] [CrossRef]
- Phipps, M.M.; Barraza, L.H.; LaSota, E.D.; Sobieszczyk, M.E.; Pereira, M.R.; Zheng, E.X.; Fox, A.N.; Zucker, J.; Verna, E.C. Acute Liver Injury in COVID-19: Prevalence and Association with Clinical Outcomes in a Large U.S. Cohort. Hepatology 2020, 72, 807–817. [Google Scholar] [CrossRef] [PubMed]
- Luca, M.C.; Loghin, I.I.; Mihai, I.F.; Popa, R.; Vâţă, A.; Manciuc, C. Liver Damage Associated with SARS-CoV-2 Infection-Myth or Reality? J. Pers. Med. 2023, 13, 349. [Google Scholar] [CrossRef]
- Liao, X.; Li, D.; Ma, Z.; Zhang, L.; Zheng, B.; Li, Z.; Li, G.; Liu, L.; Zhang, Z. 12-Month Post-Discharge Liver Function Test Abnormalities Among Patients with COVID-19: A Single-Center Prospective Cohort Study. Front. Cell. Infect. Microbiol. 2022, 12, 864933. [Google Scholar] [CrossRef]
- de Lima, I.C.; de Menezes, D.C.; Uesugi, J.H.E.; Bichara, C.N.C.; da Costa Vasconcelos, P.F.; Quaresma, J.A.S.; Falcão, L.F.M. Liver Function in Patients with Long-Term Coronavirus Disease 2019 of up to 20 Months: A Cross-Sectional Study. Int. J. Environ. Res. Public Health 2023, 20, 5281. [Google Scholar] [CrossRef]
- Bota, A.V.; Bratosin, F.; Bandi, S.S.S.; Bogdan, I.; Razvan, D.V.; Toma, A.-O.; Indries, M.F.; Csep, A.N.; Cotoraci, C.; Prodan, M.; et al. A Comparative Analysis of Liver Injury Markers in Post-COVID Syndrome among Elderly Patients: A Prospective Study. J. Clin. Med. 2024, 3, 1149. [Google Scholar] [CrossRef] [PubMed]
- Kolesova, O.; Vanaga, I.; Laivacuma, S.; Derovs, A.; Kolesovs, A.; Radzina, M.; Platkajis, A.; Eglite, J.; Hagina, E.; Arutjunana, S.; et al. Intriguing findings of liver fibrosis following COVID-19. BMC Gastroenterol. 2021, 21, 370. [Google Scholar] [CrossRef]
- Radzina, M.; Putrins, D.S.; Micena, A.; Vanaga, I.; Kolesova, O.; Platkajis, A.; Viksna, L. Post-COVID-19 Liver Injury: Comprehensive Imaging with Multiparametric Ultrasound. J. Ultrasound Med. 2022, 41, 935–949. [Google Scholar] [CrossRef]
- European Association for the Study of the Liver. EASL Clinical Practice Guidelines on non-invasive tests for evaluation of liver disease severity and prognosis—2021 update. J. Hepatol. 2021, 75, 659–689. [Google Scholar] [CrossRef]
- European Association for the Study of the Liver (EASL); European Association for the Study of Diabetes (EASD); European Association for the Study of Obesity (EASO); European Association for the Study of the Liver (EASL). EASL-EASD-EASO Clinical Practice Guidelines on the management of metabolic dysfunction-associated steatotic liver disease (MASLD). J. Hepatol. 2024, 81, 492–542. [Google Scholar] [CrossRef] [PubMed]
- Rohrbach, J.; Stickel, F.; Schmid, P.; Thormann, W.; Kovari, H.; Scherrer, A.; Günthard, H.F.; Vuichard, D.; Cavassini, M.; Ambrosioni, J.; et al. Changes in biomarkers of liver disease during successful combination antiretroviral therapy in HIV-HCV-coinfected individuals. Antivir. Ther. 2014, 19, 149–159. [Google Scholar] [CrossRef] [PubMed]
- Neuman, M.G.; Cohen, L.B.; Nanau, R.M. Hyaluronic acid as a non-invasive biomarker of liver fibrosis. Clin. Biochem. 2016, 49, 302–315. [Google Scholar] [CrossRef]
- Bivén, K.; Erdal, H.; Hägg, M.; Ueno, T.; Zhou, R.; Lynch, M.; Rowley, B.; Wood, J.; Zhang, C.; Toi, M.; et al. A novel assay for discovery and characterization of pro-apoptotic drugs and for monitoring apoptosis in patient sera. Apoptosis 2003, 8, 263–268. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, A.; Prichett, L.; Tao, X.; Alqahtani, S.A.; Hamilton, J.P.; Mezey, E.; Strauss, A.T.; Kim, A.; Potter, J.J.; Chen, P.H.; et al. Abnormal liver chemistries as a predictor of COVID-19 severity and clinical outcomes in hospitalized patients. World J. Gastroenterol. 2022, 28, 570–587. [Google Scholar] [CrossRef]
- Living Guidance for Clinical Management of COVID-19. World Health Organization, 2021. Available online: https://apps.who.int/iris/bitstream/handle/10665/349321/WHO-2019-nCoV-clinical-2021.2-eng.pdf (accessed on 7 July 2024).
- European Association for the Study of the Liver. EASL Clinical Practice Guidelines: Management of alcohol-related liver disease. J. Hepatol. 2018, 69, 154–181. [Google Scholar] [CrossRef]
- World Health Organization. WHO Guidelines on Physical Activity and Sedentary Behaviour; World Health Organization: Geneva, Switzerland, 2020; Available online: https://iris.who.int/bitstream/handle/10665/336656/9789240015128-eng.pdf?sequence=1 (accessed on 7 July 2024).
- Sterling, R.K.; Lissen, E.; Clumeck, N.; Sola, R.; Correa, M.C.; Montaner, J.; Sulkowski, M.S.; Torriani, F.J.; Dieterich, D.T.; Thomas, D.L.; et al. Development of a simple noninvasive index to predict significant fibrosis in patients with HIV/HCV coinfection. Hepatology 2006, 43, 1317–1325. [Google Scholar] [CrossRef]
- Sigrist, R.M.S.; Liau, J.; Kaffas, A.E.; Chammas, M.C.; Willmann, J.K. Ultrasound Elastography: Review of techniques and clinical applica tions. Theranostics 2017, 7, 1303–1329. [Google Scholar] [CrossRef]
- Lau, J.Y.S.; O’Hara, S.; Lombardo, P.; Goodyear, M. Assessment of the liver with two-dimensional shear wave elastography following COVID-19 infection: A pilot study. Australas. J. Ultrasound Med. 2024, 27, 167–173. [Google Scholar] [CrossRef]
- Younossi, Z.M.; Kalligeros, M.; Henry, L. Epidemiology of metabolic dysfunction-associated steatotic liver disease. Clin. Mol. Hepatol. 2025, 31, S32–S50. [Google Scholar] [CrossRef]
- Chen, H.; Chen, Q. COVID-19 Pandemic: Insights into Interactions between SARS-CoV-2 Infection and MAFLD. Int. J. Biol. Sci. 2022, 18, 4756–4767. [Google Scholar] [CrossRef] [PubMed]
- Miao, L.; Targher, G.; Byrne, C.D.; Cao, Y.-Y.; Zheng, M.-H. Current status and future trends of the global burden of MASLD. Trends Endocrinol. Metab. 2024, 35, 697–707. [Google Scholar] [CrossRef]
- Pesti, A.; Danics, K.; Glasz, T.; Várkonyi, T.; Barbai, T.; Reszegi, A.; Kovalszky, I.; Vályi-Nagy, I.; Dobi, D.; Lotz, G.; et al. Liver Alterations and Detection of SARS-CoV-2 RNA and Proteins in COVID-19 Autopsies. GeroScience 2023, 45, 1015–1031. [Google Scholar] [CrossRef] [PubMed]
- Roman, A.; Moldovan, S.; Stoian, M.; Tilea, B.; Dobru, D. SARS-CoV-2 Associated Liver Injury: A Six-Month Follow-up Analysis of Liver Function Recovery. Med. Pharm. Rep. 2022, 95, 393–399. [Google Scholar] [CrossRef] [PubMed]
- Sonzogni, A.; Previtali, G.; Seghezzi, M.; Alessio, M.G.; Gianatti, A.; Licini, L.; Morotti, D.; Zerbi, P.; Carsana, L.; Rossi, R.; et al. Liver histopathology in severe COVID 19 respiratory failure is suggestive of vascular alterations. Liver Int. 2020, 40, 2110–2116. [Google Scholar] [CrossRef]
- Tian, S.; Xiong, Y.; Liu, H.; Niu, L.; Guo, J.; Liao, M.; Xiao, S.-Y. Pathological study of the 2019 novel coronavirus disease (COVID-19) through postmortem core biopsies. Mod. Pathol. 2020, 33, 1007–1014. [Google Scholar] [CrossRef]
- Chen, J.; Chen, J.; Fu, H.; Li, Y.; Wang, L.; Luo, S.; Lu, H. Hypoxia exacerbates nonalcoholic fatty liver disease via the HIF-2α/PPARα pathway. Am. J. Physiol. Endocrinol. Metab. 2019, 317, E710–E722. [Google Scholar] [CrossRef]
- Bai, L.; Li, H. Innate immune regulatory networks in hepatic lipid metabolism. J. Mol. Med. 2019, 97, 593–604. [Google Scholar] [CrossRef]
- Carvajal, J.J.; Garcia-Castillo, V.; Cuellar, S.V.; Campillay-Véliz, C.P.; Salazar-Ardiles, C.; Avellaneda, A.M.; Muñoz, C.A.; Retamal-Díaz, A.; Bueno, S.M.; González, P.A.; et al. New insights into the pathogenesis of SARS-CoV-2 during and after the COVID-19 pandemic. Front. Immunol. 2024, 15, 1363572. [Google Scholar] [CrossRef]
| Variables | COVID-19 Severity | p-Value | |
|---|---|---|---|
| Non-Severe n = 47 | Severe or Critical n = 18 | ||
| Age, M ± SD, years | 50 ± 14 | 55 ± 12 | 0.170 |
| Females, n (%) | 29 (62%) | 5 (28%) | 0.014 |
| BMI, M ± SD, kg/m2 | 29.6 ± 5.9 | 36.0 ± 6.7 | <0.001 |
| Smoking, n (%) | 6 (13%) | 5 (28%) | 0.161 |
| Comorbidities, n (%) | 27 (57%) | 16 (89%) | 0.017 |
| Cardiovascular diseases, n (%) | 17 (38%) | 13 (72%) | 0.014 |
| Chronic respiratory diseases, n (%) | 3 (6%) | 1 (6%) | >0.999 |
| Type 2 diabetes, n (%) | 5 (11%) | 1 (6%) | >0.999 |
| Psychoneurological diseases, n (%) | 7 (15%) | 0 | 0.176 |
| MASLD, n (%) | 3 (6%) | 2 (11%) | 0.611 |
| Thyroid diseases, n (%) | 5 (11%) | 2 (11%) | >0.999 |
| Oncologic diseases, n (%) | 0 | 1 (6%) | 0.277 |
| Daily medication, n (%) | 12 (26%) | 8 (44%) | 0.139 |
| Immunosuppressive drugs, n (%) | 0 | 0 | NA |
| COVID-19 characteristics | |||
| Pneumonia, n (%) | 32 (68%) | 18 (100%) | 0.006 |
| Admission to ICU, n (%) | 0 | 3 (17%) | 0.019 |
| Treatment during hospitalization | |||
| Mean count of drugs, M ± SD | 6 ± 3 | 9 ± 3 | <0.001 |
| Most-DILI drugs, n (%) | 38 (81%) | 13 (72%) | 0.507 |
| Corticosteroids, n (%) | 14 (30%) | 15 (83%) | <0.001 |
| Antibacterial drugs, n (%) | 38 (81%) | 17 (94%) | 0.261 |
| Mechanical lung ventilation | 0 | 0 | NA |
| LT abnormalities | |||
| Normal LT, n (%) | 21 (45%) | 3 (17%) | 0.203 a |
| Mild, n, (%) | 10 (21%) | 5 (28%) | |
| Moderate, n, (%) | 12 (25.5%) | 7 (38%) | |
| Severe, n (%) | 4 (8.5%) | 3 (17%) | |
| The highest level of transaminases | |||
| ALT, Median (IQR), U/L | 34 (19; 62) | 76 (40; 129) | 0.002 |
| AST, Median (IQR), U/L | 32 (19; 43) | 41 (25; 61) | 0.153 |
| Missing data, n | 17 | 1 | |
| Markers of liver disease | |||
| HA, Median (IQR), ng/mL | 46.5 (29.2; 82.1) | 83.9 (47.9; 284.2) | 0.019 |
| Missing data, n | 19 | 4 | |
| CK18-M30, Median (IQR), U/L | 204.0 (124.5; 246.0) | 230.0 (205.0; 325.0) | 0.159 |
| Missing data, n | 21 | 4 | |
| Variables | COVID-19 Severity | p-Value | |
|---|---|---|---|
| Non-Severe n = 47 | Severe or Critical n = 18 | ||
| Self-reported data | |||
| Reinfection, n (%) | 14 (30%) | 2 (11%) | 0.198 |
| Vaccination against SARS-CoV-2, n (%) | 41 (89%) | 15 (83%) | 0.676 |
| Suspected post-COVID condition, n (%) | 39 (83%) | 17 (94%) | 0.425 |
| No regular physical activity, n (%) | 30 (64%) | 11 (61%) | 0.839 |
| Smoking, n (%) | 3 (6%) | 1 (6%) | >0.999 |
| Daily medication, n (%) | 28 (60%) | 13 (72%) | 0.344 |
| Statins, n (%) | 2 (4%) | 3 (17%) | 0.125 |
| Metabolic risk factors | |||
| BMI, M ± SD, kg/m2 | 30.0 ± 5.5 | 36.6 ± 7.3 | <0.001 |
| BMI ≥ 25.0 kg/m2, n (%) | 40 (74%) | 18 (100%) | 0.173 |
| Waist circumference: ≥94 cm for men or ≥80 cm for women, n (%) | 41 (93%) | 18 (100%) | 0.550 |
| Dysglycaemia or Type 2 diabetes | 5 (11%) | 1 (6%) | >0.999 |
| TG ≥ 1.7 mmol/L or lipid lowering treatment, n (%) | 10 (21%) | 6 (33%) | 0.346 |
| HDL-cholesterol ≤ 1.0 mmol/L for men; ≤1.3 mmol/L for women or lipid lowering treatment, n (%) | 12 (26%) | 4 (22%) | >0.999 |
| Blood pressure ≥130/85 of hypotensive treatment, n (%) | 22 (50%) | 11 (61%) | 0.426 |
| AUDITc ≥ 4 for men; ≥3 for women | 17 (36%) | 4 (22%) | 0.282 |
| LT abnormalities | |||
| Normal LT, n (%) | 26 (55%) | 12 (67%) | 0.693 a |
| Mild, n (%) | 15 (32%) | 4 (22%) | |
| Moderate, n, (%) | 6 (13%) | 2 (11%) | |
| Severe, n (%) | 0 | 0 | |
| Biochemical parameters | |||
| ALT, Median (IQR), U/L | 25 (19; 36) | 32 (21; 42) | 0.308 |
| AST, Median (IQR), U/L | 28 (22; 37) | 26 (22; 33) | 0.587 |
| GGT, Median (IQR), U/L | 26 (16; 51) | 26 (22; 33) | 0.814 |
| ALP, Median (IQR), U/L | 69 (56; 86) | 69 (53; 85) | 0.769 |
| LDH, Median (IQR), U/L | 180 (158; 203) | 193 (183; 206) | 0.139 |
| Total bilirubin, Median (IQR), μmol/L | 9.1 (6.6; 12.6) | 9.2 (8.2; 13.7) | 0.305 |
| Direct bilirubin, Median (IQR), μmol/L | 4.3 (3.3; 5.9) | 4.6 (3.3; 6.2) | 0.519 |
| Prothrombin index, Median (IQR), % | 102.7 (95.5; 112.5) | 102.7 (93.4; 104.7) | 0.238 |
| D-dimers Median (IQR), mg/L | 0.36 (0.19; 0.56) | 0.39 (0.29; 0.67) | 0.190 |
| Albumin Median (IQR), g/L | 46 (45; 47) | 46 (46; 48) | 0.730 |
| CRP Median (IQR), mg/L | 2.1 (0.7; 2.9) | 1.9 (0.6; 5.4) | 0.524 |
| TG Median (IQR), mmol/L | 1.10 (0.80; 1.54) | 1.48 91.18; 1.88) | 0.042 |
| HDL-cholesterol, Median (IQR), mmol/L | 1.42 (1.23; 1.67) | 1.23 (1.08; 1.42) | 0.033 |
| Markers of liver disease | |||
| HA, Median (IQR), ng/mL | 25.3 (16.4; 37.7) | 27.1 (11.2; 38.3) | 0.823 |
| Missing data, n | 1 | 0 | |
| CK18-M30, Median (IQR), U/L | 131.0 (97.4; 148.7) | 129.2 (112.2; 160.2) | 0.654 |
| FIB-4, Median (IQR) | 1.13 (0.68; 1.36) | 1.12 (0.76; 1.53) | 0.965 |
| <1.3, n (%) | 30 (64%) | 10 (56.0%) | - |
| 1.3–2.67, n (%) | 16 (34%) | 8 (44.0%) | - |
| ≥2.67, n (%) | 1 (2%) | 0 | - |
| Multiparametric US | |||
| SWE, Median (IQR), kPa | 5.2 (4.3; 5.8) | 5.9 (5.2; 7.6) | 0.019 |
| SWE ≥ 7.1 kPa, n (%) | 4 (8%) | 4 (22%) | - |
| SWD, Median (IQR), (m/s)/kHz | 11.1 (10.1; 12.4) | 10.8 (9.7; 12.9) | 0.709 |
| Missing data, n | 2 | 0 | - |
| ATI, Median (IQR), dB/cm/MHz | 0.59 (0.53; 0.69) | 0.68 (0.59; 0.73) | 0.056 |
| Missing data, n | 2 | 0 | - |
| ≥0.63 dB/cm/MHz, n (%) | 18 (40%) | 11 (61%) | - |
| Suspected MASLD, n (%) | 8 (17%) | 7 (39%) | 0.100 |
| Missing data, n | 1 | 0 | - |
| Variables | B | S.E. | Wald χ2 | df | p | Exp(B) | 95% CI for Exp(B) |
|---|---|---|---|---|---|---|---|
| Constant | −1.01 | 0.48 | 4.49 | 1 | 0.034 | 0.36 | - |
| COVID-19 severity | −0.89 | 0.62 | 2.02 | 1 | 0.155 | 0.41 | 0.12; 1.40 |
| LT abnormalities | 1.38 | 0.60 | 5.34 | 1 | 0.021 | 3.98 | 1.23; 12.86 |
| Variables | B | S.E. | β | p-Value | 95% CI for B | |
|---|---|---|---|---|---|---|
| Step 1 | Constant | 2.48 | 1.14 | - | 0.034 | 0.20; 4.77 |
| Age | 0.07 | 0.02 | 0.38 | 0.003 | 0.03; 0.11 | |
| Step 2 | Constant | 3.17 | 1.12 | - | 0.006 | 0.92; 5.42 |
| Age | 0.04 | 0.02 | 0.22 | 0.104 | −0.01; 0.09 | |
| Cardiovascular diseases | 1.67 | 0.64 | 0.34 | 0.012 | 0.39; 2.96 | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vanaga, I.; Kolesova, O.; Kolesovs, A.; Radzina, M.; Putrins, D.S.; Egle, J.; Laivacuma, S.; Storozenko, J.; Viksna, L. Liver-Related COVID-19 Consequences: Dynamics of Liver Health in 2.5 Years. J. Clin. Med. 2025, 14, 7604. https://doi.org/10.3390/jcm14217604
Vanaga I, Kolesova O, Kolesovs A, Radzina M, Putrins DS, Egle J, Laivacuma S, Storozenko J, Viksna L. Liver-Related COVID-19 Consequences: Dynamics of Liver Health in 2.5 Years. Journal of Clinical Medicine. 2025; 14(21):7604. https://doi.org/10.3390/jcm14217604
Chicago/Turabian StyleVanaga, Ieva, Oksana Kolesova, Aleksandrs Kolesovs, Maija Radzina, Davis Simanis Putrins, Jelena Egle, Sniedze Laivacuma, Jelena Storozenko, and Ludmila Viksna. 2025. "Liver-Related COVID-19 Consequences: Dynamics of Liver Health in 2.5 Years" Journal of Clinical Medicine 14, no. 21: 7604. https://doi.org/10.3390/jcm14217604
APA StyleVanaga, I., Kolesova, O., Kolesovs, A., Radzina, M., Putrins, D. S., Egle, J., Laivacuma, S., Storozenko, J., & Viksna, L. (2025). Liver-Related COVID-19 Consequences: Dynamics of Liver Health in 2.5 Years. Journal of Clinical Medicine, 14(21), 7604. https://doi.org/10.3390/jcm14217604

