Sedentary Behavior as a Risk Factor for Liver Fibrosis Development in Patients with Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD): A Cross-Sectional Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Data Collection
2.3. Outcome Assessment: Measurement of Liver Stiffness (LSM) Using FibroScan®
2.4. Exposure Assessment: Measuring SB Using an ActiGraph GT9X
2.5. Statistical Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| ALT | Alanine Aminotransferase |
| AST | Aspartate Aminotransferase |
| BMI | Body Mass Index |
| CAP | Controlled Attenuation Parameter |
| GGT | Gamma-Glutamyl Transferase |
| HbA1c | Glycated Hemoglobin |
| HCC | Hepatocellular Carcinoma |
| HDL-C | High-Density Lipoprotein Cholesterol |
| HOMA-IR | Homeostatic Model Assessment of Insulin Resistance |
| IPAQ-SF | International Physical Activity Questionnaire-Short Form |
| LSM | Liver Stiffness Measurement |
| MASLD | Metabolic Dysfunction-Associated Steatotic Liver Disease |
| MASH | Metabolic Dysfunction-Associated Steatohepatitis |
| MET | Metabolic Equivalent of Task |
| NAFLD | Non-Alcoholic Fatty Liver Disease |
| SB | Sedentary Behavior |
| T2DM | Type 2 Diabetes Mellitus |
| TC | Total Cholesterol |
| TG | Triglycerides |
| WHO | World Health Organization |
References
- De, A.; Bhagat, N.; Mehta, M.; Taneja, S.; Duseja, A. Metabolic dysfunction-associated steatotic liver disease (MASLD) definition is better than MAFLD criteria for lean patients with NAFLD. J. Hepatol. 2024, 80, e61–e62. [Google Scholar] [CrossRef]
- Torre, E.; Di Matteo, S.; Martinotti, C.; Bruno, G.M.; Goglia, U.; Testino, G.; Rebora, A.; Bottaro, L.C.; Colombo, G.L. Economic Impact of Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) in Italy. Analysis and Perspectives. Clin. Outcomes Res. CEOR 2024, 16, 773–784. [Google Scholar] [CrossRef]
- Bernhard, J.; Galli, L.; Speidl, W.S.; Krychtiuk, K.A. Cardiovascular Risk Reduction in Metabolic Dysfunction-Associated Steatotic Liver Disease and Metabolic Dysfunction-Associated Steatohepatitis. Curr. Cardiol. Rep. 2025, 27, 28. [Google Scholar] [CrossRef]
- Horn, P.; Tacke, F. Metabolic reprogramming in liver fibrosis. Cell Metab. 2024, 36, 1439–1455. [Google Scholar] [CrossRef]
- Loomba, R.; Chalasani, N. The Hierarchical Model of NAFLD: Prognostic Significance of Histologic Features in NASH. Gastroenterology 2015, 149, 278–281. [Google Scholar] [CrossRef]
- Le, M.H.; Devaki, P.; Ha, N.B.; Jun, D.W.; Te, H.S.; Cheung, R.C.; Nguyen, M.H. Prevalence of non-alcoholic fatty liver disease and risk factors for advanced fibrosis and mortality in the United States. PLoS ONE 2017, 12, e0173499. [Google Scholar] [CrossRef]
- Mangla, N.; Ajmera, V.H.; Caussy, C.; Sirlin, C.; Brouha, S.; Bajwa-Dulai, S.; Madamba, E.; Bettencourt, R.; Richards, L.; Loomba, R. Liver Stiffness Severity is Associated with Increased Cardiovascular Risk in Patients with Type 2 Diabetes. Clin. Gastroenterol. Hepatol. Off. Clin. Pract. J. Am. Gastroenterol. Assoc. 2020, 18, 744–746.e741. [Google Scholar] [CrossRef]
- Vilar-Gomez, E.; Martinez-Perez, Y.; Calzadilla-Bertot, L.; Torres-Gonzalez, A.; Gra-Oramas, B.; Gonzalez-Fabian, L.; Friedman, S.L.; Diago, M.; Romero-Gomez, M. Weight Loss Through Lifestyle Modification Significantly Reduces Features of Nonalcoholic Steatohepatitis. Gastroenterology 2015, 149, 367–378.e5, quiz e14–15. [Google Scholar] [CrossRef]
- Harrison, S.A.; Bedossa, P.; Guy, C.D.; Schattenberg, J.M.; Loomba, R.; Taub, R.; Labriola, D.; Moussa, S.E.; Neff, G.W.; Rinella, M.E.; et al. A Phase 3, Randomized, Controlled Trial of Resmetirom in NASH with Liver Fibrosis. N. Engl. J. Med. 2024, 390, 497–509. [Google Scholar] [CrossRef]
- Sanyal, A.J.; Newsome, P.N.; Kliers, I.; Østergaard, L.H.; Long, M.T.; Kjær, M.S.; Cali, A.M.G.; Bugianesi, E.; Rinella, M.E.; Roden, M.; et al. Phase 3 Trial of Semaglutide in Metabolic Dysfunction-Associated Steatohepatitis. N. Engl. J. Med. 2025, 392, 2089–2099. [Google Scholar] [CrossRef]
- Tremblay, M.S.; Aubert, S.; Barnes, J.D.; Saunders, T.J.; Carson, V.; Latimer-Cheung, A.E.; Chastin, S.F.M.; Altenburg, T.M.; Chinapaw, M.J.M. Sedentary Behavior Research Network (SBRN)—Terminology Consensus Project process and outcome. Int. J. Behav. Nutr. Phys. Act. 2017, 14, 75. [Google Scholar] [CrossRef]
- Lavie, C.J.; Ozemek, C.; Carbone, S.; Katzmarzyk, P.T.; Blair, S.N. Sedentary Behavior, Exercise, and Cardiovascular Health. Circ. Res. 2019, 124, 799–815. [Google Scholar] [CrossRef]
- Le Roux, E.; De Jong, N.P.; Blanc, S.; Simon, C.; Bessesen, D.H.; Bergouignan, A. Physiology of physical inactivity, sedentary behaviours and non-exercise activity: Insights from the space bedrest model. J. Physiol. 2022, 600, 1037–1051. [Google Scholar] [CrossRef]
- Pinto, A.J.; Bergouignan, A.; Dempsey, P.C.; Roschel, H.; Owen, N.; Gualano, B.; Dunstan, D.W. Physiology of sedentary behavior. Physiol. Rev. 2023, 103, 2561–2622. [Google Scholar] [CrossRef]
- Hamilton, M.T.; Hamilton, D.G.; Zderic, T.W. Role of low energy expenditure and sitting in obesity, metabolic syndrome, type 2 diabetes, and cardiovascular disease. Diabetes 2007, 56, 2655–2667. [Google Scholar] [CrossRef]
- van Uffelen, J.G.; Wong, J.; Chau, J.Y.; van der Ploeg, H.P.; Riphagen, I.; Gilson, N.D.; Burton, N.W.; Healy, G.N.; Thorp, A.A.; Clark, B.K.; et al. Occupational sitting and health risks: A systematic review. Am. J. Prev. Med. 2010, 39, 379–388. [Google Scholar] [CrossRef]
- Patel, A.V.; Bernstein, L.; Deka, A.; Feigelson, H.S.; Campbell, P.T.; Gapstur, S.M.; Colditz, G.A.; Thun, M.J. Leisure time spent sitting in relation to total mortality in a prospective cohort of US adults. Am. J. Epidemiol. 2010, 172, 419–429. [Google Scholar] [CrossRef]
- Franco, I.; Bianco, A.; Bonfiglio, C.; Curci, R.; Campanella, A.; Osella, A.R. Leisure-Time Physical Activity, Time Spent Sitting and Risk of Non-alcoholic Fatty Liver Disease: A Cross-Sectional Study in Puglia. J. Gen. Intern. Med. 2024, 39, 2788–2796. [Google Scholar] [CrossRef]
- Akins, J.D.; Crawford, C.K.; Burton, H.M.; Wolfe, A.S.; Vardarli, E.; Coyle, E.F. Inactivity induces resistance to the metabolic benefits following acute exercise. J. Appl. Physiol. (1985) 2019, 126, 1088–1094. [Google Scholar] [CrossRef]
- Pate, R.R.; O’Neill, J.R.; Lobelo, F. The evolving definition of “sedentary”. Exerc. Sport Sci. Rev. 2008, 36, 173–178. [Google Scholar] [CrossRef]
- Dunstan, D.W.; Barr, E.L.; Healy, G.N.; Salmon, J.; Shaw, J.E.; Balkau, B.; Magliano, D.J.; Cameron, A.J.; Zimmet, P.Z.; Owen, N. Television viewing time and mortality: The Australian Diabetes, Obesity and Lifestyle Study (AusDiab). Circulation 2010, 121, 384–391. [Google Scholar] [CrossRef]
- Tudor-Locke, C.; Craig, C.L.; Brown, W.J.; Clemes, S.A.; De Cocker, K.; Giles-Corti, B.; Hatano, Y.; Inoue, S.; Matsudo, S.M.; Mutrie, N. How many steps/day are enough? For adults. Int. J. Behav. Nutr. Phys. Act. 2011, 8, 79. [Google Scholar] [CrossRef]
- Healy, G.N.; Dunstan, D.W.; Salmon, J.; Cerin, E.; Shaw, J.E.; Zimmet, P.Z.; Owen, N. Objectively measured light-intensity physical activity is independently associated with 2-h plasma glucose. Diabetes Care 2007, 30, 1384–1389. [Google Scholar] [CrossRef]
- Healy, G.N.; Wijndaele, K.; Dunstan, D.W.; Shaw, J.E.; Salmon, J.; Zimmet, P.Z.; Owen, N. Objectively measured sedentary time, physical activity, and metabolic risk: The Australian Diabetes, Obesity and Lifestyle Study (AusDiab). Diabetes Care 2008, 31, 369–371. [Google Scholar] [CrossRef]
- Gerber, L.; Otgonsuren, M.; Mishra, A.; Escheik, C.; Birerdinc, A.; Stepanova, M.; Younossi, Z.M. Non-alcoholic fatty liver disease (NAFLD) is associated with low level of physical activity: A population-based study. Aliment. Pharmacol. Ther. 2012, 36, 772–781. [Google Scholar] [CrossRef]
- Hallsworth, K.; Thoma, C.; Moore, S.; Ploetz, T.; Anstee, Q.M.; Taylor, R.; Day, C.P.; Trenell, M.I. Non-alcoholic fatty liver disease is associated with higher levels of objectively measured sedentary behaviour and lower levels of physical activity than matched healthy controls. Frontline Gastroenterol. 2015, 6, 44–51. [Google Scholar] [CrossRef]
- Lee, P.H.; Macfarlane, D.J.; Lam, T.H.; Stewart, S.M. Validity of the International Physical Activity Questionnaire Short Form (IPAQ-SF): A systematic review. Int. J. Behav. Nutr. Phys. Act. 2011, 8, 115. [Google Scholar] [CrossRef]
- Schober, P.; Boer, C.; Schwarte, L.A. Correlation Coefficients: Appropriate Use and Interpretation. Anesth. Analg. 2018, 126, 1763–1768. [Google Scholar] [CrossRef]
- Hastie, T.; Tibshirani, R.; Wainwright, M. Statistical learning with sparsity. Monogr. Stat. Appl. Probab. 2015, 143, 8. [Google Scholar]
- Belsley, D.A.; Kuh, E.; Welsch, R.E. Regression Diagnostics: Identifying Influential Data and Sources of Collinearity; John Wiley & Sons: Hoboken, NJ, USA, 2005. [Google Scholar]
- Bonora, E. La pandemia diabete in Italia. L’endocrinologo 2022, 23, 337–344. [Google Scholar] [CrossRef]
- Pipitone, R.M.; Ciccioli, C.; Infantino, G.; La Mantia, C.; Parisi, S.; Tulone, A.; Pennisi, G.; Grimaudo, S.; Petta, S. MAFLD: A multisystem disease. Ther. Adv. Endocrinol. Metab. 2023, 14, 20420188221145549. [Google Scholar] [CrossRef]
- Kim, D.; Vazquez-Montesino, L.M.; Li, A.A.; Cholankeril, G.; Ahmed, A. Inadequate Physical Activity and Sedentary Behavior Are Independent Predictors of Nonalcoholic Fatty Liver Disease. Hepatology 2020, 72, 1556–1568. [Google Scholar] [CrossRef]
- Han, Q.; Han, X.; Wang, X.; Wang, C.; Mao, M.; Tang, S.; Cong, L.; Hou, T.; Liu, C.; Wang, Y.; et al. Association of Accelerometer-Measured Sedentary Behavior Patterns with Nonalcoholic Fatty Liver Disease Among Older Adults: The MIND-China Study. Am. J. Gastroenterol. 2023, 118, 569–573. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, K.; Yin, S.; Qian, M.; Liu, C. Association of leisure sedentary behavior and physical activity with the risk of nonalcoholic fatty liver disease: A two-sample Mendelian randomization study. Front. Nutr. 2023, 10, 1158810. [Google Scholar] [CrossRef]
- Zhou, Z.; Li, L.; Wang, C.; Li, S.; Chen, P.; Huang, J.; Peng, M. The association between sedentary behavior and MASLD in overweight and obese adults: Investigating the role of inflammatory markers using NHANES data (2017-March 2020). Front. Nutr. 2025, 12, 1579453. [Google Scholar] [CrossRef]
- Ma, N.; Bansal, M.; Chu, J.; Branch, A.D. Fibrosis and steatotic liver disease in US adolescents according to the new nomenclature. J. Pediatr. Gastroenterol. Nutr. 2024, 79, 229–237. [Google Scholar] [CrossRef]
- Lin, H.; Lee, H.W.; Yip, T.C.-F.; Tsochatzis, E.; Petta, S.; Bugianesi, E.; Yoneda, M.; Zheng, M.-H.; Hagström, H.; Boursier, J. Vibration-controlled transient elastography scores to predict liver-related events in steatotic liver disease. Jama 2024, 331, 1287–1297. [Google Scholar] [CrossRef]
- Bull, F.C.; Al-Ansari, S.S.; Biddle, S.; Borodulin, K.; Buman, M.P.; Cardon, G.; Carty, C.; Chaput, J.P.; Chastin, S.; Chou, R.; et al. World Health Organization 2020 guidelines on physical activity and sedentary behaviour. Br. J. Sports Med. 2020, 54, 1451–1462. [Google Scholar] [CrossRef]

| All Sample * | Non-Sedentary | Sedentary | p-Value ¥ | |
|---|---|---|---|---|
| N | 104 | 87 | 17 | |
| LSM (kPa) | 5.78 (2.13) | 5.43 (1.52) | 7.56 (3.59) | <0.001 |
| CAP (dB/m) | 303.81 (36.69) | 303.06 (37.42) | 307.65 (33.44) | 0.64 |
| Age (years) | 48.6 (9.8) | 49.2 (9.2) | 45.2 (12.2) | 0.11 |
| Gender (%) | ||||
| Female | 53 (51.0) | 48 (55) | 5 (29) | 0.052 |
| Male | 51 (49.0) | 39 (45) | 12 (71) | |
| BMI (kg/m2) | 35.56 (4.16) | 35.43 (4.08) | 36.20 (4.66) | 0.49 |
| Fat Mass (Kg) | 52.12 (16.82) | 50.86 (15.68) | 58.57 (21.20) | 0.094 |
| Fat Free Mass (kg) | 31.27 (11.64) | 31.06 (11.18) | 32.36 (14.15) | 0.68 |
| Glucose (mg/dL) | 98.00 (11.51) | 98.07 (12.25) | 97.59 (6.74) | 0.87 |
| AST (U/L) | 21.29 (6.83) | 20.98 (6.34) | 22.88 (8.99) | 0.30 |
| ALT (U/L) | 28.03 (14.55) | 27.14 (13.79) | 32.56 (17.73) | 0.16 |
| GGT (U/L) | 29.80 (21.23) | 29.36 (21.67) | 32.06 (19.28) | 0.63 |
| HDL (mg/dL) | 49.52 (12.21) | 50.61 (12.51) | 43.94 (8.91) | 0.039 |
| TC (mg/dL) | 199.65 (39.91) | 201.04 (38.07) | 192.56 (48.95) | 0.43 |
| TG (mg/dL) | 137.62 (74.30) | 132.06 (70.47) | 166.07 (88.40) | 0.084 |
| HbA1c (%) | 5.50 (0.38) | 5.51 (0.38) | 5.48 (0.39) | 0.81 |
| HOMA IR | 4.66 (2.17) | 4.57 (2.13) | 5.13 (2.37) | 0.33 |
| WBC (103/μL) | 6.33 (1.46) | 6.30 (1.47) | 6.50 (1.44) | 0.62 |
| RBC (106/μL) | 4.97 (0.46) | 4.95 (0.45) | 5.07 (0.53) | 0.34 |
| Haemoglobin (g/L) | 14.69 (3.39) | 14.31 (1.37) | 16.60 (7.69) | 0.010 |
| Sedentary (h/day) | 9.70 (1.46) | 9.38 (1.14) | 11.31 (1.85) | <0.001 |
| Total MVPA (h/day) | 2.81 (1.21) | 3.12 (1.08) | 1.25 (0.28) | <0.001 |
| Kilocalories Ϯ (day) | 2420.45 (689.28) | 2557.89 (652.55) | 1749.42 (425.45) | <0.001 |
| Smoker (%) | ||||
| Never/Former | 90 (86.5) | 75 (86) | 15 (88) | 0.82 |
| Current | 14 (13.5) | 12 (14) | 2 (12) | |
| Job type (%) | ||||
| Not sedentary | 22 (21.2) | 21 (24) | 1 (6) | 0.092 |
| Sedentary | 82 (78.8) | 66 (76) | 16 (94) | |
| Work (%) | ||||
| Managers and Professionals | 18 (17.3) | 14 (16) | 4 (24) | 0.68 |
| Craft, Agricultural, and Sales Workers | 57 (54.8) | 47 (54) | 10 (59) | |
| Elementary Occupations | 8 (7.7) | 8 (9) | 0 (0) | |
| Housewife | 5 (4.8) | 5 (6) | 0 (0) | |
| Pensioner | 5 (4.8) | 4 (5) | 1 (6) | |
| Unemployed | 11 (10.6) | 9 (10) | 2 (12) | |
| Marital Status (%) | ||||
| Single | 26 (25.0) | 20 (23) | 6 (35) | 0.46 |
| Married or living together | 69 (66.3) | 60 (69) | 9 (53) | |
| Separated or divorced | 7 (6.7) | 5 (6) | 2 (12) | |
| Widow/er | 2 (1.9) | 2 (2) | 0 (0) | |
| Education (%) | ||||
| Primary school | 1 (1.0) | 1 (1) | 0 (0) | 0.24 |
| Secondary school | 15 (14.4) | 14 (16) | 1 (6) | |
| High School | 59 (56.7) | 51 (59) | 8 (47) | |
| Graduate | 29 (27.9) | 21 (24) | 8 (47) |
| LSM (kPa) | β | eβ | p-Value | 95% CI |
|---|---|---|---|---|
| Model a | ||||
| R2 0.0477 | ||||
| METs | −0.286 | −0.777 | 0.027 | −0.539; −0.033 |
| Model b | ||||
| R2 0.0488 | ||||
| METs | −0.280 | −0.761 | 0.038 | −0.544; −0.016 |
| Model c | ||||
| R2 0.2457 | ||||
| METs | −1.239 | −3.377 | 0.001 | −1.923; −0.554 |
| LSM (kPa) | β | eβ | p-Value | 95% CI |
|---|---|---|---|---|
| Model d | ||||
| R2 0.1016 | ||||
| METs >1.5 vs. ≤1.5 | 0.277 | 0.753 | 0.001 | 0.115; 0.459 |
| Model e | ||||
| R2 0.1064 | ||||
| METs > 1.5 vs. ≤1.5 | 0.286 | 0.777 | 0.001 | 0.113; 0.447 |
| Model f | ||||
| R2 0.1986 | ||||
| METs > 1.5 vs. ≤1.5 | 0.269 | 0.731 | 0.009 | 0.069; 0.468 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bianco, A.; Bonfiglio, C.; Franco, I.; Bagnato, C.B.; Verrelli, N.; Stabile, D.; Shahini, E. Sedentary Behavior as a Risk Factor for Liver Fibrosis Development in Patients with Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD): A Cross-Sectional Study. J. Clin. Med. 2025, 14, 7553. https://doi.org/10.3390/jcm14217553
Bianco A, Bonfiglio C, Franco I, Bagnato CB, Verrelli N, Stabile D, Shahini E. Sedentary Behavior as a Risk Factor for Liver Fibrosis Development in Patients with Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD): A Cross-Sectional Study. Journal of Clinical Medicine. 2025; 14(21):7553. https://doi.org/10.3390/jcm14217553
Chicago/Turabian StyleBianco, Antonella, Caterina Bonfiglio, Isabella Franco, Claudia Beatrice Bagnato, Nicola Verrelli, Dolores Stabile, and Endrit Shahini. 2025. "Sedentary Behavior as a Risk Factor for Liver Fibrosis Development in Patients with Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD): A Cross-Sectional Study" Journal of Clinical Medicine 14, no. 21: 7553. https://doi.org/10.3390/jcm14217553
APA StyleBianco, A., Bonfiglio, C., Franco, I., Bagnato, C. B., Verrelli, N., Stabile, D., & Shahini, E. (2025). Sedentary Behavior as a Risk Factor for Liver Fibrosis Development in Patients with Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD): A Cross-Sectional Study. Journal of Clinical Medicine, 14(21), 7553. https://doi.org/10.3390/jcm14217553

