Bridging the Gap: The Role of Non-Invasive Respiratory Supports in Weaning from Invasive Mechanical Ventilation
Abstract
1. Introduction
2. Weaning Overview
2.1. Steps of the Weaning Process
2.2. Weaning Success and Failure: Definitions and Patients’ Classification
3. Peri-Extubation Period
3.1. Extubation-Related Pathophysiological Changes
3.2. Post-Extubation Respiratory Failure (PERF)
3.3. Risk Factors for Extubation Failure
4. State of the Art: Available NIRSs Interventions After Extubation
4.1. NIV
4.2. HFNC
5. Role of NIRSs in Facilitating Extubation
6. NIRSs as a Strategy to Prevent PERF
6.1. NIRSs for Preventing PERF in High-Risk Patients
6.2. NIRSs for Preventing PERF in Unselected, Non-High-Risk Patients
7. Therapeutic Use of NIRSs in PERF
8. NIRSs in the Post-Operative Setting
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ARDS | Acute Respiratory Distress Syndrome |
ARF | Acute Respiratory Failure |
BMI | Body Mass Index |
CLT | Cuff-Leak Test |
CO2 | Carbon dioxide |
COPD | Chronic Obstructive Pulmonary Disease |
COT | Conventional Oxygen Therapy |
CPAP | Continuous Positive Airway Pressure |
DH | Dynamic Hyperinflation |
ERV | Expiratory Reserve Volume |
ETI | Endotracheal Intubation |
ETT | Endotracheal Tube |
FiO2 | Fraction of inspired oxygen |
FRC | Functional Residual Capacity |
HFNC | High-Flow Nasal Cannula |
IAP | Intubation-Associated Pneumonia |
ICU | Intensive Care Unit |
IMV | Invasive Mechanical Ventilation |
MIP | Maximal Inspiratory Pressure |
NIRS | Non-Invasive Respiratory Support |
NIV | Non-Invasive Ventilation |
NP | Nosocomial Pneumonia |
PaO2 | Partial pressure of arterial oxygen |
PEEP | Positive End-Expiratory Pressure |
PERF | Post-Extubation Respiratory Failure |
PS | Pressure Support |
PSV | Pressure Support Ventilation |
RCT | Randomized Controlled Trial |
RR | Respiratory Rate |
RSBI | Rapid Shallow Breathing Index |
RV | Residual Volume |
SBT | Spontaneous Breathing Trial |
SpO2 | Peripheral oxygen saturation |
Valv | Alveolar Ventilation |
VAP | Ventilator-Associated Pneumonia |
VC | Vital Capacity |
Vt | Tidal Volume |
WOB | Work Of Breathing |
References
- Ding, C.; Zhang, Y.; Yang, Z.; Wang, J.; Jin, A.; Wang, W.; Chen, R.; Zhan, S. Incidence, temporal trend and factors associated with ventilator-associated pneumonia in mainland China: A systematic review and meta-analysis. BMC Infect. Dis. 2017, 17, 468. [Google Scholar] [CrossRef]
- Tobin, M.J. Mechanical ventilation. N. Engl. J. Med. 1994, 330, 1056–1061. [Google Scholar] [CrossRef]
- Windisch, W.; Dellweg, D.; Geiseler, J.; Westhoff, M.; Pfeifer, M.; Suchi, S.; Schönhofer, B. Prolonged Weaning from Mechanical Ventilation. Dtsch. Ärztebl. Int. 2020, 117, 197–204. [Google Scholar] [CrossRef]
- Meduri, G.U. Noninvasive ventilation. In Physiological Basis of Ventilatory Support: A Series on Lung Biology in Health and Disease; Marini, J., Slutsky, A., Eds.; Dekker: New York, NY, USA, 1998; pp. 921–998. [Google Scholar]
- Burns, H.P.; Dayal, V.S.; Scott, A.; van Nostrand, A.W.; Bryce, D.P. Laryngotracheal trauma: Observations on its pathogenesis and its prevention following prolonged orotracheal intubation in the adult. Laryngoscope 1979, 89, 1316–1325. [Google Scholar] [CrossRef]
- Nava, S.; Navalesi, P.; Conti, G. Time of non-invasive ventilation. Intensive Care Med. 2006, 32, 361–370. [Google Scholar] [CrossRef]
- Kaier, K.; Heister, T.; Motschall, E.; Hehn, P.; Bluhmki, T.; Wolkewitz, M. Impact of mechanical ventilation on the daily costs of ICU care: A systematic review and meta regression. Epidemiol. Infect. 2019, 147, e314. [Google Scholar] [CrossRef]
- Kaier, K.; Heister, T.; Wolff, J.; Wolkewitz, M. Mechanical ventilation and the daily cost of ICU care. BMC Health Serv. Res. 2020, 20, 267. [Google Scholar] [CrossRef]
- Boles, J.M.; Bion, J.; Connors, A.; Herridge, M.; Marsh, B.; Melot, C.; Pearl, R.; Silverman, H.; Stanchina, M.; Vieillard-Baron, A.; et al. Weaning from mechanical ventilation. Eur. Respir. J. 2007, 29, 1033–1056. [Google Scholar] [CrossRef]
- Shah, N.M.; Hart, N.; Kaltsakas, G. Prolonged weaning from mechanical ventilation: Who, what, when and how? Breathe 2024, 20, 240122. [Google Scholar] [CrossRef]
- Esteban, A.; Alía, I.; Ibañez, J.; Benito, S.; Tobin, M.J. Modes of mechanical ventilation and weaning. A national survey of Spanish hospitals. The Spanish Lung Failure Collaborative Group. Chest 1994, 106, 1188–1193. [Google Scholar] [CrossRef]
- Ely, E.W.; Baker, A.M.; Dunagan, D.P.; Burke, H.L.; Smith, A.C.; Kelly, P.T.; Johnson, M.M.; Browder, R.W.; Bowton, D.L.; Haponik, E.F. Effect on the duration of mechanical ventilation of identifying patients capable of breathing spontaneously. N. Engl. J. Med. 1996, 335, 1864–1869. [Google Scholar] [CrossRef]
- Kollef, M.H.; Shapiro, S.D.; Silver, P.; John, R.E.S.; Prentice, D.; Sauer, S.; Ahrens, T.S.; Shannon, W.; Baker-Clinkscale, D. A randomized, controlled trial of protocol-directed versus physician-directed weaning from mechanical ventilation. Crit. Care Med. 1997, 25, 567–574. [Google Scholar] [CrossRef]
- Esteban, A.; Anzueto, A.; Frutos, F.; Alía, I.; Brochard, L.; Stewart, T.E.; Benito, S.; Epstein, S.K.; Apezteguía, C.; Nightingale, P.; et al. Characteristics and outcomes in adult patients receiving mechanical ventilation: A 28-day international study. JAMA 2002, 287, 345–355. [Google Scholar] [CrossRef]
- Ely, E.W.; Baker, A.M.; Evans, G.W.; Haponik, E.F. The prognostic significance of passing a daily screen of weaning parameters. Intensive Care Med. 1999, 25, 581–587. [Google Scholar] [CrossRef]
- MacIntyre, N.R.; Cook, D.J.; Ely, E.W., Jr.; Epstein, S.K.; Fink, J.B.; Heffner, J.E.; Hess, D.; Hubmayer, R.D.; Scheinhorn, D.J.; American College of Chest Physicians; et al. Evidence-based guidelines for weaning and discontinuing ventilatory support: A collective task force facilitated by the American College of Chest Physicians; the American Association for Respiratory Care; and the American College of Critical Care Medicine. Chest 2001, 120 (Suppl. 6), 375S–395S. [Google Scholar] [CrossRef]
- Tanios, M.A.; Nevins, M.L.; Hendra, K.P.; Cardinal, P.; Allan, J.E.; Naumova, E.N.; Epstein, S.K. A randomized, controlled trial of the role of weaning predictors in clinical decision making. Crit. Care Med. 2006, 34, 2530–2535. [Google Scholar] [CrossRef]
- Vallverdú, I.; Calaf, N.; Subirana, M.; Net, A.; Benito, S.; Mancebo, J. Clinical characteristics, respiratory functional parameters, and outcome of a two-hour T-piece trial in patients weaning from mechanical ventilation. Am. J. Respir. Crit. Care Med. 1998, 158, 1855–1862. [Google Scholar] [CrossRef]
- Meade, M.; Guyatt, G.; Cook, D.; Griffith, L.; Sinuff, T.; Kergl, C.; Mancebo, J.; Esteban, A.; Epstein, S. Predicting success in weaning from mechanical ventilation. Chest 2001, 120 (Suppl. 6), 400S–424S. [Google Scholar] [CrossRef]
- Cook, D.; Meade, M.; Guyatt, G.; Griffith, L.; Booker, L. Criteria for weaning from mechanical ventilation. Evid. Rep. Technol. Assess. Summ. 2000, 23, 1–4. [Google Scholar]
- Perren, A.; Previsdomini, M.; Llamas, M.; Cerutti, B.; Györik, S.; Merlani, G.; Jolliet, P. Patients’ prediction of extubation success. Intensive Care Med. 2010, 36, 2045–2052. [Google Scholar] [CrossRef]
- Epstein, S.K.; Nevins, M.L.; Chung, J. Effect of unplanned extubation on outcome of mechanical ventilation. Am. J. Respir. Crit. Care Med. 2000, 161, 1912–1916. [Google Scholar] [CrossRef]
- Ladeira, M.T.; Vital, F.M.; Andriolo, R.B.; Andriolo, B.N.; Atallah, A.N.; Peccin, M.S. Pressure support versus T-tube for weaning from mechanical ventilation in adults. Cochrane Database Syst. Rev. 2014, 2014, CD006056. [Google Scholar] [CrossRef]
- Pellegrini, J.A.S.; Moraes, R.B.; Maccari, J.G.; de Oliveira, R.P.; Savi, A.; Ribeiro, R.A.; Burns, K.E.; Teixeira, C. Spontaneous Breathing Trials With T-Piece or Pressure Support Ventilation. Respir. Care 2016, 61, 1693–1703. [Google Scholar] [CrossRef]
- Li, Y.; Li, H.; Zhang, D. Comparison of T-piece and pressure support ventilation as spontaneous breathing trials in critically ill patients: A systematic review and meta-analysis. Crit. Care 2020, 24, 67. [Google Scholar] [CrossRef]
- Na, S.J.; Ko, R.E.; Nam, J.; Ko, M.G.; Jeon, K. Comparison between pressure support ventilation and T-piece in spontaneous breathing trials. Respir. Res. 2022, 23, 22. [Google Scholar] [CrossRef]
- Thille, A.W.; Gacouin, A.; Coudroy, R.; Ehrmann, S.; Quenot, J.-P.; Nay, M.-A.; Guitton, C.; Contou, D.; Labro, G.; Reignier, J.; et al. Spontaneous-Breathing Trials with Pressure-Support Ventilation or a T-Piece. N. Engl. J. Med. 2022, 387, 1843–1854. [Google Scholar] [CrossRef]
- Tobin, M.J. Extubation and the myth of “minimal ventilator settings”. Am. J. Respir. Crit. Care Med. 2012, 185, 349–350. [Google Scholar] [CrossRef]
- Sklar, M.C.; Burns, K.; Rittayamai, N.; Lanys, A.; Rauseo, M.; Chen, L.; Dres, M.; Chen, G.-Q.; Goligher, E.C.; Adhikari, N.K.J.; et al. Effort to Breathe with Various Spontaneous Breathing Trial Techniques. A Physiologic Meta-analysis. Am. J. Respir. Crit. Care Med. 2017, 195, 1477–1485. [Google Scholar] [CrossRef]
- Vitacca, M.; Vianello, A.; Colombo, D.; Clini, E.; Porta, R.; Bianchi, L.; Arcaro, G.; Vitale, G.; Guffanti, E.; Coco, A.L.; et al. Comparison of two methods for weaning patients with chronic obstructive pulmonary disease requiring mechanical ventilation for more than 15 days. Am. J. Respir. Crit. Care Med. 2001, 164, 225–230. [Google Scholar] [CrossRef]
- Subirà, C.; Hernández, G.; Vázquez, A.; Rodríguez-García, R.; González-Castro, A.; García, C.; Rubio, O.; Ventura, L.; López, A.; de la Torre, M.-C.; et al. Effect of Pressure Support vs. T-Piece Ventilation Strategies During Spontaneous Breathing Trials on Successful Extubation Among Patients Receiving Mechanical Ventilation: A Randomized Clinical Trial. JAMA 2019, 321, 2175–2182. [Google Scholar] [CrossRef]
- Burns, K.E.A.; Wong, J.; Rizvi, L.; Lafreniere-Roula, M.; Thorpe, K.; Devlin, J.W.; Cook, D.J.; Seely, A.; Dodek, P.M.; Tanios, M.; et al. Frequency of Screening and Spontaneous Breathing Trial Techniques: A Randomized Clinical Trial. JAMA 2024, 332, 1808–1821. [Google Scholar] [CrossRef]
- Martínez, G.H.; Rodriguez, P.; Soto, J.; Caritg, O.; Castellví-Font, A.; Mariblanca, B.; García, A.M.; Colinas, L.; Añon, J.M.; Parrilla-Gomez, F.J.; et al. Effect of aggressive vs. conservative screening and confirmatory test on time to extubation among patients at low or intermediate risk: A randomized clinical trial. Intensive Care Med. 2024, 50, 258–267. [Google Scholar] [CrossRef]
- Macintyre, N.R. Evidence-based assessments in the ventilator discontinuation process. Respir. Care 2012, 57, 1611–1618. [Google Scholar] [CrossRef]
- Torrini, F.; Gendreau, S.; Morel, J.; Carteaux, G.; Thille, A.W.; Antonelli, M.; Dessap, A.M. Prediction of extubation outcome in critically ill patients: A systematic review and meta-analysis. Crit. Care 2021, 25, 391. [Google Scholar] [CrossRef]
- Girard, T.D.; Alhazzani, W.; Kress, J.P.; Ouellette, D.R.; Schmidt, G.A.; Truwit, J.D.; Burns, S.M.; Epstein, S.K.; Esteban, A.; Fan, E.; et al. An Official American Thoracic Society/American College of Chest Physicians Clinical Practice Guideline: Liberation from Mechanical Ventilation in Critically Ill Adults. Rehabilitation Protocols, Ventilator Liberation Protocols, and Cuff Leak Tests. Am. J. Respir. Crit. Care Med. 2017, 195, 120–133. [Google Scholar] [CrossRef]
- Potgieter, P.D.; Hammond, J.M. “Cuff” test for safe extubation following laryngeal edema. Crit. Care Med. 1988, 16, 818. [Google Scholar] [CrossRef]
- Schmidt, G.A.; Girard, T.D.; Kress, J.P.; Morris, P.E.; Ouellette, D.R.; Alhazzani, W.; Burns, S.M.; Epstein, S.K.; Esteban, A.; Fan, E.; et al. Official Executive Summary of an American Thoracic Society/American College of Chest Physicians Clinical Practice Guideline: Liberation from Mechanical Ventilation in Critically Ill Adults. Am. J. Respir. Crit. Care Med. 2017, 195, 115–119. [Google Scholar] [CrossRef]
- Jaber, S.; Chanques, G.; Matecki, S.; Ramonatxo, M.; Vergne, C.; Souche, B.; Perrigault, P.-F.; Eledjam, J.-J. Post-extubation stridor in intensive care unit patients. Risk factors evaluation and importance of the cuff-leak test. Intensive Care Med. 2003, 29, 69–74. [Google Scholar] [CrossRef]
- Wittekamp, B.H.; van Mook, W.N.; Tjan, D.H.; Zwaveling, J.H.; Bergmans, D.C. Clinical review: Post-extubation laryngeal edema and extubation failure in critically ill adult patients. Crit. Care 2009, 13, 233. [Google Scholar] [CrossRef]
- Kuriyama, A.; Jackson, J.L.; Kamei, J. Performance of the cuff leak test in adults in predicting post-extubation airway complications: A systematic review and meta-analysis. Crit. Care 2020, 24, 640. [Google Scholar] [CrossRef]
- Zhou, T.; Zhang, H.; Chen, W.; Xiong, Z.; Fan, T.; Fu, J.; Wang, L.; Wang, G. Cuff-leak test for predicting postextubation airway complications: A systematic review. J. Evid. Based Med. 2011, 4, 242–254. [Google Scholar] [CrossRef]
- Lewis, K.; Culgin, S.; Jaeschke, R.; Perri, D.; Marchildon, C.; Hassall, K.; Almubarak, Y.; Szczeklik, W.; Piraino, T.; Thabane, L.; et al. Cuff Leak Test and Airway Obstruction in Mechanically Ventilated Intensive Care Unit Patients: A Pilot Randomized Controlled Clinical Trial. Ann. Am. Thorac. Soc. 2022, 19, 238–244. [Google Scholar] [CrossRef]
- Béduneau, G.; Pham, T.; Schortgen, F.; Piquilloud, L.; Zogheib, E.; Jonas, M.; Grelon, F.; Runge, I.; Terzi, N.; Grangé, S.; et al. Epidemiology of Weaning Outcome according to a New Definition. The WIND Study. Am. J. Respir. Crit. Care Med. 2017, 195, 772–783. [Google Scholar] [CrossRef]
- Jeong, B.-H.; Lee, K.Y.; Nam, J.; Ko, M.G.; Na, S.J.; Suh, G.Y.; Jeon, K. Validation of a new WIND classification compared to ICC classification for weaning outcome. Ann. Intensive Care 2018, 8, 115. [Google Scholar] [CrossRef]
- Maggiore, S.M.; Battilana, M.; Serano, L.; Petrini, F. Ventilatory support after extubation in critically ill patients. Lancet Respir. Med. 2018, 6, 948–962. [Google Scholar] [CrossRef]
- Pluijms, W.A.; van Mook, W.N.; Wittekamp, B.H.; Bergmans, D.C. Postextubation laryngeal edema and stridor resulting in respiratory failure in critically ill adult patients: Updated review. Crit. Care 2015, 19, 295. [Google Scholar] [CrossRef]
- Straus, C.; Louis, B.; Isabey, D.; Lemaire, F.; Harf, A.; Brochard, L. Contribution of the endotracheal tube and the upper airway to breathing workload. Am. J. Respir. Crit. Care Med. 1998, 157, 23–30. [Google Scholar] [CrossRef]
- Mauri, T.; Grasselli, G.; Jaber, S. Respiratory support after extubation: Noninvasive ventilation or high-flow nasal cannula, as appropriate. Ann. Intensive Care 2017, 7, 52. [Google Scholar] [CrossRef]
- Soummer, A.; Perbet, S.; Brisson, H.; Arbelot, C.; Constantin, J.M.; Lu, Q.; Rouby, J.J.; Bouberima, M.; Roszyk, L.; Bouhemad, B.; et al. Ultrasound assessment of lung aeration loss during a successful weaning trial predicts postextubation distress. Crit. Care Med. 2012, 40, 2064–2072. [Google Scholar] [CrossRef]
- Mahul, M.; Jung, B.; Galia, F.; Molinari, N.; de Jong, A.; Coisel, Y.; Vaschetto, R.; Matecki, S.; Chanques, G.; Brochard, L.; et al. Spontaneous breathing trial and post-extubation work of breathing in morbidly obese critically ill patients. Crit. Care 2016, 20, 346. [Google Scholar] [CrossRef]
- Goligher, E.C.; Dres, M.; Fan, E.; Rubenfeld, G.D.; Scales, D.C.; Herridge, M.S.; Vorona, S.; Sklar, M.C.; Rittayamai, N.; Lanys, A.; et al. Mechanical Ventilation-induced Diaphragm Atrophy Strongly Impacts Clinical Outcomes. Am. J. Respir. Crit. Care Med. 2018, 197, 204–213. [Google Scholar] [CrossRef]
- Thille, A.W.; Richard, J.C.; Brochard, L. The decision to extubate in the intensive care unit. Am. J. Respir. Crit. Care Med. 2013, 187, 1294–1302. [Google Scholar] [CrossRef]
- Esteban, A.; Alía, I.; Gordo, F.; Fernández, R.; Solsona, J.F.; Vallverdú, I.; Macías, S.; Allegue, J.M.; Blanco, J.; Carriedo, D.; et al. Extubation outcome after spontaneous breathing trials with T-tube or pressure support ventilation. The Spanish Lung Failure Collaborative Group. Am. J. Respir. Crit. Care Med. 1997, 156 Pt 1, 459–465. [Google Scholar] [CrossRef]
- Esteban, A.; Alía, I.; Tobin, M.J.; Gil, A.; Gordo, F.; Vallverdú, I.; Blanch, L.; Bonet, A.; Vázquez, A.; de Pablo, R.; et al. Effect of spontaneous breathing trial duration on outcome of attempts to discontinue mechanical ventilation. Spanish Lung Failure Collaborative Group. Am. J. Respir. Crit. Care Med. 1999, 159, 512–518. [Google Scholar] [CrossRef]
- Epstein, S.K.; Ciubotaru, R.L.; Wong, J.B. Effect of failed extubation on the outcome of mechanical ventilation. Chest 1997, 112, 186–192. [Google Scholar] [CrossRef]
- Epstein, S.K.; Ciubotaru, R.L. Independent effects of etiology of failure and time to reintubation on outcome for patients failing extubation. Am. J. Respir. Crit. Care Med. 1998, 158, 489–493. [Google Scholar] [CrossRef]
- Thille, A.W.; Harrois, A.; Schortgen, F.; Brun-Buisson, C.; Brochard, L. Outcomes of extubation failure in medical intensive care unit patients. Crit. Care Med. 2011, 39, 2612–2618. [Google Scholar] [CrossRef]
- Frutos-Vivar, F.; Ferguson, N.D.; Esteban, A.; Epstein, S.K.; Arabi, Y.; Apezteguía, C.; González, M.; Hill, N.S.; Nava, S.; D’empaire, G.; et al. Risk factors for extubation failure in patients following a successful spontaneous breathing trial. Chest 2006, 130, 1664–1671. [Google Scholar] [CrossRef]
- Demling, R.H.; Read, T.; Lind, L.J.; Flanagan, H.L. Incidence and morbidity of extubation failure in surgical intensive care patients. Crit. Care Med. 1988, 16, 573–577. [Google Scholar] [CrossRef]
- Girault, C.; Bubenheim, M.; Abroug, F.; Diehl, J.L.; Elatrous, S.; Beuret, P.; Richecoeur, J.; L’Her, E.; Hilbert, G.; Capellier, G.; et al. Noninvasive ventilation and weaning in patients with chronic hypercapnic respiratory failure: A randomized multicenter trial. Am. J. Respir. Crit. Care Med. 2011, 184, 672–679. [Google Scholar] [CrossRef]
- Esteban, A.; Ferguson, N.D.; Meade, M.O.; Frutos-Vivar, F.; Apezteguia, C.; Brochard, L.; Raymondos, K.; Nin, N.; Hurtado, J.; Tomicic, V.; et al. Evolution of mechanical ventilation in response to clinical research. Am. J. Respir. Crit. Care Med. 2008, 177, 170–177. [Google Scholar] [CrossRef]
- Frutos-Vivar, F.; Esteban, A.; Apezteguia, C.; González, M.; Arabi, Y.; Restrepo, M.I.; Gordo, F.; Santos, C.; Alhashemi, J.A.; Pérez, F.; et al. Outcome of reintubated patients after scheduled extubation. J. Crit. Care 2011, 26, 502–509. [Google Scholar] [CrossRef]
- Peñuelas, O.; Frutos-Vivar, F.; Fernández, C.; Anzueto, A.; Epstein, S.K.; Apezteguía, C.; González, M.; Nin, N.; Raymondos, K.; Tomicic, V.; et al. Characteristics and outcomes of ventilated patients according to time to liberation from mechanical ventilation. Am. J. Respir. Crit. Care Med. 2011, 184, 430–437. [Google Scholar] [CrossRef]
- Sterr, F.; Reintke, M.; Bauernfeind, L.; Senyol, V.; Rester, C.; Metzing, S.; Palm, R. Predictors of weaning failure in ventilated intensive care patients: A systematic evidence map. Crit. Care 2024, 28, 366. [Google Scholar] [CrossRef]
- Hernández, G.; Vaquero, C.; González, P.; Subira, C.; Frutos-Vivar, F.; Rialp, G.; Laborda, C.; Colinas, L.; Cuena, R.; Fernández, R. Effect of Postextubation High-Flow Nasal Cannula vs. Conventional Oxygen Therapy on Reintubation in Low-Risk Patients: A Randomized Clinical Trial. JAMA 2016, 315, 1354–1361. [Google Scholar] [CrossRef]
- Ferrer, M.; Valencia, M.; Nicolas, J.M.; Bernadich, O.; Badia, J.R.; Torres, A. Early noninvasive ventilation averts extubation failure in patients at risk: A randomized trial. Am. J. Respir. Crit. Care Med. 2006, 173, 164–170. [Google Scholar] [CrossRef]
- Nava, S.; Gregoretti, C.; Fanfulla, F.; Squadrone, E.; Grassi, M.; Carlucci, A.; Beltrame, F.; Navalesi, P. Noninvasive ventilation to prevent respiratory failure after extubation in high-risk patients. Crit. Care Med. 2005, 33, 2465–2470. [Google Scholar] [CrossRef]
- Yang, K.L.; Tobin, M.J. A prospective study of indexes predicting the outcome of trials of weaning from mechanical ventilation. N. Engl. J. Med. 1991, 324, 1445–1450. [Google Scholar] [CrossRef]
- Smina, M.; Salam, A.; Khamiees, M.; Gada, P.; Amoateng-Adjepong, Y.; Manthous, C.A. Cough peak flows and extubation outcomes. Chest 2003, 124, 262–268. [Google Scholar] [CrossRef]
- Capdevila, X.J.; Perrigault, P.F.; Perey, P.J.; Roustan, J.P.; d’Athis, F. Occlusion pressure and its ratio to maximum inspiratory pressure are useful predictors for successful extubation following T-piece weaning trial. Chest 1995, 108, 482–489. [Google Scholar] [CrossRef]
- Wagstaff, T.A.; Soni, N. Performance of six types of oxygen delivery devices at varying respiratory rates. Anaesthesia 2007, 62, 492–503. [Google Scholar] [CrossRef]
- Rochwerg, B.; Brochard, L.; Elliott, M.W.; Hess, D.; Hill, N.S.; Nava, S.; Navalesi, P.; Antonelli, M.; Brozek, J.; Conti, G.; et al. Official ERS/ATS clinical practice guidelines: Noninvasive ventilation for acute respiratory failure. Eur. Respir. J. 2017, 50, 1602426. [Google Scholar] [CrossRef]
- Oczkowski, S.; Ergan, B.; Bos, L.; Chatwin, M.; Ferrer, M.; Gregoretti, C.; Heunks, L.; Frat, J.-P.; Longhini, F.; Nava, S.; et al. ERS clinical practice guidelines: High-flow nasal cannula in acute respiratory failure. Eur. Respir. J. 2022, 59, 2101574. [Google Scholar] [CrossRef]
- Hernández, G.; Vaquero, C.; Colinas, L.; Cuena, R.; González, P.; Canabal, A.; Sanchez, S.; Rodriguez, M.L.; Villasclaras, A.; Fernández, R. Effect of Postextubation High-Flow Nasal Cannula vs. Noninvasive Ventilation on Reintubation and Postextubation Respiratory Failure in High-Risk Patients: A Randomized Clinical Trial. JAMA 2016, 316, 1565–1574. [Google Scholar] [CrossRef]
- Thille, A.W.; Muller, G.; Gacouin, A.; Coudroy, R.; Decavèle, M.; Sonneville, R.; Beloncle, F.; Girault, C.; Dangers, L.; Lautrette, A.; et al. Effect of Postextubation High-Flow Nasal Oxygen With Noninvasive Ventilation vs. High-Flow Nasal Oxygen Alone on Reintubation Among Patients at High Risk of Extubation Failure: A Randomized Clinical Trial. JAMA 2019, 322, 1465–1475. [Google Scholar] [CrossRef]
- Navalesi, P.; Maggiore, S.M. Positive end-expiratory pressure. In Principles and Practice of Mechanical Ventilation, 3rd ed; Tobin, M.J., Ed.; McGraw-Hill: New York, NY, USA, 2012; pp. 253–302. [Google Scholar]
- Scaramuzzo, G.; Ottaviani, I.; Volta, C.A.; Spadaro, S. Mechanical ventilation and COPD: From pathophysiology to ventilatory management. Minerva Med. 2022, 113, 460–470. [Google Scholar] [CrossRef]
- Muir, J.F.; Ambrosino, N.; Simonds, A.K. (Eds.) Noninvasive Ventilation, 2nd ed.; European Respiratory Society: Sheffield, UK, 2008. [Google Scholar]
- L’Her, E.; Deye, N.; Lellouche, F.; Taille, S.; Demoule, A.; Fraticelli, A.; Mancebo, J.; Brochard, L. Physiologic effects of noninvasive ventilation during acute lung injury. Am. J. Respir. Crit. Care Med. 2005, 172, 1112–1118. [Google Scholar] [CrossRef]
- Ambrosino, N.; Foglio, K.; Rubini, F.; Clini, E.; Nava, S.; Vitacca, M. Non-invasive mechanical ventilation in acute respiratory failure due to chronic obstructive pulmonary disease: Correlates for success. Thorax 1995, 50, 755–757. [Google Scholar] [CrossRef]
- Girou, E.; Brun-Buisson, C.; Taillé, S.; Lemaire, F.; Brochard, L. Secular trends in nosocomial infections and mortality associated with noninvasive ventilation in patients with exacerbation of COPD and pulmonary edema. JAMA 2003, 290, 2985–2991. [Google Scholar] [CrossRef]
- Hernández, G.; Hill, N.S. How to prevent postextubation respiratory failure. Curr. Opin. Crit. Care 2025, 31, 93–100. [Google Scholar] [CrossRef]
- Frat, J.P.; Grieco, D.L.; De Jong, A.; Gibbs, K.; Carteaux, G.; Roca, O.; Lemiale, V.; Piquilloud, L.; Rittayamai, N.; Pisani, L.; et al. Noninvasive respiratory supports in ICU. Intensive Care Med. 2025, 51, 1476–1489. [Google Scholar] [CrossRef]
- Liu, Q.; Gao, Y.; Chen, R.; Cheng, Z. Noninvasive ventilation with helmet versus control strategy in patients with acute respiratory failure: A systematic review and meta-analysis of controlled studies. Crit. Care 2016, 20, 265. [Google Scholar] [CrossRef]
- Grieco, D.L.; Menga, L.S.; Cesarano, M.; Rosà, T.; Spadaro, S.; Bitondo, M.M.; Montomoli, J.; Falò, G.; Tonetti, T.; Cutuli, S.L.; et al. Effect of Helmet Noninvasive Ventilation vs. High-Flow Nasal Oxygen on Days Free of Respiratory Support in Patients With COVID-19 and Moderate to Severe Hypoxemic Respiratory Failure: The HENIVOT Randomized Clinical Trial. JAMA 2021, 325, 1731–1743. [Google Scholar] [CrossRef]
- Aslan Sirakaya, H.; Ferrández, A.T.; Esquinas, A.M. Adverse events in non-invasive ventilation approaches: Systematic review. Thorac. Res. Pract. 2025; epub ahead of print. [Google Scholar] [CrossRef]
- Williams, R.; Rankin, N.; Smith, T.; Galler, D.; Seakins, P. Relationship between the humidity and temperature of inspired gas and the function of the airway mucosa. Crit. Care Med. 1996, 24, 1920–1929. [Google Scholar] [CrossRef]
- Hasani, A.; Chapman, T.H.; McCool, D.; Smith, R.E.; Dilworth, J.P.; Agnew, J.E. Domiciliary humidification improves lung mucociliary clearance in patients with bronchiectasis. Chron. Respir. Dis. 2008, 5, 81–86. [Google Scholar] [CrossRef]
- Kelly, S.J.; Brodecky, V.; Skuza, E.M.; Berger, P.J.; Tatkov, S. Variability in tracheal mucociliary transport is not controlled by beating cilia in lambs in vivo during ventilation with humidified and nonhumidified air. Am. J. Physiol. Lung Cell Mol. Physiol. 2021, 320, L473–L485. [Google Scholar] [CrossRef]
- Vega, M.L.; Pisani, L. Nasal high flow oxygen in acute respiratory failure. Pulmonology 2021, 27, 240–247. [Google Scholar] [CrossRef]
- Mauri, T.; Turrini, C.; Eronia, N.; Grasselli, G.; Volta, C.A.; Bellani, G.; Pesenti, A. Physiologic Effects of High-Flow Nasal Cannula in Acute Hypoxemic Respiratory Failure. Am. J. Respir. Crit. Care Med. 2017, 195, 1207–1215. [Google Scholar] [CrossRef]
- Vieira, F.; Bezerra, F.S.; Coudroy, R.; Schreiber, A.; Telias, I.; Dubo, S.; Cavalot, G.; Pereira, S.M.; Piraino, T.; Brochard, L.J. High Flow Nasal Cannula compared to Continuous Positive Airway Pressure: A bench and physiological study. J. Appl. Physiol. 2022, 132, 1580–1590. [Google Scholar] [CrossRef]
- Vega Pittao, M.L.; Schifino, G.; Pisani, L.; Nava, S. Home High-Flow Therapy in Patients with Chronic Respiratory Diseases: Physiological Rationale and Clinical Results. J. Clin. Med. 2023, 12, 2663. [Google Scholar] [CrossRef]
- Burns, K.E.; Meade, M.O.; Premji, A.; Adhikari, N.K. Noninvasive ventilation as a weaning strategy for mechanical ventilation in adults with respiratory failure: A Cochrane systematic review. CMAJ 2014, 186, E112–E122. [Google Scholar] [CrossRef]
- Duarte, H.B.; Batista, U.J.S.; Oliveira, P.M.; Gusmao-Flores, D.; Martinez, B.P. Effects of prophylactic non-invasive ventilation on weaning: A systematic review with meta-analysis. Aust. Crit. Care 2025, 38, 101199. [Google Scholar] [CrossRef]
- Kelsen, S.G.; Criner, G.J. Respiratory pump failure. In Fishman’s Pulmonary Diseases and Disorders, 3rd ed.; Fishman, A.P., Elias, J.A., Fishman, J.A., Grippi, M.A., Kaiser, L.R., Senior, R.M., Eds.; McGraw-Hill: New York, NY, USA, 1997; Volume 2, pp. 2605–2627. [Google Scholar]
- Hess, A.R.; Kacmarek, R.M. Weaning from mechanical ventilation. In Essentials of Mechanical Ventilation; McGraw-Hill: New York, NY, USA, 1996; pp. 77–83. [Google Scholar]
- Vitacca, M.; Ambrosino, N.; Clini, E.; Porta, R.; Rampulla, C.; Lanini, B.; Nava, S. Physiological response to pressure support ventilation delivered before and after extubation in patients not capable of totally spontaneous autonomous breathing. Am. J. Respir. Crit. Care Med. 2001, 164, 638–641. [Google Scholar] [CrossRef]
- Nava, S.; Ambrosino, N.; Clini, E.; Prato, M.; Orlando, G.; Vitacca, M.; Brigada, P.; Fracchia, C.; Rubini, F. Noninvasive mechanical ventilation in the weaning of patients with respiratory failure due to chronic obstructive pulmonary disease. A randomized, controlled trial. Ann. Intern. Med. 1998, 128, 721–728. [Google Scholar] [CrossRef]
- Vaschetto, R.; Turucz, E.; Dellapiazza, F.; Guido, S.; Colombo, D.; Cammarota, G.; Della Corte, F.; Antonelli, M.; Navalesi, P. Noninvasive ventilation after early extubation in patients recovering from hypoxemic acute respiratory failure: A single-centre feasibility study. Intensive Care Med. 2012, 38, 1599–1606. [Google Scholar] [CrossRef]
- Thille, A.W.; Boissier, F.; Ben-Ghezala, H.; Razazi, K.; Mekontso-Dessap, A.; Brun-Buisson, C.; Brochard, L. Easily identified at-risk patients for extubation failure may benefit from noninvasive ventilation: A prospective before-after study. Crit. Care 2016, 20, 48. [Google Scholar] [CrossRef]
- Villamizar, P.R.; Thille, A.W.; Doblas, M.M.; Frat, J.-P.; Sanz, P.L.; Alonso, E.; País, V.; Morales, G.; Colinas, L.; Propín, A.; et al. Best clinical model predicting extubation failure: A diagnostic accuracy post hoc analysis. Intensive Care Med. 2025, 51, 106–114. [Google Scholar] [CrossRef]
- Ferrer, M.; Sellarés, J.; Valencia, M.; Carrillo, A.; Gonzalez, G.; Badia, J.R.; Nicolas, J.M.; Torres, A. Non-invasive ventilation after extubation in hypercapnic patients with chronic respiratory disorders: Randomised controlled trial. Lancet 2009, 374, 1082–1088. [Google Scholar] [CrossRef]
- Jones, R.L.; Nzekwu, M.M. The effects of body mass index on lung volumes. Chest 2006, 130, 827–833. [Google Scholar] [CrossRef]
- Littleton, S.W.; Tulaimat, A. The effects of obesity on lung volumes and oxygenation. Respir. Med. 2017, 124, 15–20. [Google Scholar] [CrossRef]
- Pensier, J.; Naudet-Lasserre, A.; Monet, C.; Capdevila, M.; Aarab, Y.; Lakbar, I.; Chanques, G.; Molinari, N.; De Jong, A.; Jaber, S. Noninvasive respiratory support following extubation in critically ill adults with obesity: A systematic review and network meta-analysis. EClinicalMedicine 2024, 79, 103002. [Google Scholar] [CrossRef]
- Basoalto, R.; Damiani, L.F.; Jalil, Y.; Bachmann, M.C.; Oviedo, V.; Alegría, L.; Valenzuela, E.D.; Rovegno, M.; Ruiz-Rudolph, P.; Cornejo, R.; et al. Physiological effects of high-flow nasal cannula oxygen therapy after extubation: A randomized crossover study. Ann. Intensive Care 2023, 13, 104. [Google Scholar] [CrossRef]
- Jiang, J.S.; Kao, S.J.; Wang, S.N. Effect of early application of biphasic positive airway pressure on the outcome of extubation in ventilator weaning. Respirology 1999, 4, 161–165. [Google Scholar] [CrossRef]
- Su, C.L.; Chiang, L.L.; Yang, S.H.; Lin, H.Y.; Cheng, K.C.; Huang, Y.C.T.; Wu, C.P. Preventive use of noninvasive ventilation after extubation: A prospective, multicenter randomized controlled trial. Respir. Care 2012, 57, 204–210. [Google Scholar] [CrossRef]
- Maggiore, S.M.; Idone, F.A.; Vaschetto, R.; Festa, R.; Cataldo, A.; Antonicelli, F.; Montini, L.; De Gaetano, A.; Navalesi, P.; Antonelli, M. Nasal high-flow versus Venturi mask oxygen therapy after extubation. Effects on oxygenation, comfort, and clinical outcome. Am. J. Respir. Crit. Care Med. 2014, 190, 282–288. [Google Scholar] [CrossRef]
- Maggiore, S.M.; Jaber, S.; Grieco, D.L.; Mancebo, J.; Zakynthinos, S.; Demoule, A.; Ricard, J.-D.; Navalesi, P.; Vaschetto, R.; Hraiech, S.; et al. High-Flow Versus VenturiMask Oxygen Therapy to Prevent Reintubation in Hypoxemic Patients after Extubation: A Multicenter Randomized Clinical Trial. Am. J. Respir. Crit. Care Med. 2022, 206, 1452–1462. [Google Scholar] [CrossRef]
- Keenan, S.P.; Powers, C.; McCormack, D.G.; Block, G. Noninvasive positive-pressure ventilation for postextubation respiratory distress: A randomized controlled trial. JAMA 2002, 287, 3238–3244. [Google Scholar] [CrossRef]
- Esteban, A.; Frutos-Vivar, F.; Ferguson, N.D.; Arabi, Y.; Apezteguía, C.; González, M.; Epstein, S.K.; Hill, N.S.; Nava, S.; Soares, M.-A.; et al. Noninvasive positive-pressure ventilation for respiratory failure after extubation. N. Engl. J. Med. 2004, 350, 2452–2460. [Google Scholar] [CrossRef]
- Jammer, I.; Wickboldt, N.; Sander, M.; Smith, A.; Schultz, M.J.; Pelosi, P.; Leva, B.; Rhodes, A.; Hoeft, A.; Walder, B.; et al. Standards for definitions and use of outcome measures for clinical effectiveness research in perioperative medicine: European Perioperative Clinical Outcome (EPCO) definitions: A statement from the ESA-ESICM joint taskforce on perioperative outcome measures. Eur. J. Anaesthesiol. 2015, 32, 88–105. [Google Scholar] [CrossRef]
- O’Gara, B.; Talmor, D. Perioperative lung protective ventilation. BMJ 2018, 362, k3030. [Google Scholar] [CrossRef]
- Odor, P.M.; Bampoe, S.; Gilhooly, D.; Creagh-Brown, B.; Moonesinghe, S.R. Perioperative interventions for prevention of postoperative pulmonary complications: Systematic review and meta-analysis. BMJ 2020, 368, m540. [Google Scholar] [CrossRef]
- Auriant, I.; Jallot, A.; Hervé, P.; Cerrina, J.; Ladurie, F.L.R.; Fournier, J.L.; Lescot, B.; Parquin, F. Noninvasive ventilation reduces mortality in acute respiratory failure following lung resection. Am. J. Respir. Crit. Care Med. 2001, 164, 1231–1235. [Google Scholar] [CrossRef]
- Jaber, S.; Delay, J.M.; Chanques, G.; Sebbane, M.; Jacquet, E.; Souche, B.; Perrigault, P.-F.; Eledjam, J.-J. Outcomes of patients with acute respiratory failure after abdominal surgery treated with noninvasive positive pressure ventilation. Chest 2005, 128, 2688–2695. [Google Scholar] [CrossRef]
- Antonelli, M.; Conti, G.; Bufi, M.; Costa, M.G.; Lappa, A.; Rocco, M.; Gasparetto, A.; Meduri, G.U. Noninvasive ventilation for treatment of acute respiratory failure in patients undergoing solid organ transplantation: A randomized trial. JAMA 2000, 283, 235–241. [Google Scholar] [CrossRef]
- Jaber, S.; Lescot, T.; Futier, E.; Paugam-Burtz, C.; Seguin, P.; Ferrandiere, M.; Lasocki, S.; Mimoz, O.; Hengy, B.; Sannini, A.; et al. Effect of Noninvasive Ventilation on Tracheal Reintubation Among Patients With Hypoxemic Respiratory Failure Following Abdominal Surgery: A Randomized Clinical Trial. JAMA 2016, 315, 1345–1353. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, N.; Sun, L.; Zhou, Y.; Yang, Y.; Shang, W.; Li, X. Noninvasive Positive-Pressure Ventilation in Treatment of Hypoxemia After Extubation Following Type-A Aortic Dissection. J. Cardiothorac. Vasc. Anesth. 2016, 30, 1539–1544. [Google Scholar] [CrossRef]
- Chiumello, D.; Chevallard, G.; Gregoretti, C. Non-invasive ventilation in postoperative patients: A systematic review. Intensive Care Med. 2011, 37, 918–929. [Google Scholar] [CrossRef]
- Pettenuzzo, T.; Boscolo, A.; Pistollato, E.; Pretto, C.; Giacon, T.A.; Frasson, S.; Carbotti, F.M.; Medici, F.; Pettenon, G.; Carofiglio, G.; et al. Effects of non-invasive respiratory support in post-operative patients: A systematic review and network meta-analysis. Crit. Care. 2024, 28, 152. [Google Scholar] [CrossRef]
- Stéphan, F.; Barrucand, B.; Petit, P.; Rézaiguia-Delclaux, S.; Médard, A.; Delannoy, B.; Cosserant, B.; Flicoteaux, G.; Imbert, A.; Pilorge, C.; et al. High-Flow Nasal Oxygen vs. Noninvasive Positive Airway Pressure in Hypoxemic Patients After Cardiothoracic Surgery: A Randomized Clinical Trial. JAMA 2015, 313, 2331–2339. [Google Scholar] [CrossRef]
- Boscolo, A.; Pettenuzzo, T.; Sella, N.; Zatta, M.; Salvagno, M.; Tassone, M.; Pretto, C.; Peralta, A.; Muraro, L.; Zarantonello, F.; et al. Noninvasive respiratory support after extubation: A systematic review and network meta-analysis. Eur. Respir. Rev. 2023, 32, 220196. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhao, Q.Y.; Luo, J.C.; Liu, K.; Yu, S.J.; Ma, J.F.; Luo, M.H.; Hao, G.W.; Su, Y.; Zhang, Y.J.; et al. Early prediction of noninvasive ventilation failure after extubation: Development and validation of a machine-learning model. BMC Pulm. Med. 2022, 22, 304. [Google Scholar] [CrossRef] [PubMed]
Feature | 2005 ICC [9] | WIND Study [44] |
---|---|---|
Definition of weaning success | Extubation followed by the absence of ventilatory support for ≥48 h | Extubation without death/reintubation within 7 days, or ICU discharge without IMV within 7 days (whichever comes first) |
Definition of weaning failure | SBT failure, reintubation, resumption of ventilatory support, or death within 48 h | SBT failure, reintubation, resumption of ventilatory support, or death within 7 days |
Classification basis | - SBT number - Days to successful weaning | Time elapsed from first separation attempt |
Main groups | (1) Simple weaning: 1 successful SBT (2) Difficult weaning: ≤3 SBTs or ≤7 days from first SBT (3) Prolonged weaning: >3 SBTs or >7 days from first SBT | (0) No weaning (1) Short weaning: success or death ≤1 day from first separation attempt (2) Difficult weaning: weaning lasts 2–7 days (3) Prolonged weaning: >7 days after first separation attempt (3a) success (3b) still ventilated |
Potential limitations | - Unclassified patients without SBT - Uncovered clinical scenarios (alternative weaning strategies, non-SBT weaning failure, tracheostomized patients not clearly included) | - Time-based categorization - Limited consideration of post-extubation interventions (e.g., COT, HFNCs, NIV) |
Indication | Risk Class | NIV | HFNC |
---|---|---|---|
To facilitate extubation | — | ✓ if hypercapnic | ✗ |
To prevent PERF | high-risk | ✓ | ✗ * |
non-high-risk | ✗ | ✓ | |
To treat PERF | — | ✗ | — |
To prevent/treat ARF in post-operative setting | high-risk of PPCs | ✓ | ✓ |
low-risk of PPCs | ✗ | ✓ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Panzuti, G.; Pisani, L.; Nava, S. Bridging the Gap: The Role of Non-Invasive Respiratory Supports in Weaning from Invasive Mechanical Ventilation. J. Clin. Med. 2025, 14, 7443. https://doi.org/10.3390/jcm14207443
Panzuti G, Pisani L, Nava S. Bridging the Gap: The Role of Non-Invasive Respiratory Supports in Weaning from Invasive Mechanical Ventilation. Journal of Clinical Medicine. 2025; 14(20):7443. https://doi.org/10.3390/jcm14207443
Chicago/Turabian StylePanzuti, Giulia, Lara Pisani, and Stefano Nava. 2025. "Bridging the Gap: The Role of Non-Invasive Respiratory Supports in Weaning from Invasive Mechanical Ventilation" Journal of Clinical Medicine 14, no. 20: 7443. https://doi.org/10.3390/jcm14207443
APA StylePanzuti, G., Pisani, L., & Nava, S. (2025). Bridging the Gap: The Role of Non-Invasive Respiratory Supports in Weaning from Invasive Mechanical Ventilation. Journal of Clinical Medicine, 14(20), 7443. https://doi.org/10.3390/jcm14207443