Performance of a Novel Computational Hyperemic Resistance Index Derived from Cardiac CT in Coronary Chronic Syndromes
Abstract
1. Introduction
2. Methods
2.1. Population of Study and Inclusion/Exclusion Criteria
2.2. Data Acquisition
2.3. Simulations Pipeline and Measurements
2.4. Statistical Analysis
3. Results
3.1. Patient Population and Lesion Characteristics
3.2. Correlation Between FFRCFD and Invasive FFR
3.3. cHSR Cut-Off Determination
3.4. Diagnostic Performance of cHSR, FFRCFD, and QFR
3.5. DeLong Test Results
3.6. Correlation Between cHSR, TAWSS, and OSI
4. Discussion
4.1. Study Population
4.2. FFRCFD and FFR Correlation and Lumped Model Validation
4.3. cHSR Cutoff
4.4. Diagnostic Performances of HSR, QFR, and FFRCFD
4.5. HSR and Shear Stress
Study | Index | Sample Size | Modality | Key Findings |
---|---|---|---|---|
Nørgaard et al., 2014 [24] | FFR_CT | 254 | CCTA | Demonstrated high diagnostic accuracy of FFR_CT with invasive FFR as reference, sensitivity and specificity >80%. |
Westra et al., 2018 [34] | QFR | 352 | Angiography | QFR was highly accurate in predicting ischemia with FFR reference; achieved >85% accuracy. |
Xu et al., 2021 [14] (FAVOR III China) | QFR | 3825 | Angiography | Showed significant reduction in MACE over 1 year for QFR-guided PCI vs. standard angiography-guided PCI. |
Song et al., 2022 [35] (2-Year FAVOR III) | QFR | 3825 | Angiography | Demonstrated durability of QFR-guided PCI benefits with reduced MACE over 2 years compared to angiography guidance. |
Driessen et al., 2019 [36] | FFR_CT | 208 | CCTA | FFRCT showed higher diagnostic performance than standard coronary CTA, SPECT, and PET for vessel-specific ischemia. |
Koo et al., 2011 [37] | FFR_CT | 103 | CCTA | Accuracy, sensitivity, specificity, positive predictive value, and negative predictive value were 84.3%, 87.9%, 82.2%, 73.9%, 92.2%, respectively, for FFR_CT. |
5. Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Christou, M.A.C.; Siontis, G.C.M.; Katritsis, D.G.; Ioannidis, J.P.A. Meta-Analysis of Fractional Flow Reserve Versus Quantitative Coronary Angiography and Noninvasive Imaging for Evaluation of Myocardial Ischemia. Am. J. Cardiol. 2007, 99, 450–456. [Google Scholar] [CrossRef]
- Vrints, C.; Andreotti, F.; Koskinas, K.C.; Rossello, X.; Adamo, M.; Ainslie, J.; Banning, A.P.; Budaj, A.; Buechel, R.R.; Chiariello, G.A.; et al. 2024 ESC Guidelines for the management of chronic coronary syndromes. Eur. Heart J. 2024, 45, 3415–3537. [Google Scholar] [CrossRef]
- Tonino, P.A.L.; Bruyne, B.D.; Pijls, N.H.J.; Siebert, U.; Ikeno, F.; van ‘t Veer, M.; Klauss, V.; Manoharan, G.; Engstrøm, T.; Oldroyd, K.G.; et al. Fractional Flow Reserve versus Angiography for Guiding Percutaneous Coronary Intervention. N. Engl. J. Med. 2009, 360, 213–224. [Google Scholar] [CrossRef]
- Bruyne, B.D.; Pijls, N.H.J.; Kalesan, B.; Barbato, E.; Tonino, P.A.L.; Piroth, Z.; Jagic, N.; Möbius-Winkler, S.; Rioufol, G.; Witt, N.; et al. Fractional Flow Reserve–Guided PCI versus Medical Therapy in Stable Coronary Disease. N. Engl. J. Med. 2012, 367, 991–1001. [Google Scholar] [CrossRef] [PubMed]
- Fearon, W.F.; Zimmermann, F.M.; Bruyne, B.D.; Piroth, Z.; van Straten, A.H.M.; Szekely, L.; Davidavičius, G.; Kalinauskas, G.; Mansour, S.; Kharbanda, R.; et al. Fractional Flow Reserve–Guided PCI as Compared with Coronary Bypass Surgery. N. Engl. J. Med. 2022, 386, 128–137. [Google Scholar] [CrossRef] [PubMed]
- Johnson, N.P.; Kirkeeide, R.L.; Gould, K.L. Is Discordance of Coronary Flow Reserve and Fractional Flow Reserve Due to Methodology or Clinically Relevant Coronary Pathophysiology? JACC Cardiovasc. Imaging 2012, 5, 193–202. [Google Scholar] [CrossRef]
- Hong, D.; Shin, D.; Lee, S.H.; Joh, H.S.; Choi, K.H.; Kim, H.K.; Ha, S.J.; Park, T.K.; Yang, J.H.; Song, Y.B.; et al. Prognostic Impact of Coronary Microvascular Dysfunction According to Different Patterns by Invasive Physiologic Indexes in Symptomatic Patients With Intermediate Coronary Stenosis. Circ. Cardiovasc. Interv. 2023, 16, 12621. [Google Scholar] [CrossRef]
- Fearon, W.F.; Aarnoudse, W.; Pijls, N.H.J.; De Bruyne, B.; Balsam, L.B.; Cooke, D.T.; Robbins, R.C.; Fitzgerald, P.J.; Yeung, A.C.; Yock, P.G. Microvascular Resistance Is Not Influenced by Epicardial Coronary Artery Stenosis Severity: Experimental Validation. Circulation 2004, 109, 2269–2272. [Google Scholar] [CrossRef]
- Meuwissen, M.; Siebes, M.; Chamuleau, S.A.J.; Van Eck-Smit, B.L.F.; Koch, K.T.; De Winter, R.J.; Tijssen, J.G.P.; Spaan, J.A.E.; Piek, J.J. Hyperemic Stenosis Resistance Index for Evaluation of Functional Coronary Lesion Severity. Circulation 2002, 106, 441–446. [Google Scholar] [CrossRef]
- Vijayan, S.; Barmby, D.S.; Pearson, I.R.; Davies, A.G.; Wheatcroft, S.B.; Sivananthan, M. Assessing Coronary Blood Flow Physiology in the Cardiac Catheterisation Laboratory. Curr. Cardiol. Rev. 2017, 13, 232. [Google Scholar] [CrossRef]
- Boerhout, C.; Echavarria-Pinto, M.; de Waard, G.A.; Lee, J.M.; Mejía-Rentería, H.; Lee, S.H.; Jung, J.-H.; Hoshino, M.; Matsuo, H.; Madera-Cambero, M.; et al. Impact of Hyperaemic Stenosis Resistance on Long-Term Outcomes of Stable Angina in the ILIAS Registry. EuroIntervention 2024, 20, e699–e706. [Google Scholar] [CrossRef]
- Knuuti, J.; Ballo, H.; Juarez-Orozco, L.E.; Saraste, A.; Kolh, P.; Rutjes, A.W.S.; Jüni, P.; Windecker, S.; Bax, J.J.; Wijns, W. The performance of non-invasive tests to rule-in and rule-out significant coronary artery stenosis in patients with stable angina: A meta-analysis focused on post-test disease probability. Eur. Heart J. 2018, 39, 3322–3330. [Google Scholar] [CrossRef]
- Zhang, J.; Zhong, L.; Su, B.; Wan, M.; Yap, J.S.; Tham, J.P.L.; Chua, L.P.; Ghista, D.N.; Tan, R.S. Perspective on CFD studies of coronary artery disease lesions and hemodynamics: A review. Numer. Methods Biomed. Eng. 2014, 30, 659–680. [Google Scholar] [CrossRef] [PubMed]
- Xu, B.; Tu, S.; Song, L.; Jin, Z.; Yu, B.; Fu, G.; Zhou, Y.; Wang, J.; Chen, Y.; Pu, J.; et al. Angiographic quantitative flow ratio-guided coronary intervention (FAVOR III China): A multicentre, randomised, sham-controlled trial. Lancet 2021, 398, 2149–2159. [Google Scholar] [CrossRef] [PubMed]
- Tu, S.; Westra, J.; Yang, J.; Von Birgelen, C.; Ferrara, A.; Pellicano, M.; Nef, H.; Tebaldi, M.; Murasato, Y.; Lansky, A.; et al. Diagnostic Accuracy of Fast Computational Approaches to Derive Fractional Flow Reserve From Diagnostic Coronary Angiography. JACC Cardiovasc. Interv. 2016, 9, 2024–2035. [Google Scholar] [CrossRef] [PubMed]
- Douglas, P.S.; De Bruyne, B.; Pontone, G.; Patel, M.R.; Norgaard, B.L.; Byrne, R.A.; Curzen, N.; Purcell, I.; Gutberlet, M.; Rioufol, G.; et al. 1-Year Outcomes of FFRCT-Guided Care in Patients With Suspected Coronary Disease. J. Am. Coll. Cardiol. 2016, 68, 435–445. [Google Scholar] [CrossRef]
- Candreva, A.; Nisco, G.D.; Rizzini, M.L.; D’Ascenzo, F.; Ferrari, G.M.D.; Gallo, D.; Morbiducci, U.; Chiastra, C. Current and Future Applications of Computational Fluid Dynamics in Coronary Artery Disease. Rev. Cardiovasc. Med. 2022, 23, 377. [Google Scholar] [CrossRef]
- Updegrove, A.; Wilson, N.M.; Merkow, J.; Lan, H.; Marsden, A.L.; Shadden, S.C. SimVascular: An Open Source Pipeline for Cardiovascular Simulation. Ann. Biomed. Eng. 2017, 45, 525–541. [Google Scholar] [CrossRef]
- Vignon-Clementel, I.E.; Alberto Figueroa, C.; Jansen, K.E.; Taylor, C.A. Outflow boundary conditions for three-dimensional finite element modeling of blood flow and pressure in arteries. Comput. Methods Appl. Mech. Eng. 2006, 195, 3776–3796. [Google Scholar] [CrossRef]
- Mantero, S.; Pietrabissa, R.; Fumero, R. The coronary bed and its role in the cardiovascular system: A review and an introductory single-branch model. J. Biomed. Eng. 1992, 14, 109–116. [Google Scholar] [CrossRef]
- Kim, H.J.; Vignon-Clementel, I.E.; Coogan, J.S.; Figueroa, C.A.; Jansen, K.E.; Taylor, C.A. Patient-Specific Modeling of Blood Flow and Pressure in Human Coronary Arteries. Ann. Biomed. Eng. 2010, 38, 3195–3209. [Google Scholar] [CrossRef] [PubMed]
- Wilson, N.M.; Marru, S.; Abeysinghe, E.; Christie, M.A.; Maher, G.D.; Updegrove, A.R.; Pierce, M.; Marsden, A.L. Using a Science Gateway to Deliver SimVascular Software as a Service for Classroom Instruction. In Proceedings of the Practice and Experience on Advanced Research Computing, Pittsburgh, PA, USA, 22–26 July 2018; pp. 1–4. [Google Scholar]
- Foy, A.J.; Dhruva, S.S.; Peterson, B.; Mandrola, J.M.; Morgan, D.J.; Redberg, R.F. Coronary Computed Tomography Angiography vs Functional Stress Testing for Patients With Suspected Coronary Artery Disease: A Systematic Review and Meta-analysis. JAMA Intern. Med. 2017, 177, 1623. [Google Scholar] [CrossRef] [PubMed]
- Nørgaard, B.L.; Leipsic, J.; Gaur, S.; Seneviratne, S.; Ko, B.S.; Ito, H.; Jensen, J.M.; Mauri, L.; De Bruyne, B.; Bezerra, H.; et al. Diagnostic performance of noninvasive fractional flow reserve derived from coronary computed tomography angiography in suspected coronary artery disease: The NXT trial (Analysis of Coronary Blood Flow Using CT Angiography: Next Steps). J. Am. Coll. Cardiol. 2014, 63, 1145–1155. [Google Scholar] [CrossRef] [PubMed]
- Faulder, T.I.; Prematunga, K.; Moloi, S.B.; Faulder, L.E.; Jones, R.; Moxon, J.V. Agreement of Fractional Flow Reserve Estimated by Computed Tomography With Invasively Measured Fractional Flow Reserve: A Systematic Review and Meta-Analysis. J. Am. Heart Assoc. 2024, 13, e034552. [Google Scholar] [CrossRef]
- De Bruyne, B.; Pijls, N.H.J.; Bartunek, J.; Kulecki, K.; Bech, J.-W.; De Winter, H.; Van Crombrugge, P.; Heyndrickx, G.R.; Wijns, W. Fractional Flow Reserve in Patients With Prior Myocardial Infarction. Circulation 2001, 104, 157–162. [Google Scholar] [CrossRef]
- Hagar, M.T.; Soschynski, M.; Saffar, R.; Rau, A.; Taron, J.; Weiss, J.; Stein, T.; Faby, S.; Von Zur Muehlen, C.; Ruile, P.; et al. Accuracy of Ultrahigh-Resolution Photon-counting CT for Detecting Coronary Artery Disease in a High-Risk Population. Radiology 2023, 307, e223305. [Google Scholar] [CrossRef]
- Mohammadi, H.; Bahramian, F. Boundary Conditions in Simulation of Stenosed Coronary Arteries. Cardiovasc. Eng. 2009, 9, 83–91. [Google Scholar] [CrossRef]
- Taylor, D.J.; Feher, J.; Halliday, I.; Hose, D.R.; Gosling, R.; Aubiniere-Robb, L.; Van ‘t Veer, M.; Keulards, D.; Tonino, P.A.L.; Rochette, M.; et al. Refining Our Understanding of the Flow Through Coronary Artery Branches; Revisiting Murray’s Law in Human Epicardial Coronary Arteries. Front. Physiol. 2022, 13, 871912. [Google Scholar] [CrossRef]
- Agasthi, P.; Kanmanthareddy, A.; Khalil, C.; Egbuche, O.; Yarlagadda, V.; Sachdeva, R.; Arsanjani, R. Comparison of Computed Tomography derived Fractional Flow Reserve to invasive Fractional Flow Reserve in Diagnosis of Functional Coronary Stenosis: A Meta-Analysis. Sci. Rep. 2018, 8, 11535. [Google Scholar] [CrossRef]
- Van De Hoef, T.P.; Siebes, M.; Spaan, J.A.E.; Piek, J.J. Fundamentals in clinical coronary physiology: Why coronary flow is more important than coronary pressure. Eur. Heart J. 2015, 36, 3312–3319. [Google Scholar] [CrossRef]
- Puri, R.; Leong, D.P.; Nicholls, S.J.; Liew, G.Y.L.; Nelson, A.J.; Carbone, A.; Copus, B.; Wong, D.T.; Beltrame, J.F.; Worthley, S.G.; et al. Coronary artery wall shear stress is associated with endothelial dysfunction and expansive arterial remodelling in patients with coronary artery disease. EuroIntervention 2015, 10, 1440–1448. [Google Scholar] [CrossRef] [PubMed]
- Wong, C.C.Y.; Javadzadegan, A.; Ada, C.; Lau, J.K.; Bhindi, R.; Fearon, W.F.; Kritharides, L.; Ng, M.K.C.; Yong, A.S.C. Fractional Flow Reserve and Instantaneous Wave-Free Ratio Predict Pathological Wall Shear Stress in Coronary Arteries: Implications for Understanding the Pathophysiological Impact of Functionally Significant Coronary Stenoses. J. Am. Heart Assoc. 2022, 11, e023502. [Google Scholar] [CrossRef] [PubMed]
- Westra, J.; Andersen, B.K.; Campo, G.; Matsuo, H.; Koltowski, L.; Eftekhari, A.; Liu, T.; Di Serafino, L.; Di Girolamo, D.; Escaned, J.; et al. Diagnostic Performance of In-Procedure Angiography-Derived Quantitative Flow Reserve Compared to Pressure-Derived Fractional Flow Reserve: The FAVOR II Europe-Japan Study. J. Am. Heart Assoc. 2018, 7, e009603. [Google Scholar] [CrossRef] [PubMed]
- Song, L.; Xu, B.; Tu, S.; Guan, C.; Jin, Z.; Yu, B.; Fu, G.; Zhou, Y.; Wang, J.; Chen, Y.; et al. 2-Year Outcomes of Angiographic Quantitative Flow Ratio-Guided Coronary Interventions. J. Am. Coll. Cardiol. 2022, 80, 2089–2101. [Google Scholar] [CrossRef]
- Driessen, R.S.; Danad, I.; Stuijfzand, W.J.; Raijmakers, P.G.; Schumacher, S.P.; Van Diemen, P.A.; Leipsic, J.A.; Knuuti, J.; Underwood, S.R.; Van De Ven, P.M.; et al. Comparison of Coronary Computed Tomography Angiography, Fractional Flow Reserve, and Perfusion Imaging for Ischemia Diagnosis. J. Am. Coll. Cardiol. 2019, 73, 161–173. [Google Scholar] [CrossRef]
- Koo, B.-K.; Erglis, A.; Doh, J.-H.; Daniels, D.V.; Jegere, S.; Kim, H.-S.; Dunning, A.; DeFrance, T.; Lansky, A.; Leipsic, J.; et al. Diagnosis of Ischemia-Causing Coronary Stenoses by Noninvasive Fractional Flow Reserve Computed From Coronary Computed Tomographic Angiograms. J. Am. Coll. Cardiol. 2011, 58, 1989–1997. [Google Scholar] [CrossRef]
- Maher, G.; Parker, D.; Wilson, N.; Marsden, A. Neural Network Vessel Lumen Regression for Automated Lumen Cross-Section Segmentation in Cardiovascular Image-Based Modeling. Cardiovasc. Eng. Technol. 2020, 11, 621–635. [Google Scholar] [CrossRef]
- Choi, J.H.; Kim, E.; Kim, H.Y.; Lee, S.H.; Kim, S.M. Allometric scaling patterns among the human coronary artery tree, myocardial mass, and coronary artery flow. Physiol. Rep. 2020, 8, e14514. [Google Scholar] [CrossRef]
- Kassab, G.; Finet, G. Anatomy and function relation in the coronary tree: From bifurcations to myocardial flow and mass. EuroIntervention 2015, 11, V13–V17. [Google Scholar] [CrossRef]
- Choy, J.S.; Kassab, G.S. Scaling of Myocardial Mass to Flow and Morphometry of Coronary Arteries. J. Appl. Physiol. 2008, 104, 1281–1286. [Google Scholar] [CrossRef]
- Murai, T.; van de Hoef, T.P.; van den Boogert, T.P.; Wijntjens, G.W.; Stegehuis, V.E.; Echavarria-Pinto, M.; Hoshino, M.; Yonetsu, T.; Planken, R.N.; Henriques, J.P.S.; et al. Quantification of Myocardial Mass Subtended by a Coronary Stenosis Using Intracoronary Physiology. Circ. Cardiovasc. Interv. 2019, 12, e007322. [Google Scholar] [CrossRef]
- van Rosendael, S.E.; van Rosendael, A.R.; Kuneman, J.H.; Patel, M.R.; Nørgaard, B.L.; Fairbairn, T.A.; Nieman, K.; Akasaka, T.; Berman, D.S.; Koweek, L.M.H. Coronary Volume to Left Ventricular Mass Ratio in Patients with Hypertension. Am. J. Cardiol. 2023, 199, 100–109. [Google Scholar] [CrossRef]
- Ghorbanniahassankiadeh, A.; Marks, D.S.; LaDisa, J.F., Jr. Correlation of Computational Instantaneous Wave-Free Ratio with Fractional Flow Reserve for Intermediate Multivessel Coronary Disease. J. Biomech. Eng. 2021, 143, 051011. [Google Scholar] [CrossRef]
Characteristic | Mean +/− (SD) or Percentage (%) |
---|---|
Total Patients | n = 64 |
Age (years) | 67.8 ± 9.2 |
Sex Ratio | 3 Male:1 Female |
Hypertension (HTN) | 62% (n = 40) |
Diabetes Mellitus (DM) | 39% (n = 25) |
Smoking History | 30% (n = 19) |
Dyslipidemia | 40% (n = 26) |
Obesity | 34% (n = 22) |
Chronic Kidney Disease (CKD) | 20% (n = 13) |
Pre-test Probability | 24.5 ± 14.8 |
Calcium Score (CAC) (Agatston) | 113.1 ± 102.4 |
Lesion Location | Mean +/− (SD) or Percentage (%) |
---|---|
Total lesions | n = 106 |
LAD | 51 (49%) |
LCx | 26 (26%) |
RCA | 23 (22%) |
Left Main (LM) | 3 (3%) |
QCA (% Stenosis) | 55.3 ± 11.2 |
Stenosis Length (mm) | 18.0 ± 7.4 |
Metric | Sensitivity | Specificity | Accuracy | PPV | NPV | AUC |
---|---|---|---|---|---|---|
cHSR | 96.20% | 96.20% | 96.20% | 96.20% | 96.20% | 0.96 |
FFRCFD | 71.70% | 94.30% | 83.00% | 92.70% | 76.90% | 0.93 |
QFR | 75.50% | 86.80% | 81.10% | 85.10% | 77.90% | 0.81 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bellouche, Y.; Benic, C.; Hannachi, S.; Nicol, P.P.; Jousse, C.; Le Ven, F.; Mansourati, J.; Pasdeloup, B.; Didier, R. Performance of a Novel Computational Hyperemic Resistance Index Derived from Cardiac CT in Coronary Chronic Syndromes. J. Clin. Med. 2025, 14, 7270. https://doi.org/10.3390/jcm14207270
Bellouche Y, Benic C, Hannachi S, Nicol PP, Jousse C, Le Ven F, Mansourati J, Pasdeloup B, Didier R. Performance of a Novel Computational Hyperemic Resistance Index Derived from Cardiac CT in Coronary Chronic Syndromes. Journal of Clinical Medicine. 2025; 14(20):7270. https://doi.org/10.3390/jcm14207270
Chicago/Turabian StyleBellouche, Yahia, Clement Benic, Sinda Hannachi, Pierre Phillipe Nicol, Christopher Jousse, Florent Le Ven, Jacques Mansourati, Bastien Pasdeloup, and Romain Didier. 2025. "Performance of a Novel Computational Hyperemic Resistance Index Derived from Cardiac CT in Coronary Chronic Syndromes" Journal of Clinical Medicine 14, no. 20: 7270. https://doi.org/10.3390/jcm14207270
APA StyleBellouche, Y., Benic, C., Hannachi, S., Nicol, P. P., Jousse, C., Le Ven, F., Mansourati, J., Pasdeloup, B., & Didier, R. (2025). Performance of a Novel Computational Hyperemic Resistance Index Derived from Cardiac CT in Coronary Chronic Syndromes. Journal of Clinical Medicine, 14(20), 7270. https://doi.org/10.3390/jcm14207270