Diagnostic Accuracy of Exercise Stress Testing, Stress Echocardiography, Myocardial Scintigraphy, and Cardiac Magnetic Resonance for Obstructive Coronary Artery Disease: Systematic Reviews and Meta-Analyses of 104 Studies Published from 1990 to 2025
Abstract
1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Inclusion and Exclusion Criteria
2.3. Study Selection and Data Extraction
2.4. Assessment of Bias
2.5. Statistical Methods
3. Results
3.1. Study Selection
3.2. Clinical Characteristics, Stress Protocols, and Main Findings of the Included Studies
3.3. NIH Quality Rating
3.4. Diagnostic Accuracy of Exercise Stress Testing for Detecting Obstructive CAD
3.5. Diagnostic Accuracy of Stress Echocardiography for Detecting Obstructive CAD
3.6. Diagnostic Accuracy of Stress Myocardial SPECT for Predicting Obstructive CAD
3.7. Diagnostic Accuracy of Stress CMR for Detecting Obstructive CAD
3.8. Posterior Analysis of Sensitivity and Specificity of Methods
3.9. Subgroup Analyses by Region, Study Period, and Study Design (By Modality)
4. Discussion
4.1. Principal Findings of These Systematic Reviews and Meta-Analyses
4.2. Factors Influencing the Diagnostic Accuracy of EST for Identifying Obstructive CAD
4.3. Diagnostic Accuracy of Stress Echocardiography Modalities in Detecting Obstructive CAD
4.4. Diagnostic Accuracy of Stress Myocardial SPECT for CAD Detection
4.5. Diagnostic Accuracy of Stress CMR for Detecting Obstructive CAD
4.6. Clinical Applicability of EST, SE, SPECT, and CMR
4.7. 2024 ESC Guidelines Recommendations for the Diagnostic Management of Patients with Suspected CAD
4.8. Innovative Screening Methods for CAD Detection
4.9. Limitations of the Studies Included in the Present Meta-Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- GBD 2017 Causes of Death Collaborators. Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018, 392, 1736–1788. [Google Scholar] [CrossRef]
- Safiri, S.; Karamzad, N.; Singh, K.; Carson-Chahhoud, K.; Adams, C.; Nejadghaderi, S.A.; Almasi-Hashiani, A.; Sullman, M.J.M.; Mansournia, M.A.; Bragazzi, N.L.; et al. Burden of ischemic heart disease and its attributable risk factors in 204 countries and territories, 1990–2019. Eur. J. Prev. Cardiol. 2022, 29, 420–431. [Google Scholar] [CrossRef]
- Guan, C.; Wu, S.; Xu, W.; Zhang, J. Global, regional, and national burden of ischaemic heart disease and its trends, 1990–2019. Public Health 2023, 223, 57–66. [Google Scholar] [CrossRef]
- Khan, M.A.; Hashim, M.J.; Mustafa, H.; Baniyas, M.Y.; Al Suwaidi, S.K.B.M.; AlKatheeri, R.; Alblooshi, F.M.K.; Almatrooshi, M.E.A.H.; Alzaabi, M.E.H.; Al Darmaki, R.S.; et al. Global epidemiology of ischemic heart disease: Results from the Global Burden of Disease Study. Cureus 2020, 12, e9349. [Google Scholar] [CrossRef]
- Knuuti, J.; Wijns, W.; Saraste, A.; Capodanno, D.; Barbato, E.; Funck-Brentano, C.; Prescott, E.; Storey, R.F.; Deaton, C.; Cuisset, T.; et al. 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes. Eur. Heart J. 2020, 41, 407–477. [Google Scholar] [CrossRef]
- Vrints, C.; Andreotti, F.; Koskinas, K.C.; Rossello, X.; Adamo, M.; Ainslie, J.; Banning, A.P.; Budaj, A.; Buechel, R.R.; Chiariello, G.A.; et al. 2024 ESC Guidelines for the management of chronic coronary syndromes. Eur. Heart J. 2024, 45, 3415–3537. [Google Scholar] [CrossRef] [PubMed]
- McCully, R.B.; Pellikka, P.A.; Hodge, D.O.; Araoz, P.A.; Miller, T.D.; Gibbons, R.J. Applicability of appropriateness criteria for stress imaging: Similarities and differences between stress echocardiography and single-photon emission computed tomography myocardial perfusion imaging criteria. Circ. Cardiovasc. Imaging 2009, 2, 213–218. [Google Scholar] [CrossRef]
- Mansour, I.N.; Lang, R.M.; Aburuwaida, W.M.; Bhave, N.M.; Ward, R.P. Evaluation of the clinical application of the ACCF/ASE appropriateness criteria for stress echocardiography. J. Am. Soc. Echocardiogr. 2010, 23, 1199–1204. [Google Scholar] [CrossRef] [PubMed]
- Gibbons, R.J.; Askew, J.W.; Hodge, D.; Kaping, B.; Carryer, D.J.; Miller, T. Appropriate use criteria for stress single-photon emission computed tomography sestamibi studies: A quality improvement project. Circulation 2011, 123, 499–503. [Google Scholar] [CrossRef]
- Willens, H.J.; Nelson, K.; Hendel, R.C. Appropriate use criteria for stress echocardiography: Impact of updated criteria on appropriateness ratings, correlation with pre-authorization guidelines, and effect of temporal trends and an educational initiative on utilization. JACC Cardiovasc. Imaging 2013, 6, 297–309. [Google Scholar] [CrossRef] [PubMed]
- Karbach, U.; Schubert, I.; Hagemeister, J.; Ernstmann, N.; Pfaff, H.; Höpp, H.W. Physicians’ knowledge of and compliance with guidelines: An exploratory study in cardiovascular diseases. Dtsch. Arztebl. Int. 2011, 108, 61–69. [Google Scholar]
- Eftekhari, M.H.; Parsapoor, A.; Ahmadi, A.; Yavari, N.; Larijani, B.; Gooshki, E.S. Exploring defensive medicine: Examples, underlying and contextual factors, and potential strategies—A qualitative study. BMC Med. Ethics 2023, 24, 82. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef]
- Ma, L.L.; Wang, Y.Y.; Yang, Z.H.; Huang, D.; Weng, H.; Zeng, X.T. Methodological quality (risk of bias) assessment tools for primary and secondary medical studies: What are they and which is better? Mil. Med. Res. 2020, 7, 7. [Google Scholar] [CrossRef]
- McHugh, M.L. Interrater reliability: The kappa statistic. Biochem. Med. 2012, 22, 276–282. [Google Scholar] [CrossRef]
- Reitsma, J.B.; Glas, A.S.; Rutjes, A.W.; Scholten, R.J.; Bossuyt, P.M.; Zwinderman, A.H. Bivariate analysis of sensitivity and specificity produces informative summary measures in diagnostic reviews. J. Clin. Epidemiol. 2005, 58, 982–990. [Google Scholar] [CrossRef]
- Chu, H.; Cole, S.R. Bivariate meta-analysis of sensitivity and specificity with sparse data: A generalized linear mixed model approach. J. Clin. Epidemiol. 2006, 59, 1331–1332. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Riebler, A.; Rue, H. Bayesian bivariate meta-analysis of diagnostic test studies with interpretable priors. Stat. Med. 2017, 36, 3039–3058. [Google Scholar] [CrossRef] [PubMed]
- Paul, M.; Riebler, A.; Bachmann, L.M.; Rue, H.; Held, L. Bayesian bivariate meta-analysis of diagnostic test studies using integrated nested Laplace approximations. Stat. Med. 2010, 29, 1325–1339. [Google Scholar] [CrossRef] [PubMed]
- Cuzick, J. Forest plots and the interpretation of subgroups. Lancet 2005, 365, 1308. [Google Scholar] [CrossRef]
- Phillips, B.; Stewart, L.A.; Sutton, A.J. ‘Cross hairs’ plots for diagnostic meta-analysis. Res. Synth. Methods 2010, 1, 308–315. [Google Scholar] [CrossRef]
- Rosman, A.S.; Korsten, M.A. Application of summary receiver operating characteristics (sROC) analysis to diagnostic clinical testing. Adv. Med. Sci. 2007, 52, 76–82. [Google Scholar]
- Hunter, J.P.; Saratzis, A.; Sutton, A.J.; Boucher, R.H.; Sayers, R.D.; Bown, M.J. In meta-analyses of proportion studies, funnel plots were found to be an inaccurate method of assessing publication bias. J. Clin. Epidemiol. 2014, 67, 897–903. [Google Scholar] [CrossRef]
- Harbord, R.M.; Deeks, J.J.; Egger, M.; Whiting, P.; Sterne, J.A. A unification of models for meta-analysis of diagnostic accuracy studies. Biostatistics 2007, 8, 239–251. [Google Scholar] [CrossRef]
- Thabane, L.; Mbuagbaw, L.; Zhang, S.; Samaan, Z.; Marcucci, M.; Ye, C.; Thabane, M.; Giangregorio, L.; Dennis, B.; Kosa, D.; et al. A tutorial on sensitivity analyses in clinical trials: The what, why, when and how. BMC Med. Res. Methodol. 2013, 13, 92. [Google Scholar] [CrossRef] [PubMed]
- Salustri, A.; Fioretti, P.M.; Pozzoli, M.M.; McNeill, A.J.; Roelandt, J.R. Dobutamine stress echocardiography: Its role in the diagnosis of coronary artery disease. Eur. Heart J. 1992, 13, 70–77. [Google Scholar] [CrossRef] [PubMed]
- van Rugge, F.P.; van der Wall, E.E.; de Roos, A.; Bruschke, A.V. Dobutamine stress magnetic resonance imaging for detection of coronary artery disease. J. Am. Coll. Cardiol. 1993, 22, 431–439. [Google Scholar] [CrossRef]
- Panza, J.A.; Laurienzo, J.M.; Curiel, R.V.; Quyyumi, A.A.; Cannon, R.O., III. Transesophageal dobutamine stress echocardiography for evaluation of patients with coronary artery disease. J. Am. Coll. Cardiol. 1994, 24, 1260–1267. [Google Scholar] [CrossRef] [PubMed]
- San Román, J.A.; Vilacosta, I.; Castillo, J.A.; Rollán, M.J.; Peral, V.; Sánchez-Harguindey, L.; Fernández-Avilés, F. Dipyridamole and dobutamine-atropine stress echocardiography in the diagnosis of coronary artery disease. Chest 1996, 110, 1248–1254. [Google Scholar] [CrossRef]
- Kisacik, H.L.; Ozdemir, K.; Altinyay, E.; Oğuzhan, A.; Kural, T.; Kir, M.; Kütük, E.; Göksel, S. Comparison of exercise stress testing with simultaneous dobutamine stress echocardiography and technetium-99m isonitrile single-photon emission computerized tomography for diagnosis of coronary artery disease. Eur. Heart J. 1996, 17, 113–119. [Google Scholar] [CrossRef]
- Laurienzo, J.M.; Cannon, R.O., III; Quyyumi, A.A.; Dilsizian, V.; Panza, J.A. Improved specificity of transesophageal dobutamine stress echocardiography compared to standard tests for evaluation of coronary artery disease in women presenting with chest pain. Am. J. Cardiol. 1997, 80, 1402–1407. [Google Scholar] [CrossRef]
- Morise, A.P.; Beto, R. The specificity of exercise electrocardiography in women grouped by estrogen status. Int. J. Cardiol. 1997, 60, 55–65. [Google Scholar] [CrossRef]
- Hennessy, T.G.; Codd, M.B.; Hennessy, M.S.; Kane, G.; McCarthy, C.; McCann, H.A.; Sugrue, D.D. Comparison of dobutamine stress echocardiography and treadmill exercise electrocardiography for detection of coronary artery disease. Coron. Artery Dis. 1997, 8, 689–695. [Google Scholar] [CrossRef]
- Ho, Y.L.; Wu, C.C.; Huang, P.J.; Lin, L.C.; Chieng, P.U.; Chen, W.J.; Chen, M.F.; Lee, Y.T. Assessment of coronary artery disease in women by dobutamine stress echocardiography: Comparison with stress thallium-201 single-photon emission computed tomography and exercise electrocardiography. Am. Heart J. 1998, 135, 655–662. [Google Scholar] [CrossRef]
- Kalaria, V.G.; Dwyer, E.M. Ability of the exercise electrocardiogram test to detect ischemia in stable coronary artery disease patients with ST-segment depression on the resting electrocardiogram. Am. Heart J. 1998, 135, 901–906. [Google Scholar] [CrossRef]
- Santoro, G.M.; Sciagrà, R.; Buonamici, P.; Consoli, N.; Mazzoni, V.; Zerauschek, F.; Bisi, G.; Fazzini, P.F. Head-to-head comparison of exercise stress testing, pharmacologic stress echocardiography, and perfusion tomography as first-line examination for chest pain in patients without history of coronary artery disease. J. Nucl. Cardiol. 1998, 5, 19–27. [Google Scholar] [CrossRef]
- San Román, J.A.; Vilacosta, I.; Castillo, J.A.; Rollán, M.J.; Hernández, M.; Peral, V.; Garcimartín, I.; de la Torre, M.M.; Fernández-Avilés, F. Selection of the optimal stress test for the diagnosis of coronary artery disease. Heart 1998, 80, 370–376. [Google Scholar] [CrossRef] [PubMed]
- Gentile, R.; Vitarelli, A.; Schillaci, O.; Laganà, B.; Gianni, C.; Rossi-Fanelli, F.; Fedele, F. Diagnostic accuracy and prognostic implications of stress testing for coronary artery disease in the elderly. Ital. Heart J. 2001, 2, 539–545. [Google Scholar]
- Bokhari, S.; Bergmann, S.R. The effect of estrogen compared to estrogen plus progesterone on the exercise electrocardiogram. J. Am. Coll. Cardiol. 2002, 40, 1092–1096. [Google Scholar] [CrossRef] [PubMed]
- Rollán, M.J.; San Román, J.A.; Vilacosta, I.; Ortega, J.R.; Bratos, J.L. Dobutamine stress echocardiography in the diagnosis of coronary artery disease in women with chest pain: Comparison with different noninvasive tests. Clin. Cardiol. 2002, 25, 559–564. [Google Scholar] [CrossRef] [PubMed]
- Cortigiani, L.; Bigi, R.; Rigo, F.; Landi, P.; Baldini, U.; Mariani, P.R.; Picano, E.; Echo Persantine International Cooperative Study Group. Diagnostic value of exercise electrocardiography and dipyridamole stress echocardiography in hypertensive and normotensive chest pain patients with right bundle branch block. J. Hypertens. 2003, 21, 2189–2194. [Google Scholar] [CrossRef] [PubMed]
- Zeng, H.; Ge, K.Y.; Nie, Y.; Yan, W.; Yang, X.K. [Factors related to false positive results of treadmill electrocardiogram test for the detection of coronary heart disease]. Zhonghua Nei Ke Za Zhi 2004, 43, 669–671. (In Chinese) [Google Scholar]
- González, P.; Massardo, T.; Jofré, M.J.; Yovanovich, J.; Prat, H.; Muñoz, A.; Arriagada, M.; Anzoátegui, W.; Carmona, A.R. 201Tl myocardial SPECT detects significant coronary artery disease between 50% and 75% angiogram stenosis. Rev. Esp. Med. Nucl. 2005, 24, 305–311. [Google Scholar] [CrossRef]
- Nedeljkovic, I.; Ostojic, M.; Beleslin, B.; Djordjevic-Dikic, A.; Stepanovic, J.; Nedeljkovic, M.; Stojkovic, S.; Stankovic, G.; Saponjski, J.; Petrasinovic, Z.; et al. Comparison of exercise, dobutamine-atropine and dipyridamole-atropine stress echocardiography in detecting coronary artery disease. Cardiovasc. Ultrasound 2006, 4, 22. [Google Scholar] [CrossRef]
- Michaelides, A.P.; Fourlas, C.A.; Chatzistamatiou, E.I.; Andrikopoulos, G.K.; Soulis, D.; Psomadaki, Z.D.; Stefanadis, C.I. QRS score improves diagnostic ability of treadmill exercise testing in women. Coron. Artery Dis. 2007, 18, 313–318. [Google Scholar] [CrossRef]
- Bokhari, S.; Shahzad, A.; Bergmann, S.R. Superiority of exercise myocardial perfusion imaging compared with the exercise ECG in the diagnosis of coronary artery disease. Coron. Artery Dis. 2008, 19, 399–404. [Google Scholar] [CrossRef]
- Lu, C.; Lu, F.; Fragasso, G.; Dabrowski, P.; Di Bello, V.; Chierchia, S.L.; Gianolli, L.; Marzilli, M.; Balbarini, A. Comparison of exercise electrocardiography, technetium-99m sestamibi single photon emission computed tomography, and dobutamine and dipyridamole echocardiography for detection of coronary artery disease in hypertensive women. Am. J. Cardiol. 2010, 105, 1254–1260. [Google Scholar] [CrossRef]
- Greulich, S.; Bruder, O.; Parker, M.; Schumm, J.; Grün, S.; Schneider, S.; Klem, I.; Sechtem, U.; Mahrholdt, H. Comparison of exercise electrocardiography and stress perfusion CMR for the detection of coronary artery disease in women. J. Cardiovasc. Magn. Reson. 2012, 14, 36. [Google Scholar] [CrossRef] [PubMed]
- Weustink, A.C.; Neefjes, L.A.; Rossi, A.; Meijboom, W.B.; Nieman, K.; Capuano, E.; Boersma, E.; Mollet, N.R.; Krestin, G.P.; de Feyter, P.J. Diagnostic performance of exercise bicycle testing and single-photon emission computed tomography: Comparison with 64-slice computed tomography coronary angiography. Int. J. Cardiovasc. Imaging 2012, 28, 675–684. [Google Scholar] [CrossRef]
- Attar, A.; Mehrzadeh, A.; Foulad, M.; Aldavood, D.; Fallahzadeh, M.A.; Assadian Rad, M.; Khosropanah, S. Accuracy of exercise tolerance test in the diagnosis of coronary artery disease in patients with left dominant coronary circulation. Indian Heart J. 2017, 69, 624–627. [Google Scholar] [CrossRef] [PubMed]
- Quiñones, M.A.; Verani, M.S.; Haichin, R.M.; Mahmarian, J.J.; Suarez, J.; Zoghbi, W.A. Exercise echocardiography versus 201Tl single-photon emission computed tomography in evaluation of coronary artery disease. Analysis of 292 patients. Circulation 1992, 85, 1026–1031. [Google Scholar] [CrossRef]
- Hecht, H.S.; DeBord, L.; Shaw, R.; Chin, H.; Dunlap, R.; Ryan, C.; Myler, R.K. Supine bicycle stress echocardiography versus tomographic thallium-201 exercise imaging for the detection of coronary artery disease. J. Am. Soc. Echocardiogr. 1993, 6, 177–185. [Google Scholar] [CrossRef]
- Cohen, J.L.; Ottenweller, J.E.; George, A.K.; Duvvuri, S. Comparison of dobutamine and exercise echocardiography for detecting coronary artery disease. Am. J. Cardiol. 1993, 72, 1226–1231. [Google Scholar] [CrossRef]
- Beleslin, B.D.; Ostojic, M.; Stepanovic, J.; Djordjevic-Dikic, A.; Stojkovic, S.; Nedeljkovic, M.; Stankovic, G.; Petrasinovic, Z.; Gojkovic, L.; Vasiljevic-Pokrajcic, Z.; et al. Stress echocardiography in the detection of myocardial ischemia. Head-to-head comparison of exercise, dobutamine, and dipyridamole tests. Circulation 1994, 90, 1168–1176. [Google Scholar] [CrossRef]
- Dagianti, A.; Penco, M.; Agati, L.; Sciomer, S.; Dagianti, A.; Rosanio, S.; Fedele, F. Stress echocardiography: Comparison of exercise, dipyridamole and dobutamine in detecting and predicting the extent of coronary artery disease. J. Am. Coll. Cardiol. 1995, 26, 18–25. [Google Scholar] [CrossRef]
- Bjørnstad, K.; Aakhus, S.; Hatle, L. Comparison of digital dipyridamole stress echocardiography and upright bicycle stress echocardiography for identification of coronary artery stenosis. Cardiology 1995, 86, 514–520. [Google Scholar] [CrossRef]
- Badruddin, S.M.; Ahmad, A.; Mickelson, J.; Abukhalil, J.; Winters, W.L.; Nagueh, S.F.; Zoghbi, W.A. Supine bicycle versus post-treadmill exercise echocardiography in the detection of myocardial ischemia: A randomized single-blind crossover trial. J. Am. Coll. Cardiol. 1999, 33, 1485–1490. [Google Scholar] [CrossRef]
- Ha, J.W.; Juracan, E.M.; Mahoney, D.W.; Oh, J.K.; Shub, C.; Seward, J.B.; Pellikka, P.A. Hypertensive response to exercise: A potential cause for new wall motion abnormality in the absence of coronary artery disease. J. Am. Coll. Cardiol. 2002, 39, 323–327. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.H.; Shiota, T.; Kim, Y.J.; Kwan, J.; Qin, J.X.; Eto, Y.; Rodriguez, L.L.; Thomas, J.D. False-positive exercise echocardiograms: Impact of sex and blood pressure response. Am. Heart J. 2003, 146, 914–919. [Google Scholar] [CrossRef] [PubMed]
- Müller, H.; Lerch, R. Tilt table exercise echocardiography assessment in the diagnosis of coronary artery disease. Arch. Cardiovasc. Dis. 2008, 101, 170–174. [Google Scholar] [CrossRef] [PubMed]
- Martin, T.W.; Seaworth, J.F.; Johns, J.P.; Pupa, L.E.; Condos, W.R. Comparison of adenosine, dipyridamole, and dobutamine in stress echocardiography. Ann. Intern. Med. 1992, 116, 190–196. [Google Scholar] [CrossRef] [PubMed]
- Marwick, T.; D’Hondt, A.M.; Baudhuin, T.; Willemart, B.; Wijns, W.; Detry, J.M.; Melin, J. Optimal use of dobutamine stress for the detection and evaluation of coronary artery disease: Combination with echocardiography or scintigraphy, or both? J. Am. Coll. Cardiol. 1993, 22, 159–167. [Google Scholar] [CrossRef]
- Takeuchi, M.; Araki, M.; Nakashima, Y.; Kuroiwa, A. Comparison of dobutamine stress echocardiography and stress thallium-201 single-photon emission computed tomography for detecting coronary artery disease. J. Am. Soc. Echocardiogr. 1993, 6, 593–602. [Google Scholar] [CrossRef]
- Ho, F.M.; Huang, P.J.; Liau, C.S.; Lee, F.K.; Chieng, P.U.; Su, C.T.; Lee, Y.T. Dobutamine stress echocardiography compared with dipyridamole thallium-201 single-photon emission computed tomography in detecting coronary artery disease. Eur. Heart J. 1995, 16, 570–575. [Google Scholar] [CrossRef] [PubMed]
- Pingitore, A.; Picano, E.; Colosso, M.Q.; Reisenhofer, B.; Gigli, G.; Lucarini, A.R.; Petix, N.; Previtali, M.; Bigi, R.; Chiarandà, G.; et al. The atropine factor in pharmacologic stress echocardiography. Echo Persantine (EPIC) and Echo Dobutamine International Cooperative (EDIC) Study Groups. J. Am. Coll. Cardiol. 1996, 27, 1164–1170. [Google Scholar] [CrossRef]
- Elhendy, A.; van Domburg, R.T.; Bax, J.J.; Nierop, P.R.; Geleijnse, M.L.; Ibrahim, M.M.; Roelandt, J.R. Noninvasive diagnosis of coronary artery stenosis in women with limited exercise capacity: Comparison of dobutamine stress echocardiography and 99mTc sestamibi single-photon emission CT. Chest 1998, 114, 1097–1104. [Google Scholar] [CrossRef] [PubMed]
- Fragasso, G.; Lu, C.; Dabrowski, P.; Pagnotta, P.; Sheiban, I.; Chierchia, S.L. Comparison of stress/rest myocardial perfusion tomography, dipyridamole and dobutamine stress echocardiography for the detection of coronary disease in hypertensive patients with chest pain and positive exercise test. J. Am. Coll. Cardiol. 1999, 34, 441–447. [Google Scholar] [CrossRef] [PubMed]
- Previtali, M.; Cannizzaro, G.; Lanzarini, L.; Calsamiglia, G.; Poli, A.; Fetiveau, R. Comparison of dobutamine stress echocardiography and exercise stress Thallium-201 SPECT for detection of myocardial ischemia after acute myocardial infarction treated with thrombolysis. Int. J. Card. Imaging 1999, 15, 195–204. [Google Scholar] [CrossRef]
- Ciaroni, S.; Bloch, A.; Albrecht, L.; Vanautryve, B. Diagnosis of coronary artery disease in patients with permanent cardiac pacemaker by dobutamine stress echocardiography or exercise thallium-201 myocardial tomography. Echocardiography 2000, 17, 675–679. [Google Scholar] [CrossRef]
- Smart, S.C.; Bhatia, A.; Hellman, R.; Stoiber, T.; Krasnow, A.; Collier, B.D.; Sagar, K.B. Dobutamine-atropine stress echocardiography and dipyridamole sestamibi scintigraphy for the detection of coronary artery disease: Limitations and concordance. J. Am. Coll. Cardiol. 2000, 36, 1265–1273. [Google Scholar] [CrossRef]
- Geleijnse, M.L.; Vigna, C.; Kasprzak, J.D.; Rambaldi, R.; Salvatori, M.P.; Elhendy, A.; Cornel, J.H.; Fioretti, P.M.; Roelandt, J.R. Usefulness and limitations of dobutamine-atropine stress echocardiography for the diagnosis of coronary artery disease in patients with left bundle branch block. A multicentre study. Eur. Heart J. 2000, 21, 1666–1673. [Google Scholar] [CrossRef]
- Elhendy, A.; van Domburg, R.T.; Bax, J.J.; Poldermans, D.; Sozzi, F.B.; Roelandt, J.R. Accuracy of dobutamine technetium 99m sestamibi SPECT imaging for the diagnosis of single-vessel coronary artery disease: Comparison with echocardiography. Am. Heart J. 2000, 139, 224–230. [Google Scholar] [CrossRef]
- Tandoğan, I.; Yetkin, E.; Yanik, A.; Ulusoy, F.V.; Temizhan, A.; Cehreli, S.; Sasmaz, A. Comparison of thallium-201 exercise SPECT and dobutamine stress echocardiography for diagnosis of coronary artery disease in patients with left bundle branch block. Int. J. Cardiovasc. Imaging 2001, 17, 339–345. [Google Scholar] [CrossRef]
- Lancellotti, P.; Benoit, T.; Rigo, P.; Pierard, L.A. Dobutamine stress echocardiography versus quantitative technetium-99m sestamibi SPECT for detecting residual stenosis and multivessel disease after myocardial infarction. Heart 2001, 86, 510–515. [Google Scholar] [CrossRef]
- Vigna, C.; Stanislao, M.; De Rito, V.; Russo, A.; Natali, R.; Santoro, T.; Loperfido, F. Dipyridamole stress echocardiography vs dipyridamole sestamibi scintigraphy for diagnosing coronary artery disease in left bundle-branch block. Chest 2001, 120, 1534–1539. [Google Scholar] [CrossRef] [PubMed]
- Vigna, C.; Stanislao, M.; De Rito, V.; Russo, A.; Santoro, T.; Fusilli, S.; Valle, G.; Natali, R.; Fanelli, R.; Lotrionte, M.; et al. Inaccuracy of dipyridamole echocardiography or scintigraphy for the diagnosis of coronary artery disease in patients with both left bundle branch block and left ventricular dysfunction. Int. J. Cardiol. 2006, 110, 116–118. [Google Scholar] [CrossRef] [PubMed]
- Rigo, F.; Richieri, M.; Pasanisi, E.; Cutaia, V.; Zanella, C.; Della Valentina, P.; Di Pede, F.; Raviele, A.; Picano, E. Usefulness of coronary flow reserve over regional wall motion when added to dual-imaging dipyridamole echocardiography. Am. J. Cardiol. 2003, 91, 269–273. [Google Scholar] [CrossRef]
- Lowenstein, J.; Tiano, C.; Marquez, G.; Presti, C.; Quiroz, C. Simultaneous analysis of wall motion and coronary flow reserve of the left anterior descending coronary artery by transthoracic Doppler echocardiography during dipyridamole stress echocardiography. J. Am. Soc. Echocardiogr. 2003, 16, 607–613. [Google Scholar] [CrossRef]
- Nohtomi, Y.; Takeuchi, M.; Nagasawa, K.; Arimura, K.; Miyata, K.; Kuwata, K.; Yamawaki, T.; Kondo, S.; Yamada, A.; Okamatsu, S. Simultaneous assessment of wall motion and coronary flow velocity in the left anterior descending coronary artery during dipyridamole stress echocardiography. J. Am. Soc. Echocardiogr. 2003, 16, 457–463. [Google Scholar] [CrossRef] [PubMed]
- Ascione, L.; De Michele, M.; Accadia, M.; Granata, G.; Sacra, C.; D’Andrea, A.; Guarini, P.; Tuccillo, B. Incremental diagnostic value of ultrasonographic assessment of coronary flow reserve with high-dose dipyridamole in patients with acute coronary syndrome. Int. J. Cardiol. 2006, 106, 313–318. [Google Scholar] [CrossRef]
- Gaibazzi, N.; Rigo, F.; Reverberi, C. Detection of coronary artery disease by combined assessment of wall motion, myocardial perfusion and coronary flow reserve: A multiparametric contrast stress-echocardiography study. J. Am. Soc. Echocardiogr. 2010, 23, 1242–1250. [Google Scholar] [CrossRef]
- Cortigiani, L.; Rigo, F.; Galderisi, M.; Gherardi, S.; Bovenzi, F.; Picano, E.; Sicari, R. Diagnostic and prognostic value of Doppler echocardiographic coronary flow reserve in the left anterior descending artery in hypertensive and normotensive patients. Heart 2011, 97, 1758–1765. [Google Scholar] [CrossRef]
- Kasprzak, J.D.; Wejner-Mik, P.; Nouri, A.; Szymczyk, E.; Krzemińska-Pakuła, M.; Lipiec, P. Transthoracic measurement of left coronary artery flow reserve improves the diagnostic value of routine dipyridamole-atropine stress echocardiogram. Arch. Med. Sci. 2013, 9, 802–807. [Google Scholar] [CrossRef]
- Pichel, I.Á.; Fernández Cimadevilla, O.C.; de la Hera Galarza, J.M.; Pasanisi, E.; Ruiz, J.M.G.; Molina, B.D.; Rodriguez, J.L.L.; Sicari, R.; Fernández, M.M. Usefulness of dual imaging stress echocardiography for the diagnosis of coronary allograft vasculopathy in heart transplant recipients. Int. J. Cardiol. 2019, 296, 109–112. [Google Scholar] [CrossRef] [PubMed]
- Stewart, R.E.; Schwaiger, M.; Molina, E.; Popma, J.; Gacioch, G.M.; Kalus, M.; Squicciarini, S.; al-Aouar, Z.R.; Schork, A.; Kuhl, D.E. Comparison of rubidium-82 positron emission tomography and thallium-201 SPECT imaging for detection of coronary artery disease. Am. J. Cardiol. 1991, 67, 1303–1310. [Google Scholar] [CrossRef] [PubMed]
- Prisant, L.M.; von Dohlen, T.W.; Houghton, J.L.; Carr, A.A.; Frank, M.J. A negative thallium (+/− dipyridamole) stress test excludes significant obstructive epicardial coronary artery disease in hypertensive patients. Am. J. Hypertens. 1992, 5, 71–75. [Google Scholar] [CrossRef]
- Gupta, N.C.; Esterbrooks, D.J.; Hilleman, D.E.; Mohiuddin, S.M. Comparison of adenosine and exercise thallium-201 single-photon emission computed tomography (SPECT) myocardial perfusion imaging. The GE SPECT Multicenter Adenosine Study Group. J. Am. Coll. Cardiol. 1992, 19, 248–257. [Google Scholar] [CrossRef]
- Zammarchi, A.; Pitscheider, W.; Crepaz, R.; Oberhollenzer, R.; Erlicher, A.; Unterhuber, E.; Osele, L.; Braito, E. La scintigrafia miocardica da sforzo con 201-tallio in presenza di blocco di branca sinistra [Exercise 201-thallium myocardial scintigraphy in left bundle branch block]. G. Ital. Cardiol. 1994, 24, 1103–1113. [Google Scholar]
- Fleming, R.M.; Rose, C.H.; Feldmann, K.M. Comparing a high-dose dipyridamole SPECT imaging protocol with dobutamine and exercise stress testing protocols. Angiology 1995, 46, 547–556. [Google Scholar] [CrossRef] [PubMed]
- Doğruca, Z.; Kabasakal, L.; Yapar, F.; Nisil, C.; Vural, V.A.; Onsel, Q. A comparison of Tl-201 stress-reinjection-prone SPECT and Tc-99m-sestamibi gated SPECT in the differentiation of inferior wall defects from artifacts. Nucl. Med. Commun. 2000, 21, 719–727. [Google Scholar] [CrossRef]
- Raman, S.V.; Dickerson, J.A.; Mazur, W.; Wong, T.C.; Schelbert, E.B.; Min, J.K.; Scandling, D.; Bartone, C.; Craft, J.T.; Thavendiranathan, P.; et al. Diagnostic performance of treadmill exercise cardiac magnetic resonance: The prospective, multicenter Exercise CMR’s Accuracy for Cardiovascular Stress Testing (EXACT) Trial. J. Am. Heart Assoc. 2016, 5, e003811. [Google Scholar] [CrossRef]
- Ahmad, I.G.; Abdulla, R.K.; Klem, I.; Margulis, R.; Ivanov, A.; Mohamed, A.; Judd, R.M.; Borges-Neto, S.; Kim, R.J.; Heitner, J.F. Comparison of stress cardiovascular magnetic resonance imaging (CMR) with stress nuclear perfusion for the diagnosis of coronary artery disease. J. Nucl. Cardiol. 2016, 23, 287–297. [Google Scholar] [CrossRef]
- Olszowska, M.; Kostkiewicz, M.; Tracz, W.; Przewlocki, T. Assessment of myocardial perfusion in patients with coronary artery disease. Comparison of myocardial contrast echocardiography and 99mTc MIBI single photon emission computed tomography. Int. J. Cardiol. 2003, 90, 49–55. [Google Scholar] [CrossRef]
- Cramer, M.J.; Verzijlbergen, J.F.; van der Wall, E.E.; Vermeersch, P.H.; Niemeyer, M.G.; Zwinderman, A.H.; Ascoop, C.A.; Pauwels, E.K. Comparison of adenosine and high-dose dipyridamole both combined with low-level exercise stress for 99Tcm-MIBI SPET myocardial perfusion imaging. Nucl. Med. Commun. 1996, 17, 97–104. [Google Scholar] [CrossRef]
- Senior, R.; Lepper, W.; Pasquet, A.; Chung, G.; Hoffman, R.; Vanoverschelde, J.L.; Cerqueira, M.; Kaul, S. Myocardial perfusion assessment in patients with medium probability of coronary artery disease and no prior myocardial infarction: Comparison of myocardial contrast echocardiography with 99mTc single-photon emission computed tomography. Am. Heart J. 2004, 147, 1100–1105. [Google Scholar] [CrossRef] [PubMed]
- Jeetley, P.; Hickman, M.; Kamp, O.; Lang, R.M.; Thomas, J.D.; Vannan, M.A.; Vanoverschelde, J.L.; van der Wouw, P.A.; Senior, R. Myocardial contrast echocardiography for the detection of coronary artery stenosis: A prospective multicenter study in comparison with single-photon emission computed tomography. J. Am. Coll. Cardiol. 2006, 47, 141–145. [Google Scholar] [CrossRef] [PubMed]
- LaManna, M.M.; Mohama, R.; Slavich, I.L., III; Lumia, F.J.; Cha, S.D.; Rambaran, N.; Maranhao, V. Intravenous adenosine (adenoscan) versus exercise in the noninvasive assessment of coronary artery disease by SPECT. Clin. Nucl. Med. 1990, 15, 804–805. [Google Scholar] [CrossRef] [PubMed]
- Karavidas, A.I.; Matsakas, E.P.; Lazaros, G.A.; Brestas, P.S.; Avramidis, D.A.; Zacharoulis, A.A.; Fotiadis, I.N.; Korres, D.A.; Zacharoulis, A.A. Comparison of myocardial contrast echocardiography with SPECT in the evaluation of coronary artery disease in asymptomatic patients with LBBB. Int. J. Cardiol. 2006, 112, 334–340. [Google Scholar] [CrossRef]
- Aggeli, C.; Christoforatou, E.; Giannopoulos, G.; Roussakis, G.; Kokkinakis, C.; Barbetseas, J.; Vlachopoulos, C.; Stefanadis, C. The diagnostic value of adenosine stress-contrast echocardiography for diagnosis of coronary artery disease in hypertensive patients: Comparison to Tl-201 single-photon emission computed tomography. Am. J. Hypertens. 2007, 20, 533–538. [Google Scholar] [CrossRef]
- Futamatsu, H.; Klassen, C.; Pilla, M.; Wilke, N.; Angiolillo, D.J.; Smalheiser, S.; Siuciak, A.; Suzuki, N.; Bass, T.A.; Costa, M.A. Diagnostic accuracy of quantitative cardiac MRI evaluation compared to stress single-photon-emission computed tomography. Int. J. Cardiovasc. Imaging 2008, 24, 293–299. [Google Scholar] [CrossRef]
- Greenwood, J.P.; Motwani, M.; Maredia, N.; Brown, J.M.; Everett, C.C.; Nixon, J.; Bijsterveld, P.; Dickinson, C.J.; Ball, S.G.; Plein, S. Comparison of cardiovascular magnetic resonance and single-photon emission computed tomography in women with suspected coronary artery disease from the Clinical Evaluation of Magnetic Resonance Imaging in Coronary Heart Disease (CE-MARC) Trial. Circulation 2014, 129, 1129–1138. [Google Scholar] [CrossRef]
- Rerkpattanapipat, P.; Gandhi, S.K.; Darty, S.N.; Williams, R.T.; Davis, A.D.; Mazur, W.; Clark, H.P.; Little, W.C.; Link, K.M.; Hamilton, C.A.; et al. Feasibility to detect severe coronary artery stenoses with upright treadmill exercise magnetic resonance imaging. Am. J. Cardiol. 2003, 92, 603–606. [Google Scholar] [CrossRef]
- Ochs, A.; Nippes, M.; Salatzki, J.; Weberling, L.D.; Osman, N.; Riffel, J.; Katus, H.A.; Friedrich, M.G.; Frey, N.; Ochs, M.M.; et al. Dynamic handgrip exercise for the detection of myocardial ischemia using fast Strain-ENCoded cardiovascular magnetic resonance. J. Cardiovasc. Magn. Reson. 2025, 27, 101879. [Google Scholar] [CrossRef]
- Nagel, E.; Lehmkuhl, H.B.; Bocksch, W.; Klein, C.; Vogel, U.; Frantz, E.; Ellmer, A.; Dreysse, S.; Fleck, E. Noninvasive diagnosis of ischemia-induced wall motion abnormalities with the use of high-dose dobutamine stress MRI: Comparison with dobutamine stress echocardiography. Circulation 1999, 99, 763–770. [Google Scholar] [CrossRef]
- al-Saadi, N.; Gross, M.; Paetsch, I.; Schnackenburg, B.; Bornstedt, A.; Fleck, E.; Nagel, E. Dobutamine induced myocardial perfusion reserve index with cardiovascular MR in patients with coronary artery disease. J. Cardiovasc. Magn. Reson. 2002, 4, 471–480. [Google Scholar] [CrossRef] [PubMed]
- Paetsch, I.; Jahnke, C.; Wahl, A.; Gebker, R.; Neuss, M.; Fleck, E.; Nagel, E. Comparison of dobutamine stress magnetic resonance, adenosine stress magnetic resonance, and adenosine stress magnetic resonance perfusion. Circulation 2004, 110, 835–842. [Google Scholar] [CrossRef] [PubMed]
- Wahl, A.; Paetsch, I.; Roethemeyer, S.; Klein, C.; Fleck, E.; Nagel, E. High-dose dobutamine-atropine stress cardiovascular MR imaging after coronary revascularization in patients with wall motion abnormalities at rest. Radiology 2004, 233, 210–216. [Google Scholar] [CrossRef]
- Kelle, S.; Hamdan, A.; Schnackenburg, B.; Köhler, U.; Klein, C.; Nagel, E.; Fleck, E. Dobutamine stress cardiovascular magnetic resonance at 3 Tesla. J. Cardiovasc. Magn. Reson. 2008, 10, 44. [Google Scholar] [CrossRef]
- Heilmaier, C.; Bruder, O.; Meier, F.; Jochims, M.; Forsting, M.; Sabin, G.V.; Barkhausen, J.; Schlosser, T.W. Dobutamine stress cardiovascular magnetic resonance imaging in patients after invasive coronary revascularization with stent placement. Acta Radiol. 2009, 50, 1134–1141. [Google Scholar] [CrossRef]
- Gebker, R.; Jahnke, C.; Hucko, T.; Manka, R.; Mirelis, J.G.; Hamdan, A.; Schnackenburg, B.; Fleck, E.; Paetsch, I. Dobutamine stress magnetic resonance imaging for the detection of coronary artery disease in women. Heart 2010, 96, 616–620. [Google Scholar] [CrossRef] [PubMed]
- Mordi, I.; Stanton, T.; Carrick, D.; McClure, J.; Oldroyd, K.; Berry, C.; Tzemos, N. Comprehensive dobutamine stress CMR versus echocardiography in LBBB and suspected coronary artery disease. JACC Cardiovasc. Imaging 2014, 7, 490–498. [Google Scholar] [CrossRef] [PubMed]
- Weberling, L.D.; Seitz, S.; Salatzki, J.; Ochs, A.; Haney, A.C.; Siry, D.; Heins, J.; Steen, H.; Frey, N.; André, F. Safety, accuracy, and prediction of prognosis in patients with end-stage chronic kidney disease undergoing dobutamine stress cardiac magnetic resonance imaging. Front. Cardiovasc. Med. 2023, 10, 1228691. [Google Scholar] [CrossRef]
- Baer, F.M.; Smolarz, K.; Theissen, P.; Voth, E.; Schicha, H.; Sechtem, U. Identification of hemodynamically significant coronary artery stenoses by dipyridamole-magnetic resonance imaging and 99mTc-methoxyisobutyl-isonitrile-SPECT. Int. J. Card. Imaging 1993, 9, 133–145. [Google Scholar] [CrossRef]
- Hartnell, G.; Cerel, A.; Kamalesh, M.; Finn, J.P.; Hill, T.; Cohen, M.; Tello, R.; Lewis, S. Detection of myocardial ischemia: Value of combined myocardial perfusion and cineangiographic MR imaging. AJR Am. J. Roentgenol. 1994, 163, 1061–1067. [Google Scholar] [CrossRef]
- Zhao, S.; Croisille, P.; Janier, M.; Roux, J.P.; Plana, A.; Magnin, I.; Revel, D. Comparison between qualitative and quantitative wall motion analyses using dipyridamole stress breath-hold cine magnetic resonance imaging in patients with severe coronary artery stenosis. Magn. Reson. Imaging 1997, 15, 891–898. [Google Scholar] [CrossRef] [PubMed]
- Takase, B.; Nagata, M.; Kihara, T.; Kameyawa, A.; Noya, K.; Matsui, T.; Ohsuzu, F.; Ishihara, M.; Kurita, A. Whole-heart dipyridamole stress first-pass myocardial perfusion MRI for the detection of coronary artery disease. Jpn. Heart J. 2004, 45, 475–486. [Google Scholar] [CrossRef] [PubMed]
- Stauder, N.I.; Klumpp, B.; Stauder, H.; Blumenstock, G.; Fenchel, M.; Küttner, A.; Claussen, C.D.; Miller, S. Assessment of coronary artery bypass grafts by magnetic resonance imaging. Br. J. Radiol. 2007, 80, 975–983. [Google Scholar] [CrossRef]
- Pingitore, A.; Lombardi, M.; Scattini, B.; De Marchi, D.; Aquaro, G.D.; Positano, V.; Picano, E. Head to head comparison between perfusion and function during accelerated high-dose dipyridamole magnetic resonance stress for the detection of coronary artery disease. Am. J. Cardiol. 2008, 101, 8–14. [Google Scholar] [CrossRef]
- Mordini, F.E.; Haddad, T.; Hsu, L.Y.; Kellman, P.; Lowrey, T.B.; Aletras, A.H.; Bandettini, W.P.; Arai, A.E. Diagnostic accuracy of stress perfusion CMR in comparison with quantitative coronary angiography: Fully quantitative, semiquantitative, and qualitative assessment. JACC Cardiovasc. Imaging 2014, 7, 14–22. [Google Scholar] [CrossRef]
- Deva, D.P.; Torres, F.S.; Wald, R.M.; Roche, S.L.; Jimenez-Juan, L.; Oechslin, E.N.; Crean, A.M. The value of stress perfusion cardiovascular magnetic resonance imaging for patients referred from the adult congenital heart disease clinic: 5-year experience at the Toronto General Hospital. Cardiol. Young 2014, 24, 822–830. [Google Scholar] [CrossRef]
- Yun, C.H.; Tsai, J.P.; Tsai, C.T.; Mok, G.S.; Sun, J.Y.; Hung, C.L.; Wu, T.H.; Huang, W.T.; Yang, F.S.; Lee, J.J.; et al. Qualitative and semi-quantitative evaluation of myocardium perfusion with 3 T stress cardiac MRI. BMC Cardiovasc. Disord. 2015, 15, 164. [Google Scholar] [CrossRef]
- Klem, I.; Heitner, J.F.; Shah, D.J.; Sketch, M.H., Jr.; Behar, V.; Weinsaft, J.; Cawley, P.; Parker, M.; Elliott, M.; Judd, R.M.; et al. Improved detection of coronary artery disease by stress perfusion cardiovascular magnetic resonance with the use of delayed enhancement infarction imaging. J. Am. Coll. Cardiol. 2006, 47, 1630–1638. [Google Scholar] [CrossRef]
- Klein, C.; Gebker, R.; Kokocinski, T.; Dreysse, S.; Schnackenburg, B.; Fleck, E.; Nagel, E. Combined magnetic resonance coronary artery imaging, myocardial perfusion and late gadolinium enhancement in patients with suspected coronary artery disease. J. Cardiovasc. Magn. Reson. 2008, 10, 45. [Google Scholar] [CrossRef]
- Arnold, J.R.; Karamitsos, T.D.; Pegg, T.J.; Francis, J.M.; Olszewski, R.; Searle, N.; Senior, R.; Neubauer, S.; Becher, H.; Selvanayagam, J.B. Adenosine stress myocardial contrast echocardiography for the detection of coronary artery disease: A comparison with coronary angiography and cardiac magnetic resonance. JACC Cardiovasc. Imaging 2010, 3, 934–943. [Google Scholar] [CrossRef]
- Bettencourt, N.; Ferreira, N.; Chiribiri, A.; Schuster, A.; Sampaio, F.; Santos, L.; Melica, B.; Rodrigues, A.; Braga, P.; Teixeira, M.; et al. Additive value of magnetic resonance coronary angiography in a comprehensive cardiac magnetic resonance stress-rest protocol for detection of functionally significant coronary artery disease: A pilot study. Circ. Cardiovasc. Imaging 2013, 6, 730–738. [Google Scholar] [CrossRef] [PubMed]
- Salerno, M.; Taylor, A.; Yang, Y.; Kuruvilla, S.; Ragosta, M.; Meyer, C.H.; Kramer, C.M. Adenosine stress cardiovascular magnetic resonance with variable-density spiral pulse sequences accurately detects coronary artery disease: Initial clinical evaluation. Circ. Cardiovasc. Imaging 2014, 7, 639–646. [Google Scholar] [CrossRef]
- Manka, R.; Wissmann, L.; Gebker, R.; Jogiya, R.; Motwani, M.; Frick, M.; Reinartz, S.; Schnackenburg, B.; Niemann, M.; Gotschy, A.; et al. Multicenter evaluation of dynamic three-dimensional magnetic resonance myocardial perfusion imaging for the detection of coronary artery disease defined by fractional flow reserve. Circ. Cardiovasc. Imaging 2015, 8, e003061. [Google Scholar] [CrossRef] [PubMed]
- Ntsinjana, H.N.; Tann, O.; Hughes, M.; Derrick, G.; Secinaro, A.; Schievano, S.; Muthurangu, V.; Taylor, A.M. Utility of adenosine stress perfusion CMR to assess paediatric coronary artery disease. Eur. Heart J. Cardiovasc. Imaging 2017, 18, 898–905. [Google Scholar] [CrossRef] [PubMed]
- Foley, J.R.J.; Kidambi, A.; Biglands, J.D.; Maredia, N.; Dickinson, C.J.; Plein, S.; Greenwood, J.P. A comparison of cardiovascular magnetic resonance and single photon emission computed tomography (SPECT) perfusion imaging in left main stem or equivalent coronary artery disease: A CE-MARC substudy. J. Cardiovasc. Magn. Reson. 2017, 19, 84. [Google Scholar] [CrossRef]
- Southard, J.; Baker, L.; Schaefer, S. In Search of the False-Negative Exercise Treadmill Testing: Evidence-Based Use of Exercise Echocardiography. Clin. Cardiol. 2008, 31, 35–40. [Google Scholar] [CrossRef]
- Sketch, M.H.; Mohiuddin, S.M.; Lynch, J.D.; Zencka, A.E.; Runco, V. Significant Sex Differences in the Correlation of Electrocardiographic Exercise Testing and Coronary Arteriograms. Am. J. Cardiol. 1975, 36, 169–173. [Google Scholar] [CrossRef] [PubMed]
- Ellestad, M.H.; Savitz, S.; Bergdall, D.; Teske, J. The False Positive Stress Test: Multivariate Analysis of 215 Subjects with Hemodynamic, Angiographic and Clinical Data. Am. J. Cardiol. 1977, 40, 681–685. [Google Scholar] [CrossRef] [PubMed]
- Fitzgerald, B.T.; Scalia, W.M.; Scalia, G.M. Female False Positive Exercise Stress ECG Testing—Fact Versus Fiction. Heart Lung Circ. 2019, 28, 735–741. [Google Scholar] [CrossRef] [PubMed]
- van Dijk, R.; Ties, D.; Kuijpers, D.; van der Harst, P.; Oudkerk, M. Effects of Caffeine on Myocardial Blood Flow: A Systematic Review. Nutrients 2018, 10, 1083. [Google Scholar] [CrossRef]
- Kramer, N.; Susmano, A.; Shekelle, R.B. The “False Negative” Treadmill Exercise Test and Left Ventricular Dysfunction. Circulation 1978, 57, 763–768. [Google Scholar] [CrossRef]
- Hlatky, M.A.; Pryor, D.B.; Harrell, F.E., Jr.; Califf, R.M.; Mark, D.B.; Rosati, R.A. Factors Affecting Sensitivity and Specificity of Exercise Electrocardiography: Multivariable Analysis. Am. J. Med. 1984, 77, 64–71. [Google Scholar] [CrossRef]
- Gibbons, R.J.; Balady, G.J.; Beasley, J.W.; Bricker, J.T.; Duvernoy, W.F.; Froelicher, V.F.; Mark, D.B.; Marwick, T.H.; McCallister, B.D.; Thompson, P.D.; et al. ACC/AHA Guidelines for Exercise Testing: Executive Summary. A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee on Exercise Testing). Circulation 1997, 96, 345–354. [Google Scholar] [CrossRef]
- Raposeiras-Roubin, S.; Garrido-Pumar, M.; Pubul-Nuñez, V.; Peña-Gil, C.; Argibay-Vázquez, S.; Agra-Bermejo, R.M.; Abu-Assi, E.; Martínez-Monzonís, A.; Vega, M.; Ruibal-Morell, A.; et al. Discrepancy between Stress Electrocardiographic Changes and Nuclear Myocardial Perfusion Defects in the Prognostic Assessment of Patients with Chest Pain. Rev. Port. Cardiol. 2013, 32, 761–768. [Google Scholar] [CrossRef]
- Towashiraporn, K.; Krittayaphong, R.; Yindeengam, A. Predicting Factors for a False Positive Treadmill Exercise Stress Test. J. Med. Assoc. Thai 2013, 96 (Suppl. S2), S133–S138. [Google Scholar]
- Miller, T.D.; Christian, T.F.; Allison, T.G.; Squires, R.W.; Hodge, D.O.; Gibbons, R.J. Is Rest or Exercise Hypertension a Cause of a False-Positive Exercise Test? Chest 2000, 117, 226–232. [Google Scholar] [CrossRef]
- Faisal, A.W.; Abid, A.R.; Azhar, M. Exercise Tolerance Test: A Comparison between True Positive and False Positive Test Results. J. Ayub Med. Coll. Abbottabad 2007, 19, 71–74. [Google Scholar] [PubMed]
- Naimark, B.J.; Tate, R.B.; Manfreda, J.; Stephens, N.L.; Mymin, D. The Association between Exercise Blood Pressure and the Prevalence of ECG Abnormalities. Can. J. Cardiol. 1990, 6, 267–273. [Google Scholar]
- Gettes, L.S.; Sapin, P. Concerning Falsely Negative and Falsely Positive Electrocardiographic Responses to Exercise. Br. Heart J. 1993, 70, 205–207. [Google Scholar] [CrossRef]
- Özkaramanlı Gür, D.; Akyüz, A.; Alpsoy, Ş.; Güler, N. Tools to Improve the Diagnostic Accuracy of Exercise Electrocardiograms in Patients with Atypical Angina Pectoris. Turk. Kardiyol. Dern. Ars. 2018, 46, 375–384. [Google Scholar] [CrossRef]
- Colucci, W.S.; Gimbrone, M.A., Jr.; McLaughlin, M.K.; Halpern, W.; Alexander, R.W. Increased Vascular Catecholamine Sensitivity and Alpha-Adrenergic Receptor Affinity in Female and Estrogen-Treated Male Rats. Circ. Res. 1982, 50, 805–811. [Google Scholar] [CrossRef]
- Mashchak, C.A.; Lobo, R.A.; Dozono-Takano, R.; Eggena, P.; Nakamura, R.M.; Brenner, P.F.; Mishell, D.R., Jr. Comparison of Pharmacodynamic Properties of Various Estrogen Formulations. Am. J. Obstet. Gynecol. 1982, 144, 511–518. [Google Scholar] [CrossRef] [PubMed]
- Taggart, P.; Carruthers, M.; Joseph, S.; Kelly, H.B.; Marcomichelakis, J.; Noble, D.; O’Neill, G.; Somerville, W. Electrocardiographic Changes Resembling Myocardial Ischaemia in Asymptomatic Men with Normal Coronary Arteriograms. Br. Heart J. 1979, 41, 214–225. [Google Scholar] [CrossRef]
- Chow, R.; Fordyce, C.B.; Gao, M.; Chan, S.; Gin, K.; Bennett, M. The Significance of Early Post-Exercise ST Segment Normalization. J. Electrocardiol. 2015, 48, 803–808. [Google Scholar] [CrossRef] [PubMed]
- Sonaglioni, A.; Nicolosi, G.L.; Lombardo, M.; Anzà, C.; Ambrosio, G. False-Positive Electrocardiographic Changes during Exercise Test in a Patient with Pectus Excavatum. J. Clin. Ultrasound 2020, 48, 579–584. [Google Scholar] [CrossRef]
- Sonaglioni, A.; Nicolosi, G.L.; Lombardo, M. Exercise-Induced Pseudo-Ischaemic Electrocardiographic Changes in a Female with Concave-Shaped Chest Wall. Eur. Heart J. Case Rep. 2024, 8, ytae123. [Google Scholar] [CrossRef]
- Feigenbaum, H. Exercise Echocardiography. J. Am. Soc. Echocardiogr. 1988, 1, 161–166. [Google Scholar] [CrossRef] [PubMed]
- Roger, V.L.; Pellikka, P.A.; Bell, M.R.; Chow, C.W.; Bailey, K.R.; Seward, J.B. Sex and Test Verification Bias: Impact on the Diagnostic Value of Exercise Echocardiography. Circulation 1997, 95, 405–410. [Google Scholar] [CrossRef] [PubMed]
- Piérard, L.A.; Berthe, C.; Albert, A.; Carlier, J.; Kulbertus, H.E. Haemodynamic Alterations during Ischaemia Induced by Dobutamine Stress Testing. Eur. Heart J. 1989, 10, 783–790. [Google Scholar] [CrossRef]
- Fung, A.Y.; Gallagher, K.P.; Buda, A.J. The Physiologic Basis of Dobutamine as Compared with Dipyridamole Stress Interventions in the Assessment of Critical Coronary Stenosis. Circulation 1987, 76, 943–951. [Google Scholar] [CrossRef]
- McNeill, A.J.; Fioretti, P.M.; el-Said, S.M.; Salustri, A.; Forster, T.; Roelandt, J.R. Enhanced Sensitivity for Detection of Coronary Artery Disease by Addition of Atropine to Dobutamine Stress Echocardiography. Am. J. Cardiol. 1992, 70, 41–46. [Google Scholar] [CrossRef]
- Picano, E.; Pingitore, A.; Conti, U.; Kozàkovà, M.; Boem, A.; Cabani, E.; Ciuti, M.; Distante, A.; L’Abbate, A. Enhanced Sensitivity for Detection of Coronary Artery Disease by Addition of Atropine to Dipyridamole Echocardiography. Eur. Heart J. 1993, 14, 1216–1222. [Google Scholar] [CrossRef] [PubMed]
- Poldermans, D.; Fioretti, P.M.; Boersma, E.; Forster, T.; van Urk, H.; Cornel, J.H.; Arnese, M.; Roelandt, R.T. Safety of Dobutamine-Atropine Stress Echocardiography in Patients with Suspected or Proven Coronary Artery Disease. Am. J. Cardiol. 1994, 73, 456–459. [Google Scholar] [CrossRef] [PubMed]
- Picano, E.; Marini, C.; Pirelli, S.; Maffei, S.; Bolognese, L.; Chiriatti, G.; Chiarella, F.; Orlandini, A.; Seveso, G.; Colosso, M.Q.; et al. Safety of Intravenous High-Dose Dipyridamole Echocardiography. The Echo-Persantine International Cooperative Study Group. Am. J. Cardiol. 1992, 70, 252–258. [Google Scholar] [CrossRef]
- Lim, H.E.; Shim, W.J.; Rhee, H.; Kim, S.M.; Hwang, G.S.; Kim, Y.H.; Seo, H.S.; Oh, D.J.; Ro, Y.M. Assessment of Coronary Flow Reserve with Transthoracic Doppler Echocardiography: Comparison among Adenosine, Standard-Dose Dipyridamole, and High-Dose Dipyridamole. J. Am. Soc. Echocardiogr. 2000, 13, 264–270. [Google Scholar] [CrossRef]
- Previtali, M.; Lanzarini, L.; Ferrario, M.; Tortorici, M.; Mussini, A.; Montemartini, C. Dobutamine versus Dipyridamole Echocardiography in Coronary Artery Disease. Circulation 1991, 83 (Suppl. S5), III27–III31. [Google Scholar]
- Lattanzi, F.; Picano, E.; Bolognese, L.; Piccinino, C.; Sarasso, G.; Orlandini, A.; L’Abbate, A. Inhibition of Dipyridamole-Induced Ischemia by Antianginal Therapy in Humans: Correlation with Exercise Electrocardiography. Circulation 1991, 83, 1256–1262. [Google Scholar] [CrossRef]
- Rigo, F.; Pratali, L.; Pálinkás, A.; Picano, E.; Cutaia, V.; Venneri, L.; Raviele, A. Coronary Flow Reserve and Brachial Artery Reactivity in Patients with Chest Pain and “False Positive” Exercise-Induced ST-Segment Depression. Am. J. Cardiol. 2002, 89, 1141–1144. [Google Scholar] [CrossRef] [PubMed]
- Galderisi, M.; Capaldo, B.; Sidiropulos, M.; D’Errico, A.; Ferrara, L.; Turco, A.; Guarini, P.; Riccardi, G.; de Divitiis, O. Determinants of Reduction of Coronary Flow Reserve in Patients with Type 2 Diabetes Mellitus or Arterial Hypertension without Angiographically Determined Epicardial Coronary Stenosis. Am. J. Hypertens. 2007, 20, 1283–1290. [Google Scholar] [CrossRef] [PubMed]
- Rigo, F. Coronary Flow Reserve in Stress-Echo Lab: From Pathophysiologic Toy to Diagnostic Tool. Cardiovasc. Ultrasound 2005, 3, 8. [Google Scholar] [CrossRef]
- Nahser, P.J., Jr.; Brown, R.E.; Oskarsson, H.; Winniford, M.D.; Rossen, J.D. Maximal Coronary Flow Reserve and Metabolic Coronary Vasodilation in Patients with Diabetes Mellitus. Circulation 1995, 91, 635–640. [Google Scholar] [CrossRef]
- Schwartzkopff, B.; Motz, W.; Frenzel, H.; Vogt, M.; Knauer, S.; Strauer, B.E. Structural and Functional Alterations of the Intramyocardial Coronary Arterioles in Patients with Arterial Hypertension. Circulation 1993, 88, 993–1003. [Google Scholar] [CrossRef]
- Yokoyama, I.; Ohtake, T.; Momomura, S.; Nishikawa, J.; Sasaki, Y.; Omata, M. Reduced Coronary Flow Reserve in Hypercholesterolemic Patients without Overt Coronary Stenosis. Circulation 1996, 94, 3232–3238. [Google Scholar] [CrossRef] [PubMed]
- Fox, K.; Garcia, M.A.; Ardissino, D.; Buszman, P.; Camici, P.G.; Crea, F.; Daly, C.; De Backer, G.; Hjemdahl, P.; Lopez-Sendon, J.; et al. Guidelines on the Management of Stable Angina Pectoris: Executive Summary. Eur. Heart J. 2006, 27, 1341–1381. [Google Scholar] [CrossRef]
- Gould, K.L.; Westcott, R.J.; Albro, P.C.; Hamilton, G.W. Noninvasive Assessment of Coronary Stenoses by Myocardial Imaging during Pharmacologic Coronary Vasodilatation. II. Clinical Methodology and Feasibility. Am. J. Cardiol. 1978, 41, 279–287. [Google Scholar] [CrossRef]
- Goodgold, H.M.; Rehder, J.G.; Samuels, L.D.; Chaitman, B.R. Improved Interpretation of Exercise Tl-201 Myocardial Perfusion Scintigraphy in Women: Characterization of Breast Attenuation Artifacts. Radiology 1987, 165, 361–366. [Google Scholar] [CrossRef]
- Calnon, D.A.; Glover, D.K.; Beller, G.A.; Vanzetto, G.; Smith, W.H.; Watson, D.D.; Ruiz, M. Effects of Dobutamine Stress on Myocardial Blood Flow, 99mTc Sestamibi Uptake, and Systolic Wall Thickening in the Presence of Coronary Artery Stenoses: Implications for Dobutamine Stress Testing. Circulation 1997, 96, 2353–2360. [Google Scholar] [CrossRef] [PubMed]
- Forster, T.; McNeill, A.J.; Salustri, A.; Reijs, A.E.; el-Said, E.S.; Roelandt, J.R.; Fioretti, P.M. Simultaneous Dobutamine Stress Echocardiography and Technetium-99m Isonitrile Single-Photon Emission Computed Tomography in Patients with Suspected Coronary Artery Disease. J. Am. Coll. Cardiol. 1993, 21, 1591–1596. [Google Scholar] [CrossRef]
- Friedman, J.; Berman, D.S.; Van Train, K.; Garcia, E.V.; Bietendorf, J.; Prigent, F.; Rozanski, A.; Waxman, A.; Maddahi, J. Patient Motion in Thallium-201 Myocardial SPECT Imaging: An Easily Identified Frequent Source of Artifactual Defect. Clin. Nucl. Med. 1988, 13, 321–324. [Google Scholar] [CrossRef]
- O’Keefe, J.H., Jr.; Bateman, T.M.; Barnhart, C.S. Adenosine Thallium-201 Is Superior to Exercise Thallium-201 for Detecting Coronary Artery Disease in Patients with Left Bundle Branch Block. J. Am. Coll. Cardiol. 1993, 21, 1332–1338. [Google Scholar] [CrossRef]
- Raman, S.V.; Richards, D.R.; Jekic, M.; Dickerson, J.A.; Kander, N.H.; Foster, E.L.; Simonetti, O.P. Treadmill Stress Cardiac Magnetic Resonance Imaging: First In Vivo Demonstration of Exercise-Induced Apical Ballooning. J. Am. Coll. Cardiol. 2008, 52, 1884. [Google Scholar] [CrossRef]
- Thiele, H.; Nagel, E.; Paetsch, I.; Schnackenburg, B.; Bornstedt, A.; Kouwenhoven, M.; Wahl, A.; Schuler, G.; Fleck, E. Functional Cardiac MR Imaging with Steady-State Free Precession (SSFP) Significantly Improves Endocardial Border Delineation without Contrast Agents. J. Magn. Reson. Imaging 2001, 14, 362–367. [Google Scholar] [CrossRef]
- Charoenpanichkit, C.; Hundley, W.G. The 20 Year Evolution of Dobutamine Stress Cardiovascular Magnetic Resonance. J. Cardiovasc. Magn. Reson. 2010, 12, 59. [Google Scholar] [CrossRef]
- Rasmussen, L.D.; Schmidt, S.E.; Knuuti, J.; Newby, D.E.; Singh, T.; Nieman, K.; Galema, T.W.; Vrints, C.; Bøttcher, M.; Winther, S. Exercise Electrocardiography for Pre-Test Assessment of the Likelihood of Coronary Artery Disease. Heart 2024, 110, 263–270. [Google Scholar] [CrossRef] [PubMed]
- Cole, J.P.; Ellestad, M.H. Significance of Chest Pain during Treadmill Exercise: Correlation with Coronary Events. Am. J. Cardiol. 1978, 41, 227–232. [Google Scholar] [CrossRef]
- Lindow, T.; Ekström, M.; Brudin, L.; Carlén, A.; Elmberg, V.; Hedman, K. Typical Angina during Exercise Stress Testing Improves the Prediction of Future Acute Coronary Syndrome. Clin. Physiol. Funct. Imaging 2021, 41, 281–291. [Google Scholar] [CrossRef] [PubMed]
- Knuuti, J.; Ballo, H.; Juarez-Orozco, L.E.; Saraste, A.; Kolh, P.; Rutjes, A.W.S.; Jüni, P.; Windecker, S.; Bax, J.J.; Wijns, W. The Performance of Non-Invasive Tests to Rule-In and Rule-Out Significant Coronary Artery Stenosis in Patients with Stable Angina: A Meta-Analysis Focused on Post-Test Disease Probability. Eur. Heart J. 2018, 39, 3322–3330. [Google Scholar] [CrossRef] [PubMed]
- Singh, T.; Bing, R.; Dweck, M.R.; van Beek, E.J.R.; Mills, N.L.; Williams, M.C.; Villines, T.C.; Newby, D.E.; Adamson, P.D. Exercise Electrocardiography and Computed Tomography Coronary Angiography for Patients with Suspected Stable Angina Pectoris: A Post Hoc Analysis of the Randomized SCOT-HEART Trial. JAMA Cardiol. 2020, 5, 920–928. [Google Scholar] [CrossRef] [PubMed]
- Picano, E.; Mathias, W., Jr.; Pingitore, A.; Bigi, R.; Previtali, M. Safety and Tolerability of Dobutamine-Atropine Stress Echocardiography: A Prospective, Multicentre Study. Lancet 1994, 344, 1190–1192. [Google Scholar] [CrossRef]
- Pellikka, P.A.; Arruda-Olson, A.; Chaudhry, F.A.; Chen, M.H.; Marshall, J.E.; Porter, T.R.; Sawada, S.G. Guidelines for Performance, Interpretation, and Application of Stress Echocardiography in Ischemic Heart Disease: From the American Society of Echocardiography. J. Am. Soc. Echocardiogr. 2020, 33, 1–41.e8. [Google Scholar] [CrossRef]
- Kunadian, V.; Chieffo, A.; Camici, P.G.; Berry, C.; Escaned, J.; Maas, A.H.E.M.; Prescott, E.; Karam, N.; Appelman, Y.; Fraccaro, C.; et al. An EAPCI Expert Consensus Document on Ischaemia with Non-Obstructive Coronary Arteries in Collaboration with European Society of Cardiology Working Group on Coronary Pathophysiology & Microcirculation Endorsed by Coronary Vasomotor Disorders International Study Group. Eur. Heart J. 2020, 41, 3504–3520. [Google Scholar] [CrossRef]
- Ciampi, Q.; Zagatina, A.; Cortigiani, L.; Gaibazzi, N.; Borguezan Daros, C.; Zhuravskaya, N.; Wierzbowska-Drabik, K.; Kasprzak, J.D.; de Castro E Silva Pretto, J.L.; D’Andrea, A.; et al. Functional, Anatomical, and Prognostic Correlates of Coronary Flow Velocity Reserve During Stress Echocardiography. J. Am. Coll. Cardiol. 2019, 74, 2278–2291. [Google Scholar] [CrossRef]
- Cantoni, V.; Green, R.; Acampa, W.; Zampella, E.; Assante, R.; Nappi, C.; Gaudieri, V.; Mannarino, T.; Cuocolo, R.; Di Vaia, E.; et al. Diagnostic Performance of Myocardial Perfusion Imaging with Conventional and CZT SPECT in Detecting Coronary Artery Disease: A Meta-Analysis. J. Nucl. Cardiol. 2021, 28, 698–715. [Google Scholar] [CrossRef]
- Yang, Z.; Zheng, H.; Zhou, T.; Yang, L.F.; Hu, X.F.; Peng, Z.H.; Jiang, Y.Z.; Li, M.; Sun, G. Diagnostic Performance of Myocardial Perfusion Imaging with SPECT, CT and MR Compared to Fractional Flow Reserve as Reference Standard. Int. J. Cardiol. 2015, 190, 103–105. [Google Scholar] [CrossRef]
- Takx, R.A.; Blomberg, B.A.; El Aidi, H.; Habets, J.; de Jong, P.A.; Nagel, E.; Hoffmann, U.; Leiner, T. Diagnostic Accuracy of Stress Myocardial Perfusion Imaging Compared to Invasive Coronary Angiography with Fractional Flow Reserve: Meta-Analysis. Circ. Cardiovasc. Imaging 2015, 8, e002666. [Google Scholar] [CrossRef]
- Mowatt, G.; Brazzelli, M.; Gemmell, H.; Hillis, G.S.; Metcalfe, M.; Vale, L.; Aberdeen Technology Assessment Review Group. Systematic Review of the Prognostic Effectiveness of SPECT Myocardial Perfusion Scintigraphy in Patients with Suspected or Known Coronary Artery Disease and Following Myocardial Infarction. Nucl. Med. Commun. 2005, 26, 217–229. [Google Scholar] [CrossRef] [PubMed]
- Greenwood, J.P.; Ripley, D.P.; Berry, C.; McCann, G.P.; Plein, S.; Bucciarelli-Ducci, C.; Dall’Armellina, E.; Prasad, A.; Bijsterveld, P.; Foley, J.R.; et al. Effect of Care Guided by Cardiovascular Magnetic Resonance, Myocardial Perfusion Scintigraphy, or NICE Guidelines on Subsequent Unnecessary Angiography Rates: The CE-MARC 2 Randomized Clinical Trial. JAMA 2016, 316, 1051–1060. [Google Scholar] [CrossRef]
- Dai, N.; Zhang, X.; Zhang, Y.; Hou, L.; Li, W.; Fan, B.; Zhang, T.; Xu, Y. Enhanced Diagnostic Utility Achieved by Myocardial Blood Analysis: A Meta-Analysis of Noninvasive Cardiac Imaging in the Detection of Functional Coronary Artery Disease. Int. J. Cardiol. 2016, 221, 665–673. [Google Scholar] [CrossRef]
- Ripley, D.P.; Motwani, M.; Brown, J.M.; Nixon, J.; Everett, C.C.; Bijsterveld, P.; Maredia, N.; Plein, S.; Greenwood, J.P. Individual Component Analysis of the Multi-Parametric Cardiovascular Magnetic Resonance Protocol in the CE-MARC Trial. J. Cardiovasc. Magn. Reson. 2015, 17, 59. [Google Scholar] [CrossRef]
- Gargiulo, P.; Dellegrottaglie, S.; Bruzzese, D.; Savarese, G.; Scala, O.; Ruggiero, D.; D’Amore, C.; Paolillo, S.; Agostoni, P.; Bossone, E.; et al. The Prognostic Value of Normal Stress Cardiac Magnetic Resonance in Patients with Known or Suspected Coronary Artery Disease: A Meta-Analysis. Circ. Cardiovasc. Imaging 2013, 6, 574–582. [Google Scholar] [CrossRef]
- Iwata, K.; Nakagawa, S.; Ogasawara, K. The Prognostic Value of Normal Stress Cardiovascular Magnetic Resonance Imaging. J. Comput. Assist. Tomogr. 2014, 38, 36–43. [Google Scholar] [CrossRef] [PubMed]
- Ricci, F.; Khanji, M.Y.; Bisaccia, G.; Cipriani, A.; Di Cesare, A.; Ceriello, L.; Mantini, C.; Zimarino, M.; Fedorowski, A.; Gallina, S.; et al. Diagnostic and Prognostic Value of Stress Cardiovascular Magnetic Resonance Imaging in Patients with Known or Suspected Coronary Artery Disease: A Systematic Review and Meta-Analysis. JAMA Cardiol. 2023, 8, 662–673. [Google Scholar] [CrossRef] [PubMed]
- Nagel, E.; Greenwood, J.P.; McCann, G.P.; Bettencourt, N.; Shah, A.M.; Hussain, S.T.; Perera, D.; Plein, S.; Bucciarelli-Ducci, C.; Paul, M.; et al. Magnetic Resonance Perfusion or Fractional Flow Reserve in Coronary Disease. N. Engl. J. Med. 2019, 380, 2418–2428. [Google Scholar] [CrossRef]
- Feger, S.; Rief, M.; Zimmermann, E.; Richter, F.; Roehle, R.; Dewey, M.; Schönenberger, E. Patient Satisfaction with Coronary CT Angiography, Myocardial CT Perfusion, Myocardial Perfusion MRI, SPECT Myocardial Perfusion Imaging and Conventional Coronary Angiography. Eur. Radiol. 2015, 25, 2115–2124. [Google Scholar] [CrossRef] [PubMed]
- Reeh, J.; Therming, C.B.; Heitmann, M.; Højberg, S.; Sørum, C.; Bech, J.; Husum, D.; Dominguez, H.; Sehestedt, T.; Hermann, T.; et al. Prediction of Obstructive Coronary Artery Disease and Prognosis in Patients with Suspected Stable Angina. Eur. Heart J. 2019, 40, 1426–1435. [Google Scholar] [CrossRef]
- Winther, S.; Schmidt, S.E.; Mayrhofer, T.; Bøtker, H.E.; Hoffmann, U.; Douglas, P.S.; Wijns, W.; Bax, J.; Nissen, L.; Lynggaard, V.; et al. Incorporating Coronary Calcification into Pre-Test Assessment of the Likelihood of Coronary Artery Disease. J. Am. Coll. Cardiol. 2020, 76, 2421–2432. [Google Scholar] [CrossRef]
- Boerhout, C.K.M.; Feenstra, R.G.T.; Somsen, G.A.; Appelman, Y.; Ong, P.; Beijk, M.A.M.; Hofstra, L.; van de Hoef, T.P.; Piek, J.J. Coronary Computed Tomographic Angiography as Gatekeeper for New-Onset Stable Angina. Neth. Heart J. 2021, 29, 551–556. [Google Scholar] [CrossRef] [PubMed]
- Sonaglioni, A.; Baravelli, M.; Vincenti, A.; Trevisan, R.; Zompatori, M.; Nicolosi, G.L.; Lombardo, M.; Anzà, C. A new modified anthropometric Haller index obtained without radiological exposure. Int. J. Cardiovasc. Imaging 2018, 34, 1505–1509. [Google Scholar] [CrossRef] [PubMed]
- Archer, J.E.; Gardner, A.; Berryman, F.; Pynsent, P. The measurement of the normal thorax using the Haller index methodology at multiple vertebral levels. J. Anat. 2016, 229, 577–581. [Google Scholar] [CrossRef]
- Sonaglioni, A.; Nicolosi, G.L.; Rigamonti, E.; Lombardo, M.; Gensini, G.F.; Ambrosio, G. Does chest shape influence exercise stress echocardiographic results in patients with suspected coronary artery disease? Intern. Emerg. Med. 2022, 17, 101–112. [Google Scholar] [CrossRef]
- Sonaglioni, A.; Rigamonti, E.; Nicolosi, G.L.; Lombardo, M. Prognostic value of modified Haller index in patients with suspected coronary artery disease referred for exercise stress echocardiography. J. Cardiovasc. Echogr. 2021, 31, 85–95. [Google Scholar] [CrossRef]
- Sonaglioni, A.; Rigamonti, E.; Nicolosi, G.L.; Lombardo, M. Appropriate use criteria implementation with modified Haller index for predicting stress echocardiographic results and outcome in a population of patients with suspected coronary artery disease. Int. J. Cardiovasc. Imaging 2021, 37, 2917–2930. [Google Scholar] [CrossRef]
- Sonaglioni, A.; Nicolosi, G.L.; Lombardo, M. The relationship between mitral valve prolapse and thoracic skeletal abnormalities in clinical practice: A systematic review. J. Cardiovasc. Med. 2024, 25, 353–363. [Google Scholar] [CrossRef]
- Sonaglioni, A.; Nicolosi, G.L.; Bruno, A.; Lombardo, M.; Muti, P. Echocardiographic assessment of mitral valve prolapse prevalence before and after the year 1999: A systematic review. J. Clin. Med. 2024, 13, 6160. [Google Scholar] [CrossRef]
- Sonaglioni, A.; Grasso, E.; Nicolosi, G.L.; Lombardo, M. Modified Haller index is inversely associated with asymptomatic status in atrial fibrillation patients undergoing electrical cardioversion: A preliminary observation. Minerva Cardiol. Angiol. 2024, 72, 190–203. [Google Scholar] [CrossRef] [PubMed]
- Lu, L.; Phua, Q.S.; Bacchi, S.; Goh, R.; Gupta, A.K.; Kovoor, J.G.; Ovenden, C.D.; To, M.S. Small study effects in diagnostic imaging accuracy: A meta-analysis. JAMA Netw. Open 2022, 5, e2228776. [Google Scholar] [CrossRef]
- Sinha, A.; Dutta, U.; Demir, O.M.; De Silva, K.; Ellis, H.; Belford, S.; Ogden, M.; Li Kam Wa, M.; Morgan, H.P.; Shah, A.M.; et al. Rethinking False Positive Exercise Electrocardiographic Stress Tests by Assessing Coronary Microvascular Function. J. Am. Coll. Cardiol. 2024, 83, 291–299. [Google Scholar] [CrossRef] [PubMed]
Author, Publication Year, Country | Study Design | Size (%fem) | Av. Age (y) | CAD History | Cut-Off for CAD | Stress Protocols (Ischemic Stressors Doses) | Sen (%) | Spe (%) | Acc (%) |
---|---|---|---|---|---|---|---|---|---|
EST studies | |||||||||
Salustri A., 1992, The Netherlands [26] | P., monoc. | 52 (26.9) | 58 | Suspected | ≥50% | Upright bicycle exercise test (stepwise increments of 20 Watts every minute) | 46 | 67 | 56.5 |
van Rugge F.P., 1993, The Netherlands [27] | P., monoc. | 45 (20) | 61 | Suspected | ≥50% | Standard Bruce protocol (stepwise increments of 25 Watts every 2 min) | 70 | 63 | 69 |
Panza J.A., 1994, USA [28] | R, monoc. | 76 (18.4) | 60 | Known or suspected | ≥70% | Standard Bruce protocol (stepwise increments of 25 Watts every 2 min) | 55 | 77 | 68 |
San Román J.A., 1996, Spain [29] | P., monoc. | 102 (44.1) | 62 | Suspected | ≥50% | Standard Bruce protocol (stepwise increments of 25 Watts every 2 min) | 68 | 79 | 73.5 |
Kisacik H.L., 1996, Turkey [30] | P., monoc. | 69 (15.9) | 51 | Known or suspected | ≥50% | Standard Bruce protocol (stepwise increments of 25 Watts every 2 min) | 60 | 64 | 61 |
Laurienzo J.M., 1997, USA [31] | P., monoc. | 84 (100) | 51 | Known or suspected | ≥70% | Standard Bruce protocol (stepwise increments of 25 Watts every 2 min) | 76 | 68 | 70 |
Morise A.P., 1997, USA [32] | R, monoc. | 781 (49) | 54 | Suspected | ≥50% | NS | 23 | 77 | 50 |
Hennessy T.G., 1997, Ireland [33] | P., monoc. | 116 (29.3) | 59 | Suspected | ≥50% | Standard Bruce protocol (stepwise increments of 25 Watts every 2 min) | 40 | 79 | 59.5 |
Ho Y.L., 1998, China [34] | P., monoc. | 51 (100) | 62 | Known or suspected | ≥50% | Standard Bruce protocol (stepwise increments of 25 Watts every 2 min) | 71 | 44 | 57 |
Kalaria V.G., 1998, USA [35] | P., multic. | 882 (23) | 57 | Known | ≥50% | Sheffield modification of Bruce protocol (3-minute “stage 1/2” before the Bruce stage I) | 54 | 57 | 56 |
Santoro G.M., 1998, Italy [36] | P., monoc. | 60 (NS) | NS | Suspected | ≥70% | Upright bicycle exercise test (stepwise increments of 30 Watts every 3 min) | 58 | 67 | 62 |
San Román J.A., 1998, Spain [37] | P., monoc. | 102 (51) | 64 | Suspected | ≥50% | Standard Bruce protocol (stepwise increments of 25 Watts every 2 min) | 66 | 80 | 70 |
Gentile R., 2001, Italy [38] | R, monoc. | 132 (31.8) | 70.3 | Suspected | ≥60% | Standard Bruce protocol (stepwise increments of 25 Watts every 2 min) | 85.1 | 58.3 | 80.3 |
Bokhari S., 2002, USA [39] | R, monoc. | 140 (100) | 63 | Suspected | ≥50% | Standard Bruce protocol (stepwise increments of 25 Watts every 2 min) | 56 | 46 | 51 |
Rollán M.J., 2002, Spain [40] | P., monoc. | 99 (100) | 65 | Suspected | ≥50% | Standard Bruce protocol (stepwise increments of 25 Watts every 2 min) | 76 | 53 | 66 |
Cortigiani L., 2003, Italy [41] | P., multic. | 71 (21.1) | 63 | Suspected | ≥50% | Standard Bruce protocol (stepwise increments of 25 Watts every 2 min) | 82 | 50 | 66 |
Zeng H., 2004, China [42] | P., monoc. | 258 (24.8) | 59.7 | Suspected | ≥50% | Standard Bruce protocol (stepwise increments of 25 Watts every 2 min) | 77.3 | 65.9 | 69.8 |
González P., 2005, Chile [43] | P., monoc. | 145 (33) | 60 | Known | ≥50% | Standard Bruce protocol (stepwise increments of 25 Watts every 2 min) | 37 | 74 | 43 |
Nedeljkovic I., 2006, Serbia [44] | P., monoc. | 117 (22.2) | 54 | Suspected | ≥50% | Standard Bruce protocol (stepwise increments of 25 Watts every 2 min) | 90 | 87 | 90 |
Michaelides A.P., 2007, Greece [45] | P., monoc. | 114 (100) | 59 | Suspected | ≥70% | Standard Bruce protocol (stepwise increments of 25 Watts every 2 min) | 59 | 40 | 50 |
Bokhari S., 2008, USA [46] | R, monoc. | 218 (31) | 62 | Suspected | ≥50% | Standard Bruce protocol (stepwise increments of 25 Watts every 2 min) | 36 | 74 | 55 |
Lu C., 2010, Italy [47] | P., monoc. | 76 (100) | 61 | Suspected | ≥50% | Modified Bruce protocol (stages “0” and “1/2” performed at 2.7 km/h and 0% and 5% treadmill inclination) | 81 | 56 | 66 |
Greulich S., 2012, Germany [48] | P., monoc. | 68 (100) | 66.4 | Suspected | ≥70% | Standard Bruce protocol (stepwise increments of 25 Watts every 2 min) | 50 | 73 | 66 |
Weustink A.C., 2012, The Netherlands [49] | R, monoc. | 376 (32.4) | 60.4 | Suspected | ≥50% | NS | 76 | 47 | 61.5 |
Attar A., 2017, Iran [50] | R, multic. | 720 (56.5) | 53.1 | Known | ≥50% | NS | 98.3 | 11.9 | 62.7 |
Overall | 4954 (51.3) | 59.8 | 63.6 | 62.3 | 63.2 | ||||
ESE studies | |||||||||
Quiñones M.A., 1992, USA [51] | P., monoc. | 292 (33.2) | 57 | Known or suspected | ≥50% | Treadmill exercise (stepwise increments of 25 Watts every 2 min) | 85 | 88 | 86.5 |
Hecht H.S., 1993, USA [52] | P., monoc. | 71 (14) | 58 | Suspected | ≥50% | Supine ergometry on a tilting table (stepwise increments of 25 Watts every 2 min) | 90 | 80 | 85 |
Cohen J.L., 1993, USA [53] | P., monoc. | 52 (1.9) | 63 | Suspected | ≥70% | Supine ergometry on a tilting table (stepwise increments of 20 Watts every 3 min) | 78 | 87 | 82.5 |
Beleslin B.D., 1994, Serbia [54] | P., monoc. | 136 (14.7) | 50 | Known or suspected | ≥50% | Treadmill exercise (stepwise increments of 25 Watts every 2 min) | 88 | 82 | 85 |
Dagianti A., 1995, Italy [55] | P., monoc. | 100 (22) | 54 | Known or suspected | ≥50% | Supine ergometry on a tilting table (stepwise increments of 20 Watts every 3 min) | 76 | 94 | 85 |
Bjørnstad K., 1995, Norway [56] | P., monoc. | 37 (18.9) | 58 | Known or suspected | ≥50% | Upright bicycle stress test (stepwise increments of 25 Watts every 2 min) | 84 | 67 | 75.5 |
Badruddin S.M., 1999, USA [57] | P., monoc. | 74 (8.1) | 59 | Known or suspected | ≥50% | Supine ergometry on a tilting table (stepwise increments of 25 Watts every 3 min) | 82 | 80 | 81 |
Ha J.W., 2002, USA [58] | R, monoc. | 548 (31.4) | 65 | Suspected | ≥50% | Treadmill exercise (stepwise increments of 25 Watts every 2 min) | 82 | 78 | 80 |
Shin J.H., 2003, USA [59] | R, monoc. | 464 (35) | 61 | Suspected | ≥50% | Treadmill exercise (stepwise increments of 25 Watts every 2 min) | 86 | 87 | 86.5 |
Müller H., 2008, Switzerland [60] | P., monoc. | 104 (10.6) | 61 | Known or suspected | ≥50% | Supine ergometry on a tilting table (stepwise increments of 20–40 Watts every 2 min) | 82 | 94 | 88 |
Overall | 1878 (19.0) | 58.6 | 83.3 | 83.3 | 83.3 | ||||
Dobutamine echo studies | |||||||||
Martin T.W., 1992, USA [61] | P., monoc. | 40 (5) | 50 | Known or suspected | ≥50% | Dobutamine IV infusion (3 min dose increments from 10 to 40 mcg/kg/min) | 76 | 60 | 70 |
Salustri A., 1992, The Netherlands [26] | P., monoc. | 52 (26.9) | 58 | Known or suspected | ≥50% | Dobutamine IV infusion (3 min dose increments from 10 to 40 mcg/kg/min) | 62 | 89 | 75.5 |
Marwick T., 1993, Belgium [62] | P., monoc. | 217 (28.1) | 58 | Suspected | ≥50% | Dobutamine IV infusion (3 min dose increments from 5 to 40 mcg/kg/min) | 72 | 83 | 76 |
Takeuchi M., 1993, Japan [63] | P., monoc. | 120 (25.8) | 63 | Known or suspected | ≥50% | Dobutamine IV infusion (5 min dose increments from 5 to 30 mcg/kg/min) | 85 | 93 | 88 |
Cohen J.L., 1993, USA [53] | P., monoc. | 52 (1.9) | 63 | Suspected | ≥70% | Dobutamine IV infusion (3 min dose increments from 2.5 to 40 mcg/kg/min) | 86 | 87 | 87 |
Beleslin B.D., 1994, Serbia [54] | P., monoc. | 136 (14.7) | 50 | Known or suspected | ≥50% | Dobutamine IV infusion (3 min dose increments from 5 to 40 mcg/kg/min) | 82 | 77 | 82 |
Panza J.A., 1994, USA [28] | P., monoc. | 76 (18.4) | 60 | Known or suspected | ≥70% | Dobutamine IV infusion (5 min dose increments from 2.5 to 40 mcg/kg/min) | 89 | 100 | 91 |
Dagianti A., 1995, Italy [55] | P., monoc. | 100 (22) | 54 | Known or suspected | ≥70% | Dobutamine IV infusion (5 min dose increments from 5 to 40 mcg/kg/min) | 72 | 97 | 87 |
Ho F.M., 1995, Taiwan [64] | P., monoc. | 54 (14.8) | 58 | Known or suspected | ≥50% | Dobutamine IV infusion (3 min dose increments from 5 to 40 mcg/kg/min) | 93 | 73 | 89 |
San Román J.A., 1996, Spain [29] | P., monoc. | 102 (44.1) | 62 | Suspected | ≥50% | Dobutamine IV infusion (3 min dose increments from 10 to 40 mcg/kg/min plus atropine 0.25–1 mg) | 77 | 95 | 95 |
Pingitore A., 1996, Italy [65] | P., monoc. | 360 (16.6) | 60 | Known or suspected | ≥50% | Dobutamine IV infusion (3 min dose increments from 5 to 40 mcg/kg/min plus atropine 0.25–1 mg) | 84 | 89 | 89 |
Kisacik H.L.,1996, Turkey [30] | P., monoc. | 69 (15.9) | 51 | Known or suspected | ≥50% | Dobutamine IV infusion (3 min dose increments from 5 to 40 mcg/kg/min plus atropine 0.25–1 mg) | 94 | 86 | 91 |
Hennessy T.G., 1997, Ireland [33] | P., monoc. | 116 (29.3) | 59 | Suspected | ≥50% | Dobutamine IV infusion (3 min dose increments from 10 to 40 mcg/kg/min plus atropine 0.25–1 mg) | 82 | 63 | 72.5 |
Santoro G.M., 1998, Italy [36] | P., monoc. | 60 (NS) | NS | Suspected | ≥70% | Dobutamine IV infusion (3 min dose increments from 10 to 40 mcg/kg/min plus atropine 0.25–1 mg) | 61 | 96 | 77 |
San Román J.A., 1998, Spain [37] | P., monoc. | 102 (51) | 64 | Suspected | ≥50% | Dobutamine IV infusion (3 min dose increments from 10 to 40 mcg/kg/min plus atropine 0.25–1 mg) | 78 | 88 | 82 |
Elhendy A., 1998, The Netherlands [66] | P., monoc. | 84 (36.9) | 60 | Known or suspected | ≥50% | Dobutamine IV infusion (3 min dose increments from 5 to 40 mcg/kg/min plus atropine 0.25–1 mg) | 73 | 83 | 75 |
Fragasso G., 1999, Italy [67] | P., monoc. | 101 (45.5) | 61 | Suspected | ≥50% | Dobutamine IV infusion (3 min dose increments from 5 to 40 mcg/kg/min) | 88 | 80 | 84 |
Previtali M., 1999, Italy [68] | P., monoc. | 43 (2.3) | 53 | Known | ≥50% | Dobutamine IV infusion (3 min dose increments from 5 to 40 mcg/kg/min plus atropine 0.25–1 mg) | 79 | 60 | 77 |
Ciaroni S., 2000, Switzerland [69] | P., monoc. | 29 (31) | 71 | Suspected | ≥50% | Dobutamine IV infusion (3 min dose increments from 5 to 40 mcg/kg/min plus atropine 0.25–1 mg) | 88 | 92 | 90 |
Smart S.C., 2000, USA [70] | P., multic. | 183 (27.3) | 60 | Known or suspected | ≥50% | Dobutamine IV infusion (5 min dose increments from 10 to 40 mcg/kg/min plus atropine 0.25–1 mg) | 87 | 91 | 89 |
Geleijnse M.L., 2000, The Netherlands [71] | P., monoc. | 64 (62.5) | 59 | Suspected | ≥50% | Dobutamine IV infusion (3 min dose increments from 10 to 40 mcg/kg/min plus atropine 0.25–1 mg) | 68 | 91 | 84 |
Elhendy A., 2000, The Netherlands [72] | P., monoc. | 91 (49.4) | 57 | Known | ≥50% | Dobutamine IV infusion (3 min dose increments from 5 to 40 mcg/kg/min plus atropine 0.25–1 mg) | 56 | 84 | 67 |
Tandoğan I., 2001, Turkey [73] | P., monoc. | 26 (30.8) | 57 | Suspected | ≥50% | Dobutamine IV infusion (3 min dose increments from 5 to 40 mcg/kg/min plus atropine 0.25–1 mg) | 91 | 92 | 92 |
Lancellotti P., 2001, Belgium [74] | P., monoc. | 75 (18.7) | 56 | Known | ≥50% | Dobutamine IV infusion (3 min dose increments from 5 to 40 mcg/kg/min plus atropine 0.25–1 mg) | 78 | 83 | 79 |
Nedeljkovic I., 2006, Serbia [44] | P., monoc. | 117 (22.2) | 54 | Suspected | ≥50% | Dobutamine IV infusion (3 min dose increments from 5 to 40 mcg/kg/min plus atropine 0.25–1 mg) | 96 | 92 | 94 |
Overall | 2469 (26.9) | 58.4 | 79.2 | 84.7 | 82.9 | ||||
Dipyridamole echo studies | |||||||||
Martin T.W., 1992, USA [61] | P., monoc. | 40 (5) | 50 | Known or suspected | ≥50% | Dipyridamole IV infusion (2-step: 0.56–0.84 mg/kg over 10 min) | 56 | 67 | 61.5 |
Beleslin B.D., 1994, Serbia [54] | P., monoc. | 136 (14.7) | 50 | Known or suspected | ≥50% | Dipyridamole IV infusion (2-step: 0.56–0.84 mg/kg over 10 min) | 74 | 94 | 84 |
Dagianti A., 1995, Italy [55] | P., monoc. | 100 (22) | 54 | Known or suspected | ≥50% | Dipyridamole IV infusion (2-step: 0.56–0.84 mg/kg over 10 min) | 52 | 97 | 74.5 |
Bjørnstad K., 1995, Norway [56] | P., monoc. | 37 (18.9) | 58 | Known or suspected | ≥50% | Dipyridamole IV infusion (2-step: 0.56–0.84 mg/kg over 10 min) | 68 | 100 | 84 |
San Román J.A., 1996, Spain [29] | P., monoc. | 102 (44.1) | 6 | Suspected | ≥50% | Dipyridamole IV infusion (0.84 mg/kg over 6 min) | 77 | 97 | 87 |
Pingitore A., 1996, Italy [65] | P., monoc. | 360 (16.6) | 60 | Known or suspected | ≥50% | Dipyridamole IV infusion (2-step: 0.56–0.84 mg/kg over 10 min plus atropine 0.25–1 mg) | 82 | 94 | 88 |
Santoro G.M., 1998, Italy [36] | P., monoc. | 60 (NS) | NS | Suspected | ≥70% | Dipyridamole IV infusion (2-step: 0.56–0.84 mg/kg over 10 min) | 55 | 96 | 75.5 |
San Román J.A., 1998, Spain [37] | P., monoc. | 102 (51) | 64 | Suspected | ≥50% | Dipyridamole IV infusion (0.84 mg/kg over 6 min) | 81 | 90 | 85.5 |
Fragasso G., 1999, Italy [67] | P., monoc. | 101 (45.5) | 61 | Suspected | ≥50% | Dipyridamole IV infusion (2-step: 0.56–0.84 mg/kg over 6 min) | 61 | 91 | 76 |
Vigna C., 2001, Italy [75] | P., monoc. | 54 (48.1) | 59 | Suspected | ≥50% | Dipyridamole IV infusion (2-step: 0.56–0.84 mg/kg over 10 min) | 70.6 | 94.6 | 82.6 |
Cortigiani L., 2003, Italy [41] | P., multic. | 71 (21.1) | 63 | Suspected | ≥70% | Dipyridamole IV infusion (2-step: 0.56–0.84 mg/kg over 10 min plus atropine 0.25–1 mg) | 82 | 89 | 85.5 |
Vigna C., 2006, Italy [76] | P., monoc. | 27 (8) | 63 | Suspected | ≥70% | Dipyridamole IV infusion (2-step: 0.56–0.84 mg/kg over 10 min) | 42 | 93 | 67.5 |
Nedeljkovic I., 2006, Serbia [44] | P., monoc. | 117 (22.2) | 54 | Suspected | ≥50% | Dipyridamole IV infusion (2-step: 0.56–0.84 mg/kg over 10 min plus atropine 0.25–1 mg) | 93 | 92 | 92.5 |
Overall | 1307 (26.4) | 53.5 | 68.7 | 91.9 | 80.3 | ||||
Dual imaging echo studies | |||||||||
Rigo F., 2003, Italy [77] | P., monoc. | 230 (41.7) | 63.5 | Suspected | ≥50% | Dipyridamole IV infusion (2-step: 0.56–0.84 mg/kg over 10 min) Rest and peak stress CFR | 93 | 80.6 | 86.8 |
Lowenstein J., 2003, Argentina [78] | P., monoc. | 752 (36.4) | 64.7 | Suspected | ≥70% | Dipyridamole IV infusion (0.84 mg/kg over 4 min plus atropine 1 mg) Rest and peak stress CFR | 86.8 | 73.2 | 80 |
Nohtomi Y., 2003, Japan [79] | P., monoc. | 110 (28.2) | 65 | Known or suspected | ≥50% | Dipyridamole IV infusion (0.84 mg/kg over 6 min plus atropine 0.25–1 mg) Rest and peak stress CFR | 94 | 65 | 79.5 |
Ascione L., 2006, Italy [80] | P., monoc. | 159 (31) | 59 | Known | ≥70% | Dipyridamole IV infusion (0.84 mg/kg over 6 min) Rest and peak stress CFR | 85 | 87 | 86 |
Gaibazzi N., 2010, Italy [81] | P., multic. | 400 (34.2) | 66 | Known or suspected | ≥50% | Dipyridamole IV infusion (0.84 mg/kg over 6 min) Rest and peak stress CFR | 84 | 71 | 80 |
Cortigiani L., 2011, Italy* [82] | P., multic. | 1411 (39) | 66 | Known or suspected | ≥75% | Dipyridamole IV infusion (0.84 mg/kg over 6 min) Rest and peak stress CFR | 87 | 76 | 81.5 |
Cortigiani L., 2011, Italy** [82] | P., multic. | 678 (35) | 60 | Known or suspected | ≥75% | Dipyridamole IV infusion (0.84 mg/kg over 6 min) Rest and peak stress CFR | 89 | 80 | 84.5 |
Kasprzak J.D., 2013, Poland [83] | P., monoc. | 64 (31.2) | 58 | Known or suspected | ≥50% | Dipyridamole IV infusion (0.84 mg/kg over 4 min plus atropine 0.25–1 mg) Rest and peak stress CFR | 68 | 84 | 76 |
Pichel I.Á., 2019, Spain [84] | P., monoc. | 74 (28) | 60.3 | Known or suspected | ≥50% | Dipyridamole IV infusion (0.84 mg/kg over 6 min) Rest and peak stress CFR | 72.7 | 49.2 | 61 |
Overall | 3878 (33.9) | 62.5 | 84.4 | 74.0 | 79.5 | ||||
Exercise SPECT studies | |||||||||
Stewart R.E., 1991, USA [85] | P., monoc. | 81 (35.8) | 57 | Known or suspected | ≥50% | Tl–201 SPECT (standard Bruce protocol) | 84 | 53 | 79 |
Prisant L.M., 1992, USA [86] | P., monoc. | 92 (46) | 54.8 | Suspected | ≥50% | Tl–201 SPECT (standard Bruce protocol) | 94.4 | 63.5 | 69.6 |
Gupta N.C., 1992, USA [87] | P., multic. | 93 (17.2) | 57.9 | Suspected | ≥50% | Tl–201 SPECT (standard Bruce protocol) | 81.8 | 80 | 81.2 |
Quiñones M.A., 1992, USA [51] | P., monoc. | 292 (33.2) | 57 | Known or suspected | ≥50% | Tl–201 SPECT (standard Bruce protocol) | 85 | 81 | 83 |
Hecht H.S., 1993, USA [52] | P., monoc. | 71 (14) | 58 | Known or suspected | ≥50% | Tl–201 SPECT (standard Bruce protocol) | 92 | 65 | 85 |
Zammarchi A., 1994, Italy [88] | P., monoc. | 54 (37) | 60.8 | Suspected | ≥70% | Tl–201 SPECT (standard Bruce protocol) | 50 | 47 | 48 |
Fleming R.M., 1995, USA [89] | P., monoc. | 159 (38.9) | 62.9 | Suspected | ≥50% | Tl–201 SPECT (standard Bruce protocol) | 92.5 | 42.8 | 67.6 |
Fragasso G., 1999, Italy [67] | P., monoc. | 101 (45.5) | 61 | Suspected | ≥50% | Tc–99m sestamibi SPECT (standard Bruce protocol) | 98 | 36 | 71 |
Previtali M., 1999, Italy [68] | P., monoc. | 43 (2.3) | 53 | Known | ≥50% | Tl–201 SPECT (standard Bruce protocol) | 76 | 60 | 74 |
Ciaroni S., 2000, Switzerland [69] | P., monoc. | 29 (31) | 71 | Suspected | ≥50% | Tl–201 SPECT (standard Bruce protocol) | 94 | 31 | 62.5 |
Doğruca Z., 2000, Turkey [90] | P., monoc. | 38 (10.5) | 58.2 | Known or suspected | ≥50% | Tl–201 prone SPECT and Tc–99 m sestamibi SPECT (standard Bruce protocol) | 90 | 54 | 78 |
Tandoğan I., 2001, Turkey [73] | P., monoc. | 26 (30.8) | 57 | Suspected | ≥50% | Tl–201 SPECT (standard Bruce protocol) | 100 | 42 | 69 |
Gentile R., 2001, Italy [38] | R, monoc. | 132 (31.8) | 70.3 | Suspected | ≥60% | Tl–201 SPECT (standard Bruce protocol) | 93.5 | 54.1 | 86.3 |
González P., 2005, Chile [43] | P., monoc. | 145 (33) | 60 | Known or suspected | ≥50% | Tl–201 SPECT (standard Bruce protocol) | 87 | 57 | 81 |
Bokhari S., 2008, USA [46] | R, monoc. | 218 (31) | 62 | Suspected | ≥50% | Tl–201 SPECT (standard Bruce protocol) | 81 | 79 | 80 |
Weustink A.C., 2012, The Netherlands [49] | R, monoc. | 376 (32.4) | 60.4 | Suspected | ≥50% | Tc–99m sestamibi SPECT (standard Bruce protocol) | 89 | 77 | 83 |
Raman S.V., 2016, USA [91] | P., multic. | 94 (46) | 57.1 | Known or suspected | ≥70% | Tc–99m sestamibi SPECT (standard Bruce protocol) | 50 | 93.7 | 71.8 |
Ahmad I.G., 2016, USA [92] | P., monoc. | 85 (31) | 56.3 | Suspected | ≥50% | Tl–201 SPECT * and Tc–99m sestamibi SPECT ** (standard Bruce protocol) | 84 | 91 | 88 |
Overall | 2129 (30.4) | 59.7 | 84.6 | 61.5 | 75.4 | ||||
Dobutamine SPECT studies | |||||||||
Marwick T., 1993, Belgium [62] | P., monoc. | 217 (28.1) | 58 | Suspected | ≥50% | Tc–99m sestamibi SPECT (dobutamine IV infusion: 3 min dose increments from 5 to 40 mcg/kg/min) | 76 | 67 | 73 |
Fleming R.M., 1995, USA [89] | P., monoc. | 159 (38.9) | 62.9 | Suspected | ≥50% | Tl–201 SPECT, teboroxime SPECT, and Tc–99m sestamibi SPECT (dobutamine IV infusion: 3 min dose increments from 5 to 40 mcg/kg/min) | 100 | 100 | 100 |
Kisacik H.L.,1996, Turkey [30] | P., monoc. | 69 (15.9) | 51 | Known or suspected | ≥50% | Tc–99m sestamibi SPECT (dobutamine IV infusion: 3 min dose increments from 5 to 40 mcg/kg/min) | 96 | 64 | 84 |
Santoro G.M., 1998, Italy [36] | P., monoc. | 60 (NS) | NS | Suspected | ≥70% | Tc–99m sestamibi SPECT (dobutamine IV infusion: 3 min dose increments from 10 to 40 mcg/kg/min plus atropine 0.25–1 mg) | 91 | 81 | 87 |
San Román J.A., 1998, Spain [37] | P., monoc. | 102 (51) | 64 | Suspected | ≥50% | Tc–99m sestamibi SPECT (dobutamine IV infusion: (3 min dose increments from 10 to 40 mcg/kg/min plus atropine 0.25–1 mg) | 87 | 70 | 81 |
Elhendy A., 1998, The Netherlands [66] | P., monoc. | 84 (36.9) | 60 | Suspected | ≥50% | Tc–99m sestamibi SPECT (dobutamine IV infusion: 3 min dose increments from 5 to 40 mcg/kg/min plus atropine 0.25–1 mg) | 67 | 83 | 70 |
Elhendy A., 2000, The Netherlands [72] | P., monoc. | 91 (49.4) | 57 | Suspected | ≥50% | Tc–99m sestamibi SPECT (dobutamine IV infusion: 3 min dose increments from 5 to 40 mcg/kg/min plus atropine 0.25–1 mg) | 56 | 73 | 63 |
Lancellotti P., 2001, Belgium [74] | P., monoc. | 75 (18.7) | 56 | Known | ≥50% | Tc–99m sestamibi SPECT (dobutamine IV infusion: 3 min dose increments from 5 to 40 mcg/kg/min plus atropine 0.25–1 mg) | 70 | 83 | 71 |
Olszowska M., 2003, Poland [93] | P., monoc. | 44 (45.4) | 58.9 | Suspected | ≥60% | Tc–99m sestamibi SPECT (dobutamine IV infusion: 3 min dose increments from 5 to 40 mcg/kg/min) | 93 | 84 | 86 |
Overall | 901 (35.5) | 58.5 | 81.8 | 78.3 | 79.4 | ||||
Dipyridamole SPECT studies | |||||||||
Takeuchi M., 1993, Japan [63] | P., monoc. | 120 (25.8) | 63 | Known or suspected | ≥50% | Tl–201 SPECT (dipyridamole IV infusion: 0.56 mg/kg over 4 min) | 89 | 85 | 88 |
Ho F.M., 1995, Taiwan [64] | P., monoc. | 54 (14.8) | 58 | Known or suspected | ≥50% | Tl–201 SPECT (dipyridamole IV infusion: 0.56 mg/kg over 4 min) | 98 | 73 | 93 |
Fleming R.M., 1995, USA [89] | P., monoc. | 159 (38.9) | 62.9 | Suspected | ≥50% | Tl–201 SPECT, teboroxime SPECT, and Tc–99m sestamibi SPECT (dipyridamole IV infusion: 0.85 mg/kg over 4 min) | 100 | 88.9 | 94.4 |
Cramer M.J., 1996, The Netherlands [94] | P., monoc. | 39 (28.2) | 63 | Known or suspected | ≥50% | Tc–99m sestamibi SPECT (dipyridamole IV infusion: 0.84 mg/kg over 10 min) | 93 | 100 | 96.5 |
Santoro G.M., 1998, Italy [36] | P., monoc. | 60 (NS) | NS | Suspected | ≥70% | Tc–99m sestamibi SPECT (dipyridamole IV infusion: 0.84 mg/kg over 10 min) | 97 | 89 | 93 |
Smart S.C., 2000, USA [70] | P., multic. | 183 (27.3) | 60 | Known or suspected | ≥50% | Tc–99m sestamibi SPECT (dipyridamole IV infusion: 0.84 mg/kg over 4 min) | 80 | 73 | 76.5 |
Senior R., 2004, United Kingdom [95] | P., multic. | 55 (18) | 61 | Suspected | ≥50% | Tc–99m tetrofosmin SPECT (dipyridamole IV infusion: 0.84 mg/kg over 6 min) | 49 | 92 | 70.5 |
Jeetley P., 2006, United Kingdom [96] | P., multic. | 123 (29) | 62 | Known or suspected | ≥50% | Tc–99m sestamibi SPECT (dipyridamole IV infusion: 0.84 mg/kg over 6 min) | 82 | 52 | 67 |
Vigna C., 2006, Italy [76] | P., monoc. | 27 (8) | 63 | Suspected | ≥70% | Tc–99m sestamibi SPECT (dipyridamole IV infusion: 0.84 mg/kg over 10 min) | 67 | 53 | 60 |
Overall | 820 (23.8) | 61.6 | 83.9 | 78.4 | 82.1 | ||||
Adenosine SPECT studies | |||||||||
LaManna M.M., 1990, USA [97] | P., multic. | 15 (NS) | 58 | Known | ≥50% | Tl–201 SPECT (adenosine IV infusion: 140 mcg/kg/min over 6 min) | 77 | 100 | 88.5 |
Gupta N.C., 1992, USA [87] | P., multic. | 93 (17.2) | 57.9 | Suspected | ≥50% | Tl–201 SPECT (adenosine IV infusion: 140 mcg/kg/min over 6 min) | 83.3 | 86.6 | 84.3 |
Cramer M.J., 1996, The Netherlands [94] | P., monoc. | 39 (28.2) | 63 | Suspected | ≥50% | Tc–99m sestamibi SPECT (adenosine IV infusion: 140 mcg/kg/min over 6 min) | 90 | 100 | 95 |
Karavidas A.I., 2006, Greece [98] | P., monoc. | 47 (38.3) | 55 | Suspected | ≥50% | Tl–201 SPECT (adenosine IV infusion: 140 mcg/kg/min over 6 min) | 73 | 72 | 72 |
Aggeli C., 2007, Greece [99] | P., monoc. | 50 (32) | 67 | Suspected | ≥50% | Tl–201 SPECT (adenosine IV infusion: 140 mcg/kg/min over 6 min) | 80 | 94 | 85 |
Futamatsu H., 2008, USA [100] | P., monoc. | 24 (50) | 60 | Suspected | ≥50% | Tc–99m sestamibi SPECT (adenosine IV infusion: 140 mcg/kg/min over 6 min) | 67.4 | 81.3 | 74.3 |
Greenwood J.P., 2014, United Kingdom [101] | P., monoc. | 628 (37.4) | 60 | Suspected | ≥70% | Tc–99m tetrofosmin SPECT (adenosine IV infusion: 140 mcg/kg/min over 4 min) | 70.8 | 81.3 | 76 |
Overall | 896 (33.9) | 60.1 | 77.4 | 87.9 | 82.2 | ||||
Exercise CMR studies | |||||||||
Rerkpattanapipat P., 2003, USA [102] | P., monoc. | 27 (26) | 62 | Suspected | 70 | Cine CMR at 1.5 Tesla (treadmill exercise test: standard Bruce protocol) | 79 | 85 | 82 |
Raman S.V., 2016, USA [91] | P., multic. | 94 (46) | 57.1 | Known or suspected | 70 | Cine CMR at 1.5 Tesla (treadmill exercise test: standard Bruce protocol) | 78.6 | 98.7 | 88.6 |
Ochs A., 2025, Germany [103] | P., monoc. | 260 (25) | 64 | Known or suspected | 75 | Cine CMR at 1.5 or 3 Tesla (dynamic handgrip exercise) | 53 | 93 | 84 |
Overall | 381 (32.3) | 61 | 70.2 | 92.2 | 84.9 | ||||
Dobutamine CMR studies | |||||||||
van Rugge F.P., 1993, The Netherlands [27] | P., monoc. | 45 (20) | 61 | Suspected | 50 | Cine CMR at 1.5 Tesla (dobutamine IV infusion up to 20 mcg/kg/min) | 81 | 100 | 84 |
Nagel E., 1999, Germany [104] | P., monoc. | 208 (29.3) | 60 | Suspected | 50 | Cine CMR at 1.5 Tesla (dobutamine IV infusion up to 40 mcg/kg/min plus atropine 0.25–1 mg) | 86.2 | 85.7 | 85.9 |
al–Saadi N., 2002, Germany [105] | P., monoc. | 27 (25.9) | 56 | Known or suspected | 75 | Cine CMR at 1.5 Tesla (dobutamine IV infusion up to 20 mcg/kg/min) | 81 | 73 | 77 |
Paetsch I., 2004, Germany [106] | P., multic. | 79 (34.2) | 61 | Known or suspected | 50 | Cine CMR at 1.5 Tesla (dobutamine IV infusion up to 40 mcg/kg/min plus atropine up to 2 mg) | 89 | 80 | 86 |
Wahl A., 2004, Germany [107] | P., multic. | 160 (18) | 59 | Known or suspected | 50 | Cine CMR at 1.5 Tesla (dobutamine IV infusion up to 40 mcg/kg/min plus atropine up to 2 mg) | 89 | 84 | 88 |
Kelle S., 2008, Germany [108] | P., monoc. | 30 (20) | 66 | Known or suspected | 50 | Cine CMR at 1.5 or 3 Tesla (dobutamine IV infusion up to 40 mcg/kg/min plus atropine up to 2 mg) | 80 | 85.7 | 81.8 |
Heilmaier C., 2009, Germany [109] | P., monoc. | 50 (22) | 62 | Known or suspected | 50 | Cine CMR at 1.5 Tesla (dobutamine IV infusion up to 40 mcg/kg/min plus atropine up to 1 mg) | 86 | 90 | 89 |
Gebker R., 2010, Germany [110] | P., monoc. | 745 (27.4) | 63.5 | Known or suspected | 70 | Cine CMR at 1.5 Tesla (dobutamine IV infusion up to 40 mcg/kg/min plus atropine up to 2 mg) | 86 | 84 | 85 |
Mordi I., 2014, United Kingdom [111] | P., monoc. | 82 (35.4) | 56.5 | Suspected | 70 | Cine CMR at 1.5 Tesla (dobutamine IV infusion up to 40 mcg/kg/min plus atropine up to 2 mg) | 82.4 | 95.8 | 90.2 |
Weberling L.D., 2023, Germany [112] | P., monoc. | 176 (27.8) | 60.9 | Suspected | 70 | Cine CMR at 1.5 or 3 Tesla (dobutamine IV infusion up to 40 mcg/kg/min plus atropine up to 2 mg) | 71.4 | 98.4 | 85 |
Overall | 1602 (26.0) | 60.6 | 83.2 | 87.7 | 85.2 | ||||
Dipyridamole CMR studies | |||||||||
Baer F.M., 1993, Germany [113] | P., monoc. | 33 (3) | 58 | Known or suspected | 70 | Cine CMR at 1.5 Tesla (dipyridamole IV infusion: 0.75 mg/kg over 10 min) | 84 | 89 | 86.5 |
Hartnell G., 1994, USA [114] | P., monoc. | 18 (22.2) | 57 | Known or suspected | 70 | Cine CMR at 1 Tesla (dipyridamole IV infusion: 0.56 mg/kg over 4 min) | 83 | 100 | 91.5 |
Zhao S., 1997, France [115] | P., monoc. | 16 (14.3) | 60 | Known or suspected | 70 | Cine CMR at 1.5 Tesla (dipyridamole IV infusion: 0.56 mg/kg over 4 min) | 80 | 75 | 77.5 |
Takase B., 2004, Japan [116] | P., monoc. | 102 (21.6) | 66 | Known or suspected | 50 | Cine CMR at 1.5 Tesla (dipyridamole IV infusion: 0.56 mg/kg over 4 min) | 93 | 85 | 89 |
Stauder N.I., 2007, Switzerland [117] | P., monoc. | 45 (13.3) | 63.8 | Known or suspected | 50 | Cine CMR at 1.5 Tesla (dipyridamole IV infusion: 0.56 mg/kg over 4 min) | 95.2 | 96.8 | 96 |
Pingitore A., 2008, Italy [118] | P., monoc. | 93 (34.4) | 64 | Known or suspected | 50 | Cine CMR at 1.5 Tesla (dipyridamole IV infusion: 0.84 mg/kg over 6 min) | 82 | 96 | 86 |
Mordini F.E., 2014, USA [119] | P., monoc. | 67 (33) | 60 | Suspected | 70 | Cine CMR at 1.5 Tesla (dipyridamole IV infusion: 0.56 mg/kg over 4 min) | 87 | 93 | 90 |
Deva D.P., 2014, Canada [120] | R, monoc. | 19 (41) | 32.4 | Suspected | NS | Cine CMR at 1.5 or 3 Tesla (dipyridamole IV infusion: 0.56 mg/kg over 4 min) | 82 | 100 | 91 |
Yun C.H., 2015, Taiwan [121] | P., monoc | 58 (29.3) | 59 | Known or suspected | 70 | Cine CMR at 3 Tesla (dipyridamole IV infusion: 0.56 mg/kg over 4 min) | 77 | 80 | 78.5 |
Overall | 451 (23.6) | 57.8 | 84.8 | 90.5 | 87.3 | ||||
Adenosine CMR studies | |||||||||
Paetsch I., 2004, Germany [106] | P., multic. | 79 (34.2) | 61 | Known or suspected | 50 | Cine CMR at 1.5 Tesla (adenosine IV infusion: 140 mcg/kg/min for 6 min) | 40 | 96 | 68 |
Klem I., 2006, USA [122] | P., monoc. | 92 (51) | 58 | Suspected | 70 | Cine CMR at 1.5 Tesla (adenosine IV infusion: 140 mcg/kg/min for 2 min) | 84 | 58 | 71 |
Klein C., 2008, Germany [123] | P., monoc. | 54 (35.2) | 60 | Suspected | 50 | Cine CMR at 1.5 Tesla (adenosine IV infusion: 140 mcg/kg/min for 4 min) | 87 | 88 | 87.5 |
Futamatsu H., 2008, USA [100] | P., monoc. | 24 (50) | 60 | Suspected | 50 | Cine CMR at 1.5 Tesla (adenosine IV infusion: 140 mcg/kg/min for 4 min) | 74.4 | 79.4 | 76.9 |
Arnold J.R., 2010, United Kingdom [124] | P., monoc. | 65 (35) | 64 | Suspected | 50 | Cine CMR at 3 Tesla (adenosine IV infusion: 140 mcg/kg/min for 4 min) | 90 | 81 | 85.5 |
Bettencourt N., 2013, Portugal [125] | P., monoc. | 43 (35) | 61 | Suspected | 50 | Cine CMR at 1.5 Tesla (adenosine IV infusion: 140 mcg/kg/min for 4 min) | 79 | 95 | 87 |
Salerno M., 2014, USA [126] | P., monoc. | 41 (32) | 62 | Known or suspected | 50 | Cine CMR at 1.5 Tesla (adenosine IV infusion: 140 mcg/kg/min for 3 min) | 89 | 85 | 87 |
Greenwood J.P., 2014, United Kingdom [101] | P., monoc. | 628 (37.4) | 60 | Suspected | 70 | Cine CMR at 1.5 Tesla (adenosine IV infusion: 140 mcg/kg/min for 4 min) | 85.6 | 82.8 | 84.2 |
Manka R., 2015, Switzerland [127] | P., multic. | 150 (30) | 62.9 | Suspected | 50 | Cine CMR at 1.5 Tesla (adenosine IV infusion: 140 mcg/kg/min for 6 min) | 84.7 | 90.8 | 87.75 |
Ahmad I.G., 2016, USA [92] | P., monoc. | 85 (31) | 56.3 | Suspected | 50 | Cine CMR at 1.5 Tesla (adenosine IV infusion: 140 mcg/kg/min for 2 min) | 85 | 93 | 89 |
Ntsinjana H.N., 2017, United Kingdom [128] | P., monoc. | 58 (31) | 14.1 | Suspected | 50 | Cine CMR at 1.5 Tesla (adenosine IV infusion: 140 mcg/kg/min for 4 min) | 100 | 98 | 99 |
Foley J.R.J., 2017, United Kingdom [129] | P., monoc. | 27 (15) | 65 | Known or suspected | 70 | Cine CMR at 1.5 Tesla (adenosine IV infusion: 140 mcg/kg/min for 4 min) | 81 | 96 | 88.5 |
Overall | 1346 (34.7) | 57 | 81.6 | 86.9 | 84.3 |
Factors Reducing EST Sensitivity | Factors Reducing EST Specificity |
---|---|
Inadequate myocardial stress (e.g., submaximal exertion) | Hypertensive response to exercise, LVH |
Lower exercise capacity (e.g., commonly in females) | Female sex |
Medications reducing heart rate response (β-blockers, nitrates, and calcium channel blockers) | Estrogen replacement therapy |
Insufficient ECG lead monitoring | Severe aortic stenosis, severe aortic or mitral regurgitation, and mitral valve prolapse |
Caffeine intake before test | Cardiomyopathies |
Single-vessel disease | Anemia and hypokalemia |
Right coronary or circumflex artery disease | Baseline ECG abnormalities (e.g., LBBB, paced rhythm, and WPW), digitalis use |
Serial stenoses or extensive collateral circulation | Heightened myocardial sensitivity to catecholamines |
Posterior wall ischemia (not reflected on standard ECG leads) | Rapid ST segment recovery post-exercise |
Balanced underperfusion in multivessel disease | Chest wall deformities (e.g., concave-shaped chest) |
Technique | Main Advantages | Main Limitations |
---|---|---|
Exercise Stress Echocardiography | Physiological stress; high specificity; good vessel localization; superior detection in LAD and multivessel disease; inexpensive and widely available. | Operator-dependent; technically challenging during exercise; limited in hypertensive, elderly, or deconditioned patients; false positives in women and hypertensive response. |
Dobutamine Stress Echocardiography | High sensitivity in one- and multivessel disease; useful for patients unable to exercise; fewer artifacts; enhanced by atropine; suitable for perioperative risk assessment. | Lower specificity than DipSE; may induce arrhythmias; false positives in cardiomyopathy; reduced accuracy in mild disease; may require atropine with beta-blockers. |
Dipyridamole Stress Echocardiography | Very high specificity; well tolerated; suitable for patients unable to exercise; low arrhythmia risk; effective with atropine coadministration. | Lower sensitivity for single-vessel or mild disease; affected by antianginal therapy; may not provoke ischemia in moderate CAD; requires atropine to enhance sensitivity. |
Dual-imaging Stress Echocardiography (WM + CFR) | Improved sensitivity over wall motion alone; effective in LAD detection; helpful in early or microvascular disease; good risk stratification; no radiation. | Technically demanding; limited to LAD; requires expertise; cannot distinguish micro- vs. macrovascular disease; time-consuming. |
Stress Modality | Advantages | Limitations |
---|---|---|
Exercise Stress SPECT | • Physiological stress with prognostic value • Superior to EST in detecting CAD (especially in single-vessel disease) • Useful for assessing functional capacity • Early detection of perfusion defects | • Not feasible in 25–30% of patients • High false-positive rate in women (breast attenuation) and patients with LBBB • Attenuation artifacts in inferior wall • Requires ability to exercise |
Dobutamine Stress SPECT | • Suitable for patients unable to exercise • High sensitivity and specificity in LAD and single-vessel disease • Preferred in patients with LBBB or LVH • Comparable to stress echocardiography | • Risk of arrhythmias and BP fluctuations • Interference with MIBI uptake • Less sensitive for mild CAD • Operator dependent |
Dipyridamole Stress SPECT | • Effective vasodilator for non-exercise testing • High sensitivity in detecting CAD and multivessel disease • Better for identifying mild-to-moderate stenosis • Generally well tolerated; reversible side effects | • Lower specificity due to attenuation artifacts • Contraindicated in bronchospastic disease • Risk of motion-related false positives • Requires aminophylline for reversal of side effects |
Adenosine Stress SPECT | • Rapid onset and short half-life • Excellent concordance with exercise SPECT • Superior in patients with LBBB • Well tolerated with short infusion time | • Can cause chest pain, AV block, or bradycardia • Less accurate in single-vessel disease • Requires continuous ECG and BP monitoring • Reduced specificity in small hearts |
Stress CMR Method | Advantages | Limitations |
---|---|---|
Exercise Stress CMR | Physiological stress; no pharmacologic agents; detects epicardial and microvascular disease; superior to SPECT. | Requires fast post-exercise imaging; logistical challenges; motion artifacts; limited adoption. |
Dobutamine Stress CMR | High spatial/temporal resolution; superior to DSE; rapid onset/offset; good for multivessel CAD. | Contraindicated in arrhythmia; ECG changes hard to assess; MR-incompatibility issues; breath-holding needed; suboptimal temporal resolution at high heart rates. |
Dipyridamole Stress CMR | Effective for perfusion and wall motion; high diagnostic accuracy; safe in CKD; good for moderate stenoses. | Longer protocol; contraindicated in asthma; not widely available; lower specificity than DSCMR in severe CAD. |
Adenosine Stress CMR | Short test time; high spatial resolution; well tolerated; excellent accuracy; useful in pediatrics and women. | Requires IV access; contraindications include asthma; may produce artifacts; does not test exercise capacity. |
Test | Clinical Use | Recommendations (ESC 2024) [6] |
---|---|---|
EST | Low pre-test likelihood (5–15%) of CAD; assessment of symptoms, arrhythmias, and BP response. | May be used to reclassify patients to very low risk (≤5%) when negative. Recommended for functional capacity and symptom evaluation (Class I C). May be used when imaging is unavailable (Class IIb B). |
SE | Moderate to high pre-test likelihood (15–85%) of CAD; evaluation of myocardial ischemia, arrhythmias, and microvascular dysfunction. | Recommended to diagnose ischemia and estimate MACE risk (Class I B). Doppler CFR and myocardial contrast agents may be used to enhance diagnostic and prognostic value (Class IIb B and Class I B). |
Stress myocardial SPECT | Moderate to high pre-test likelihood (15–85%) of CAD; diagnosis and quantification of ischemia and/or scarring. | Recommended for diagnosis and risk assessment in moderate-to-high risk patients (Class I B). CACS should be measured when SPECT/PET is used (Class I B). Prefer PET when available |
Stress CMR | Moderate to high pre-test likelihood (15–85%) of CAD; comprehensive assessment of perfusion, function, and viability. | Recommended for diagnosis of ischemia and scarring, and risk stratification (Class I B). Use in cases needing additional information beyond perfusion. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sonaglioni, A.; Polymeropoulos, A.; Baravelli, M.; Nicolosi, G.L.; Lombardo, M.; Biondi-Zoccai, G. Diagnostic Accuracy of Exercise Stress Testing, Stress Echocardiography, Myocardial Scintigraphy, and Cardiac Magnetic Resonance for Obstructive Coronary Artery Disease: Systematic Reviews and Meta-Analyses of 104 Studies Published from 1990 to 2025. J. Clin. Med. 2025, 14, 6238. https://doi.org/10.3390/jcm14176238
Sonaglioni A, Polymeropoulos A, Baravelli M, Nicolosi GL, Lombardo M, Biondi-Zoccai G. Diagnostic Accuracy of Exercise Stress Testing, Stress Echocardiography, Myocardial Scintigraphy, and Cardiac Magnetic Resonance for Obstructive Coronary Artery Disease: Systematic Reviews and Meta-Analyses of 104 Studies Published from 1990 to 2025. Journal of Clinical Medicine. 2025; 14(17):6238. https://doi.org/10.3390/jcm14176238
Chicago/Turabian StyleSonaglioni, Andrea, Alessio Polymeropoulos, Massimo Baravelli, Gian Luigi Nicolosi, Michele Lombardo, and Giuseppe Biondi-Zoccai. 2025. "Diagnostic Accuracy of Exercise Stress Testing, Stress Echocardiography, Myocardial Scintigraphy, and Cardiac Magnetic Resonance for Obstructive Coronary Artery Disease: Systematic Reviews and Meta-Analyses of 104 Studies Published from 1990 to 2025" Journal of Clinical Medicine 14, no. 17: 6238. https://doi.org/10.3390/jcm14176238
APA StyleSonaglioni, A., Polymeropoulos, A., Baravelli, M., Nicolosi, G. L., Lombardo, M., & Biondi-Zoccai, G. (2025). Diagnostic Accuracy of Exercise Stress Testing, Stress Echocardiography, Myocardial Scintigraphy, and Cardiac Magnetic Resonance for Obstructive Coronary Artery Disease: Systematic Reviews and Meta-Analyses of 104 Studies Published from 1990 to 2025. Journal of Clinical Medicine, 14(17), 6238. https://doi.org/10.3390/jcm14176238