Definition, Incidence, Prediction, and Prevention of Bleeding Events After Transcatheter Aortic Valve Implantation
Abstract
1. Introduction
2. Bleeding Definitions, Incidence, and Current Classifications
3. Patient-Related Factors
4. Antithrombotic Therapy
5. Procedure-Related Factors
6. Scores
7. Preventive Measures
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Adams, D.H.; Popma, J.J.; Reardon, M.J.; Yakubov, S.J.; Coselli, J.S.; Deeb, G.M.; Gleason, T.G.; Buchbinder, M.; Hermiller, J., Jr.; Kleiman, N.S.; et al. Transcatheter aortic-valve replacement with a self-expanding prosthesis. N. Engl. J. Med. 2014, 370, 1790–1798. [Google Scholar] [CrossRef]
- Leon, M.B.; Smith, C.R.; Mack, M.; Miller, D.C.; Moses, J.W.; Svensson, L.G.; Tuzcu, E.M.; Webb, J.G.; Fontana, G.P.; Makkar, R.R.; et al. Transcatheter aortic-valve implantation for aortic stenosis in patients who cannot undergo surgery. N. Engl. J. Med. 2010, 363, 1597–1607. [Google Scholar] [CrossRef]
- Mack, M.J.; Leon, M.B.; Thourani, V.H.; Makkar, R.; Kodali, S.K.; Russo, M.; Kapadia, S.R.; Malaisrie, S.C.; Cohen, D.J.; Pibarot, P.; et al. Transcatheter Aortic-Valve Replacement with a Balloon-Expandable Valve in Low-Risk Patients. N. Engl. J. Med. 2019, 380, 1695–1705. [Google Scholar] [CrossRef]
- Smith, C.R.; Leon, M.B.; Mack, M.J.; Miller, D.C.; Moses, J.W.; Svensson, L.G.; Tuzcu, E.M.; Webb, J.G.; Fontana, G.P.; Makkar, R.R.; et al. Transcatheter versus surgical aortic-valve replacement in high-risk patients. N. Engl. J. Med. 2011, 364, 2187–2198. [Google Scholar] [CrossRef]
- Thyregod, H.G.; Steinbrüchel, D.A.; Ihlemann, N.; Nissen, H.; Kjeldsen, B.J.; Petursson, P.; Chang, Y.; Franzen, O.W.; Engstrøm, T.; Clemmensen, P.; et al. Transcatheter Versus Surgical Aortic Valve Replacement in Patients with Severe Aortic Valve Stenosis: 1-Year Results from the All-Comers NOTION Randomized Clinical Trial. J. Am. Coll. Cardiol. 2015, 65, 2184–2194. [Google Scholar] [CrossRef]
- Ferrari, E.; Stortecky, S.; Heg, D.; Muller, O.; Nietlispach, F.; Tueller, D.; Toggweiler, S.; Noble, S.; Maisano, F.; Roffi, M.; et al. The hospital results and 1-year outcomes of transcatheter aortic valve-in-valve procedures and transcatheter aortic valve implantations in the native valves: The results from the Swiss-TAVI Registry. Eur. J. Cardiothorac. Surg. 2019, 56, 55–63. [Google Scholar] [CrossRef]
- Van Belle, E.; Vincent, F.; Labreuche, J.; Auffret, V.; Debry, N.; Lefèvre, T.; Eltchaninoff, H.; Manigold, T.; Gilard, M.; Verhoye, J.P.; et al. Balloon-Expandable Versus Self-Expanding Transcatheter Aortic Valve Replacement: A Propensity-Matched Comparison from the FRANCE-TAVI Registry. Circulation 2020, 141, 243–259. [Google Scholar] [CrossRef]
- Koga, M.; Izumo, M.; Yoneyama, K.; Akashi, Y.J.; Yashima, F.; Tada, N.; Yamawaki, M.; Shirai, S.; Naganuma, T.; Yamanaka, F.; et al. Prognostic Value of Electrocardiographic Left Ventricular Hypertrophy After Transcatheter Aortic Valve Implantation: Insights from the OCEAN-TAVI Registry. Am. J. Cardiol. 2023, 204, 130–139. [Google Scholar] [CrossRef]
- Yu, C.W.; Kim, W.J.; Ahn, J.M.; Kook, H.; Kang, S.H.; Han, J.K.; Ko, Y.G.; Choi, S.H.; Koo, B.K.; Chang, K.; et al. Trends and Outcomes of Transcatheter Aortic Valve Implantation (TAVI) in Korea: The Results of the First Cohort of Korean TAVI Registry. Korean Circ. J. 2018, 48, 382–394. [Google Scholar] [CrossRef]
- van Nieuwkerk, A.C.; Aarts, H.M.; Hemelrijk, K.I.; Cantón, T.; Tchétché, D.; de Brito, F.S., Jr.; Barbanti, M.; Kornowski, R.; Latib, A.; D’Onofrio, A.; et al. Bleeding in Patients Undergoing Transfemoral Transcatheter Aortic Valve Replacement: Incidence, Trends, Clinical Outcomes, and Predictors. JACC Cardiovasc. Interv. 2023, 16, 2951–2962. [Google Scholar] [CrossRef]
- Yamamoto, M.; Otsuka, T.; Shimura, T.; Yamaguchi, R.; Adachi, Y.; Kagase, A.; Tokuda, T.; Tsujimoto, S.; Koyama, Y.; Yashima, F.; et al. Incidence, Timing, and Causes of Late Bleeding After TAVR in an Asian Cohort. JACC Asia 2022, 2, 622–632. [Google Scholar] [CrossRef]
- Avvedimento, M.; Real, C.; Nuche, J.; Farjat-Pasos, J.; Galhardo, A.; Trinh, K.H.; Robichaud, M.; Delarochellière, R.; Paradis, J.M.; Poulin, A.; et al. Incidence, Predictors, and Prognostic Impact of Bleeding Events After TAVR According to VARC-3 Criteria. JACC Cardiovasc. Interv. 2023, 16, 2262–2274. [Google Scholar] [CrossRef]
- Kibler, M.; Marchandot, B.; Messas, N.; Labreuche, J.; Vincent, F.; Grunebaum, L.; Hoang, V.A.; Reydel, A.; Crimizade, U.; Kindo, M.; et al. Primary Hemostatic Disorders and Late Major Bleeding After Transcatheter Aortic Valve Replacement. J. Am. Coll. Cardiol. 2018, 72, 2139–2148. [Google Scholar] [CrossRef]
- Généreux, P.; Cohen, D.J.; Mack, M.; Rodes-Cabau, J.; Yadav, M.; Xu, K.; Parvataneni, R.; Hahn, R.; Kodali, S.K.; Webb, J.G.; et al. Incidence, predictors, and prognostic impact of late bleeding complications after transcatheter aortic valve replacement. J. Am. Coll. Cardiol. 2014, 64, 2605–2615. [Google Scholar] [CrossRef]
- Mehran, R.; Rao, S.V.; Bhatt, D.L.; Gibson, C.M.; Caixeta, A.; Eikelboom, J.; Kaul, S.; Wiviott, S.D.; Menon, V.; Nikolsky, E.; et al. Standardized bleeding definitions for cardiovascular clinical trials: A consensus report from the Bleeding Academic Research Consortium. Circulation 2011, 123, 2736–2747. [Google Scholar] [CrossRef]
- Leon, M.B.; Piazza, N.; Nikolsky, E.; Blackstone, E.H.; Cutlip, D.E.; Kappetein, A.P.; Krucoff, M.W.; Mack, M.; Mehran, R.; Miller, C.; et al. Standardized endpoint definitions for transcatheter aortic valve implantation clinical trials: A consensus report from the Valve Academic Research Consortium. Eur. Heart J. 2011, 32, 205–217. [Google Scholar] [CrossRef]
- Généreux, P.; Piazza, N.; Alu, M.C.; Nazif, T.; Hahn, R.T.; Pibarot, P.; Bax, J.J.; Leipsic, J.A.; Blanke, P.; Blackstone, E.H.; et al. Valve Academic Research Consortium 3: Updated endpoint definitions for aortic valve clinical research. Eur. Heart J. 2021, 42, 1825–1857. [Google Scholar] [CrossRef]
- Piccolo, R.; Pilgrim, T.; Franzone, A.; Valgimigli, M.; Haynes, A.; Asami, M.; Lanz, J.; Räber, L.; Praz, F.; Langhammer, B.; et al. Frequency, Timing, and Impact of Access-Site and Non-Access-Site Bleeding on Mortality Among Patients Undergoing Transcatheter Aortic Valve Replacement. JACC Cardiovasc. Interv. 2017, 10, 1436–1446. [Google Scholar] [CrossRef]
- Sherwood, M.W.; Xiang, K.; Matsouaka, R.; Li, Z.; Vemulapalli, S.; Vora, A.N.; Fanaroff, A.; Harrison, J.K.; Thourani, V.H.; Holmes, D.; et al. Incidence, Temporal Trends, and Associated Outcomes of Vascular and Bleeding Complications in Patients Undergoing Transfemoral Transcatheter Aortic Valve Replacement: Insights from the Society of Thoracic Surgeons/American College of Cardiology Transcatheter Valve Therapies Registry. Circ. Cardiovasc. Interv. 2020, 13, e008227. [Google Scholar]
- Vlastra, W.; Chandrasekhar, J.; García Del Blanco, B.; Tchétché, D.; de Brito, F.S., Jr.; Barbanti, M.; Kornowski, R.; Latib, A.; D’Onofrio, A.; Ribichini, F.; et al. Sex Differences in Transfemoral Transcatheter Aortic Valve Replacement. J. Am. Coll. Cardiol. 2019, 74, 2758–2767. [Google Scholar] [CrossRef]
- Li, S.X.; Patel, N.K.; Flannery, L.D.; Cigarroa, R.J.; Shaqdan, A.W.; Erickson, P.; Tavil-Shatelyan, A.; Moses, A.; Inglessis, I.; Elmariah, S. Impact of bleeding after transcatheter aortic valve replacement in patients with chronic kidney disease. Catheter. Cardiovasc. Interv. 2021, 97, E172–E178. [Google Scholar] [CrossRef]
- Gupta, T.; Goel, K.; Kolte, D.; Khera, S.; Villablanca, P.A.; Aronow, W.S.; Bortnick, A.E.; Slovut, D.P.; Taub, C.C.; Kizer, J.R.; et al. Association of Chronic Kidney Disease with In-Hospital Outcomes of Transcatheter Aortic Valve Replacement. JACC Cardiovasc. Interv. 2017, 10, 2050–2060. [Google Scholar] [CrossRef]
- Fanaroff, A.C.; Manandhar, P.; Holmes, D.R.; Cohen, D.J.; Harrison, J.K.; Hughes, G.C.; Thourani, V.H.; Mack, M.J.; Sherwood, M.W.; Jones, W.S.; et al. Peripheral Artery Disease and Transcatheter Aortic Valve Replacement Outcomes: A Report from the Society of Thoracic Surgeons/American College of Cardiology Transcatheter Therapy Registry. Circ. Cardiovasc. Interv. 2017, 10, e005456. [Google Scholar] [CrossRef]
- Spangenberg, T.; Budde, U.; Schewel, D.; Frerker, C.; Thielsen, T.; Kuck, K.H.; Schäfer, U. Treatment of acquired von Willebrand syndrome in aortic stenosis with transcatheter aortic valve replacement. JACC Cardiovasc. Interv. 2015, 8, 692–700. [Google Scholar] [CrossRef]
- Bansal, A.; Kalra, A.; Kumar, A.; Campbell, J.; Krishnaswamy, A.; Kapadia, S.R.; Reed, G.W. Outcomes of Combined Transcatheter Aortic Valve Replacement and Peripheral Vascular Intervention in the United States. JACC Cardiovasc. Interv. 2021, 14, 2572–2580. [Google Scholar] [CrossRef]
- Goltstein, L.; Rooijakkers, M.J.P.; Görtjes, N.C.C.; Akkermans, R.P.; Zegers, E.S.; Pisters, R.; van Wely, M.H.; van der Wulp, K.; Drenth, J.P.H.; van Geenen, E.J.M.; et al. Reduction of Gastrointestinal Bleeding in Patients with Heyde Syndrome Undergoing Transcatheter Aortic Valve Implantation. Circ. Cardiovasc. Interv. 2022, 15, e011848. [Google Scholar] [CrossRef]
- Dvir, D.; Généreux, P.; Barbash, I.M.; Kodali, S.; Ben-Dor, I.; Williams, M.; Torguson, R.; Kirtane, A.J.; Minha, S.; Badr, S.; et al. Acquired thrombocytopenia after transcatheter aortic valve replacement: Clinical correlates and association with outcomes. Eur. Heart J. 2014, 35, 2663–2671. [Google Scholar] [CrossRef]
- Rodés-Cabau, J.; Masson, J.B.; Welsh, R.C.; Garcia Del Blanco, B.; Pelletier, M.; Webb, J.G.; Al-Qoofi, F.; Généreux, P.; Maluenda, G.; Thoenes, M.; et al. Aspirin Versus Aspirin Plus Clopidogrel as Antithrombotic Treatment Following Transcatheter Aortic Valve Replacement with a Balloon-Expandable Valve: The ARTE (Aspirin Versus Aspirin + Clopidogrel Following Transcatheter Aortic Valve Implantation) Randomized Clinical Trial. JACC Cardiovasc. Interv. 2017, 10, 1357–1365. [Google Scholar]
- Brouwer, J.; Nijenhuis, V.J.; Delewi, R.; Hermanides, R.S.; Holvoet, W.; Dubois, C.L.F.; Frambach, P.; De Bruyne, B.; van Houwelingen, G.K.; Van Der Heyden, J.A.S.; et al. Aspirin with or without Clopidogrel after Transcatheter Aortic-Valve Implantation. N. Engl. J. Med. 2020, 383, 1447–1457. [Google Scholar] [CrossRef]
- Pelliccia, F. Single Antiplatelet Therapy Reduced Risk of Mortality and Major Bleeding in Patients Undergoing Transcatheter Aortic Valve Replacement by Half. 2025. Available online: https://scai.org/media-center/news-and-articles/single-antiplatelet-therapy-reduced-risk-mortality-and-major (accessed on 1 May 2025).
- Dangas, G.D.; Tijssen, J.G.P.; Wöhrle, J.; Søndergaard, L.; Gilard, M.; Möllmann, H.; Makkar, R.R.; Herrmann, H.C.; Giustino, G.; Baldus, S.; et al. A Controlled Trial of Rivaroxaban after Transcatheter Aortic-Valve Replacement. N. Engl. J. Med. 2020, 382, 120–129. [Google Scholar] [CrossRef]
- Collet, J.P.; Van Belle, E.; Thiele, H.; Berti, S.; Lhermusier, T.; Manigold, T.; Neumann, F.J.; Gilard, M.; Attias, D.; Beygui, F.; et al. Apixaban vs. standard of care after transcatheter aortic valve implantation: The ATLANTIS trial. Eur. Heart J. 2022, 43, 2783–2797. [Google Scholar] [CrossRef]
- Van Mieghem, N.M.; Unverdorben, M.; Hengstenberg, C.; Möllmann, H.; Mehran, R.; López-Otero, D.; Nombela-Franco, L.; Moreno, R.; Nordbeck, P.; Thiele, H.; et al. Edoxaban versus Vitamin K Antagonist for Atrial Fibrillation after TAVR. N. Engl. J. Med. 2021, 385, 2150–2160. [Google Scholar] [CrossRef] [PubMed]
- Nijenhuis, V.J.; Brouwer, J.; Delewi, R.; Hermanides, R.S.; Holvoet, W.; Dubois, C.L.F.; Frambach, P.; De Bruyne, B.; van Houwelingen, G.K.; Van Der Heyden, J.A.S.; et al. Anticoagulation with or without Clopidogrel after Transcatheter Aortic-Valve Implantation. N. Engl. J. Med. 2020, 382, 1696–1707. [Google Scholar] [CrossRef]
- Praz, F.; Borger, M.A.; Lanz, J.; Marin-Cuartas, M.; Abreu, A.; Adamo, M.; Ajmone Marsan, N.; Barili, F.; Bonaros, N.; Cosyns, B.; et al. 2025 ESC/EACTS Guidelines for the management of valvular heart disease. Eur. J. Cardio-Thorac. Surg. 2025, 67, ezaf276. [Google Scholar] [CrossRef]
- Borges Martins, J.M.; Dos Santos Borges, R.; Gosch Berton, G.; Ferreira Vieira, P.L.; Machado Gomes de Sousa, P.A.; Chaves Vieira, A.L.; Ken Fukunaga, C.; Karlinski Vizentin, V.; Rodrigues Macedo, E.M.; Guida, C.M. Continuation Versus Interruption of Oral Anticoagulation During TAVI: A Systematic Review and Meta-Analysis Oral Anticoagulation Management in TAVI. Catheter. Cardiovasc. Interv. 2025, 106, 644–653. [Google Scholar] [CrossRef]
- Khater, J.; Frazzetto, M.; Gurgoglione, F.L.; Hasan, J.; Donelli, D.; Attizzani, G.; Cortese, B. Peri-Procedural Continuation Versus Interruption of Anticoagulation for Transcatheter Aortic Valve Implantation: A Systematic Review and Meta-Analysis. J. Clin. Med. 2025, 14, 3563. [Google Scholar] [CrossRef] [PubMed]
- van Ginkel, D.J.; Bor, W.L.; Aarts, H.M.; Dubois, C.; De Backer, O.; Rooijakkers, M.J.P.; Rosseel, L.; Veenstra, L.; van der Kley, F.; van Bergeijk, K.H.; et al. Continuation versus Interruption of Oral Anticoagulation during TAVI. N. Engl. J. Med. 2025, 392, 438–449. [Google Scholar] [CrossRef]
- Palmerini, T.; Saia, F.; Kim, W.K.; Renker, M.; Iadanza, A.; Fineschi, M.; Bruno, A.G.; Ghetti, G.; Vanhaverbeke, M.; Søndergaard, L.; et al. Vascular Access in Patients with Peripheral Arterial Disease Undergoing TAVR: The Hostile Registry. JACC Cardiovasc. Interv. 2023, 16, 396–411. [Google Scholar] [CrossRef]
- Gilard, M.; Eltchaninoff, H.; Iung, B.; Donzeau-Gouge, P.; Chevreul, K.; Fajadet, J.; Leprince, P.; Leguerrier, A.; Lievre, M.; Prat, A.; et al. Registry of transcatheter aortic-valve implantation in high-risk patients. N. Engl. J. Med. 2012, 366, 1705–1715. [Google Scholar] [CrossRef]
- Schymik, G.; Würth, A.; Bramlage, P.; Herbinger, T.; Heimeshoff, M.; Pilz, L.; Schymik, J.S.; Wondraschek, R.; Süselbeck, T.; Gerhardus, J.; et al. Long-term results of transapical versus transfemoral TAVI in a real world population of 1000 patients with severe symptomatic aortic stenosis. Circ. Cardiovasc. Interv. 2015, 8, e000761. [Google Scholar] [CrossRef] [PubMed]
- Chamandi, C.; Abi-Akar, R.; Rodés-Cabau, J.; Blanchard, D.; Dumont, E.; Spaulding, C.; Doyle, D.; Pagny, J.Y.; DeLarochellière, R.; Lafont, A.; et al. Transcarotid Compared with Other Alternative Access Routes for Transcatheter Aortic Valve Replacement. Circ. Cardiovasc. Interv. 2018, 11, e006388. [Google Scholar] [CrossRef]
- Faroux, L.; Junquera, L.; Mohammadi, S.; Del Val, D.; Muntané-Carol, G.; Alperi, A.; Kalavrouziotis, D.; Dumont, E.; Paradis, J.M.; Delarochellière, R.; et al. Femoral Versus Nonfemoral Subclavian/Carotid Arterial Access Route for Transcatheter Aortic Valve Replacement: A Systematic Review and Meta-Analysis. J. Am. Heart Assoc. 2020, 9, e017460. [Google Scholar] [CrossRef]
- Garot, P.; Morice, M.C.; Angiolillo, D.J.; Cabau, J.R.; Park, D.W.; Van Mieghem, N.M.; Collet, J.P.; Leon, M.B.; Sengottuvelu, G.; Neylon, A.; et al. Defining high bleeding risk in patients undergoing transcatheter aortic valve implantation: A VARC-HBR consensus document. EuroIntervention 2024, 20, 536–550. [Google Scholar] [CrossRef]
- van Kesteren, F.; van Mourik, M.S.; Vendrik, J.; Wiegerinck, E.M.A.; Henriques, J.P.S.; Koch, K.T.; Wykrzykowska, J.J.; de Winter, R.J.; Piek, J.J.; van Lienden, K.P.; et al. Incidence, Predictors, and Impact of Vascular Complications After Transfemoral Transcatheter Aortic Valve Implantation with the SAPIEN 3 Prosthesis. Am. J. Cardiol. 2018, 121, 1231–1238. [Google Scholar] [CrossRef]
- Langouet, Q.; Martinez, R.; Saint-Etienne, C.; Behlaj Soulami, R.; Harmouche, M.; Aupart, M.; Le Breton, H.; Verhoye, J.P.; Bourguignon, T. Incidence, predictors, impact, and treatment of vascular complications after transcatheter aortic valve implantation in a modern prospective cohort under real conditions. J. Vasc. Surg. 2020, 72, 2120–2129.e2. [Google Scholar] [CrossRef]
- Junquera, L.; Urena, M.; Latib, A.; Muñoz-Garcia, A.; Nombela-Franco, L.; Faurie, B.; Veiga-Fernandez, G.; Alperi, A.; Serra, V.; Regueiro, A.; et al. Comparison of Transfemoral Versus Transradial Secondary Access in Transcatheter Aortic Valve Replacement. Circ. Cardiovasc. Interv. 2020, 13, e008609. [Google Scholar] [CrossRef] [PubMed]
- Aroney, N.P.; Patterson, T.; Kalogeropoulos, A.; Allen, C.J.; Hurrell, H.; Chehab, O.; Grapsa, J.; Rajani, R.; Prendergast, B.; Redwood, S. Clinical outcomes following single access transfemoral transcatheter aortic valve implantation. Catheter. Cardiovasc. Interv. 2022, 100, 227–232. [Google Scholar] [CrossRef] [PubMed]
- Rheude, T.; Ruge, H.; Altaner, N.; Pellegrini, C.; Alvarez Covarrubias, H.; Mayr, P.; Cassese, S.; Kufner, S.; Taniguchi, Y.; Thilo, C.; et al. Comparison of strategies for vascular ACCESS closure after Transcatheter Aortic Valve Implantation: The ACCESS-TAVI randomized trial. Eur. Heart J. 2025, 46, 635–645. [Google Scholar] [CrossRef] [PubMed]
- Yeh, C.F.; Kao, H.L.; Ko, T.Y.; Chen, C.K.; Tsai, C.H.; Huang, C.C.; Chen, Y.H.; Chan, C.Y.; Lin, M.S. Dual ProGlide vs ProGlide and Angio-Seal for Femoral Access Hemostasis After Transcatheter Aortic Valve Replacement: A Randomised Comparative Trial. Can. J. Cardiol. 2025, 41, 12–20. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Wahab, M.; Hartung, P.; Dumpies, O.; Obradovic, D.; Wilde, J.; Majunke, N.; Boekstegers, P.; Müller, R.; Seyfarth, M.; Vorpahl, M.; et al. Comparison of a Pure Plug-Based Versus a Primary Suture-Based Vascular Closure Device Strategy for Transfemoral Transcatheter Aortic Valve Replacement: The CHOICE-CLOSURE Randomized Clinical Trial. Circulation 2022, 145, 170–183. [Google Scholar] [CrossRef]
- van Wiechen, M.P.; Tchetche, D.; Ooms, J.F.; Hokken, T.W.; Kroon, H.; Ziviello, F.; Ghattas, A.; Siddiqui, S.; Laperche, C.; Spitzer, E.; et al. Suture- or Plug-Based Large-Bore Arteriotomy Closure: A Pilot Randomized Controlled Trial. JACC Cardiovasc. Interv. 2021, 14, 149–157. [Google Scholar] [CrossRef]
- Berti, S.; Bedogni, F.; Giordano, A.; Petronio, A.S.; Iadanza, A.; Bartorelli, A.L.; Reimers, B.; Spaccarotella, C.; Trani, C.; Attisano, T.; et al. Efficacy and Safety of ProGlide Versus Prostar XL Vascular Closure Devices in Transcatheter Aortic Valve Replacement: The RISPEVA Registry. J. Am. Heart Assoc. 2020, 9, e018042. [Google Scholar] [CrossRef]
- Kotronias, R.A.; Bray, J.J.H.; Rajasundaram, S.; Vincent, F.; Delhaye, C.; Scarsini, R.; Marin, F.; Terentes-Printzios, D.; Halcox, J.P.J.; Mamas, M.A.; et al. Ultrasound- Versus Fluoroscopy-Guided Strategy for Transfemoral Transcatheter Aortic Valve Replacement Access: A Systematic Review and Meta-Analysis. Circ. Cardiovasc. Interv. 2021, 14, e010742. [Google Scholar] [CrossRef]
- Grundmann, D.; Rudolph, T.; Adam, M.; Kellner, C.; Bleiziffer, S.; Braun, D.; Tamm, A.R.; Meertens, M.; Renker, M.; Gmeiner, J.; et al. Procedural and Clinical Outcomes According to Ultrasound-Guided Access in TAVI: A Propensity-Matched Comparative Subanalysis from the PULSE Registry. Circ. Cardiovasc. Interv. 2025, 18, e014771. [Google Scholar] [CrossRef] [PubMed]
- Navarese, E.P.; Zhang, Z.; Kubica, J.; Andreotti, F.; Farinaccio, A.; Bartorelli, A.L.; Bedogni, F.; Rupji, M.; Tomai, F.; Giordano, A.; et al. Development and Validation of a Practical Model to Identify Patients at Risk of Bleeding After TAVR. JACC Cardiovasc. Interv. 2021, 14, 1196–1206. [Google Scholar] [CrossRef]
- Avvedimento, M.; Cepas-Guillén, P.; Ternacle, J.; Urena, M.; Alperi, A.; Cheema, A.; Veiga-Fernandez, G.; Nombela-Franco, L.; Vilalta, V.; Esposito, G.; et al. Validation of the Valve Academic Research Consortium High Bleeding Risk Definition in Patients Undergoing TAVR. Circ. Cardiovasc. Interv. 2025, 18, e014800. [Google Scholar] [CrossRef] [PubMed]
- Ten Berg, J.; Sibbing, D.; Rocca, B.; Van Belle, E.; Chevalier, B.; Collet, J.P.; Dudek, D.; Gilard, M.; Gorog, D.A.; Grapsa, J.; et al. Management of antithrombotic therapy in patients undergoing transcatheter aortic valve implantation: A consensus document of the ESC Working Group on Thrombosis and the European Association of Percutaneous Cardiovascular Interventions (EAPCI), in collaboration with the ESC Council on Valvular Heart Disease. Eur. Heart J. 2021, 42, 2265–2269. [Google Scholar]
- Vrints, C.; Andreotti, F.; Koskinas, K.C.; Rossello, X.; Adamo, M.; Ainslie, J.; Banning, A.P.; Budaj, A.; Buechel, R.R.; Chiariello, G.A.; et al. 2024 ESC Guidelines for the management of chronic coronary syndromes. Eur. Heart J. 2024, 45, 3415–3537. [Google Scholar] [CrossRef] [PubMed]
- Byrne, R.A.; Rossello, X.; Coughlan, J.J.; Barbato, E.; Berry, C.; Chieffo, A.; Claeys, M.J.; Dan, G.A.; Dweck, M.R.; Galbraith, M.; et al. 2023 ESC Guidelines for the management of acute coronary syndromes. Eur. Heart J. 2023, 44, 3720–3826. [Google Scholar] [CrossRef]
- Potluri, S.P.; Hamandi, M.; Basra, S.S.; Shinn, K.V.; Tabachnick, D.; Vasudevan, A.; Filardo, G.; DiMaio, J.M.; Brinkman, W.T.; Harrington, K.; et al. Comparison of Frequency of Vascular Complications with Ultrasound-Guided Versus Fluroscopic Roadmap-Guided Femoral Arterial Access in Patients Who Underwent Transcatheter Aortic Valve Implantation. Am. J. Cardiol. 2020, 132, 93–99. [Google Scholar] [CrossRef]
- Vincent, F.; Spillemaeker, H.; Kyheng, M.; Belin-Vincent, C.; Delhaye, C.; Piérache, A.; Denimal, T.; Verdier, B.; Debry, N.; Moussa, M.; et al. Ultrasound Guidance to Reduce Vascular and Bleeding Complications of Percutaneous Transfemoral Transcatheter Aortic Valve Replacement: A Propensity Score-Matched Comparison. J. Am. Heart. Assoc. 2020, 9, e014916. [Google Scholar] [CrossRef] [PubMed]
- Xenogiannis, I.; Varlamos, C.; Keeble, T.R.; Kalogeropoulos, A.S.; Karamasis, G.V. Ultrasound-Guided Femoral Vascular Access for Percutaneous Coronary and Structural Interventions. Diagnostics 2023, 13, 2028. [Google Scholar] [CrossRef] [PubMed]
- Romagnoli, E.; Bianchini, F.; Aurigemma, C.; Zito, A.; Bianchini, E.; Paraggio, L.; Lunardi, M.; Ierardi, C.; Nesta, M.; Bruno, P.; et al. Feasibility, safety and clinical impact of a less-invasive totally-endovascular (LITE) technique for transfemoral TAVI: A 1000 patients single-centre experience. Int. J. Cardiol. Heart Vasc. 2024, 55, 101523. [Google Scholar] [CrossRef]
- Dangas, G.D.; Lefèvre, T.; Kupatt, C.; Tchetche, D.; Schäfer, U.; Dumonteil, N.; Webb, J.G.; Colombo, A.; Windecker, S.; Ten Berg, J.M.; et al. Bivalirudin Versus Heparin Anticoagulation in Transcatheter Aortic Valve Replacement: The Randomized BRAVO-3 Trial. J. Am. Coll. Cardiol. 2015, 66, 2860–2868. [Google Scholar] [CrossRef]
- Holmes, D.R., Jr.; Mack, M.J.; Kaul, S.; Agnihotri, A.; Alexander, K.P.; Bailey, S.R.; Calhoon, J.H.; Carabello, B.A.; Desai, M.Y.; Edwards, F.H.; et al. 2012 ACCF/AATS/SCAI/STS expert consensus document on transcatheter aortic valve replacement. J. Am. Coll. Cardiol. 2012, 59, 1200–1254. [Google Scholar] [CrossRef]
- Al-Kassou, B.; Kandt, J.; Lohde, L.; Shamekhi, J.; Sedaghat, A.; Tabata, N.; Weber, M.; Sugiura, A.; Fimmers, R.; Werner, N.; et al. Safety and Efficacy of Protamine Administration for Prevention of Bleeding Complications in Patients Undergoing TAVR. JACC Cardiovasc. Interv. 2020, 13, 1471–1480. [Google Scholar] [CrossRef]
- Ten Berg, J.M.; Brouwer, J. Protamine in Patients Undergoing Transcatheter Aortic Valve Replacement: Why Not? JACC Cardiovasc. Interv. 2020, 13, 1481–1483. [Google Scholar] [CrossRef]
- Al-Kassou, B.; Veulemans, V.; Shamekhi, J.; Maier, O.; Piayda, K.; Zeus, T.; Aksoy, A.; Zietzer, A.; Meertens, M.; Mauri, V.; et al. Optimal protamine-to-heparin dosing ratio for the prevention of bleeding complications in patients undergoing TAVR-A multicenter experience. Clin. Cardiol. 2023, 46, 67–75. [Google Scholar] [CrossRef]
- Miyashita, H.; Moriyama, N.; Dahlbacka, S.; Vähäsilta, T.; Vainikka, T.; Jalanko, M.; Viikilä, J.; Laine, M. Ultrasound-Guided Versus Conventional MANTA Vascular Closure Device Deployment After Transcatheter Aortic Valve Implantation. Am. J. Cardiol. 2022, 180, 116–123. [Google Scholar] [CrossRef] [PubMed]
- Moriyama, N.; Dahlbacka, S.; Vähäsilta, T.; Vainikka, T.; Aho, P.; Viikilä, J.; Lammintausta, O.; Laine, M. The Efficacy of the Ultrasound-Navigated MANTA Deployment Following Transfemoral Transcatheter Aortic Valve Replacement. JACC Cardiovasc. Interv. 2019, 12, 2564–2566. [Google Scholar] [CrossRef]
Category | Early Bleeding (≤30 Days) | Late Bleeding (>30 Days) |
---|---|---|
Patient-Related Factors |
|
|
Procedure-Related Factors |
|
|
Treatment-Related Factors |
|
|
Study (Year) | Population and Number of Patients | Strategies Compared | Primary Endpoint/Follow-Up | Key Outcomes |
---|---|---|---|---|
ARTE (2017) [28] | n = 222, no OAC | Aspirin vs. aspirin plus clopidogrel (3 months) | Major/life-threatening bleeding | Major life-threatening bleeding: 3.6% SAPT vs. 10.8% DAPT (p = 0.038); no difference in stroke/MI |
POPular-TAVI Cohort A (2020) [29] | n = 665, no OAC | Aspirin alone vs. aspirin plus clopidogrel (3 months) | All bleeding events (VARC-2) at 12 months | Bleeding events: 15.1% SAPT vs. 26.6% DAPT (p = 0.001); CV death/MI/stroke: 23% vs. 31.1% (p < 0.001) |
POPular-TAVI Cohort B (2020) [34] | n = 313, OAC indication | OAC alone vs. OAC plus clopidogrel (3 months) | All bleeding events (VARC-2) at 12 months | Bleeding events: 21.7% OAC alone vs. 34.6% OAC plus clopidogrel (p = 0.01); no ischemic benefit from adding clopidogrel |
GALILEO (2020) [31] | n = 1644, no OAC | Rivaroxaban 10 mg plus aspirin vs. aspirin plus clopidogrel | Composite of death/thromboembolism/bleeding and life-threatening, disabling, or major bleeding (VARC-2) (median f/u of 17 months) | Higher all-cause death with rivaroxaban (HR: 1.69); numerically higher bleeding with rivaroxaban (5.6% vs. 3.8%, p = 0.08); trial stopped early |
ENVISAGE-TAVI AF (2021) [33] | n = 1426, AF after TAVI | Edoxaban vs. VKA (INR target: 2.0–3.0) | Net adverse clinical events (death from any cause, MI, stroke, embolism, valve thrombosis, or major bleeding) at 1.5 years | Major bleeding (BARC ≥ 3): 9.7% edoxaban vs. 7% VKA (↑ GI bleeding, 5.4% vs. 2.7%) |
ATLANTIS (2021–22) [32] | n = 1510, all-comers | Apixaban vs. standard of care (VKA or antiplatelet) | Composite of death, stroke, MI, embolism, intracardiac or bioprosthetic valve, and major bleeding events at 1 year | No difference in primary endpoint (p = 0.43); less CT-detected leaflet thrombosis with apixaban (HR: 0.23); ↑ non-CV mortality (signal) |
TRITAVI REGISTRY (2024) [30] | n = 5514, multicenter | SAPT vs. DAPT | Major/life-threatening bleeding, ischemic events (death, MI, stroke), and all-cause mortality | Major bleeding: 0.5% SAPT vs. 1.3% DAPT (p = 0.001); ischemic events, 0.4% vs. 0.7% (p = 0.07) (NS); all-cause mortality lower with SAPT (2.4% vs. 5.2%, HR: 0.46, p = 0.005) |
Study (Year) | Design and n | Closure Techniques Compared | Primary Endpoint | Key Outcomes |
---|---|---|---|---|
CHOICE-CLOSURE (2022) [51] | RCT, n = 516 | MANTA (plug-based) vs. dual ProGlide (suture-based) | Access-site vascular complications within 30 days (VARC-2) | Device success: MANTA: 89.9% vs. Proglide × 2: 96.9%, p < 0.001 Primary outcome: 19.4% MANTA vs. 12.0% dual ProGlide (p = 0.04); life-threatening or major bleeding (BARC = 3–5) numerically higher with MANTA, 7.4% vs. 4.5% (p = 0.21) |
van Wiechen et al. (2021) [52] | Pilot RCT, n = 210 | MANTA (plug-based) vs. dual ProGlide (suture-based) | Access-site vascular complications (VARC-2) | Device success: MANTA: 98% vs. dual ProGlide: 99%, p = NS Vascular complications: 10% MANTA vs. 4% dual ProGlide, p = NS; access-site-related major bleeding complications were similar (4% vs. 4%, p = NS) |
ProGlide vs. Prostar XL (2020) [53] | Observational, n = 2583 | Dual ProGlide (suture-based) vs. Prostar XL (suture-based) | Adverse events at 30 days and 1 year (CV mortality, bleeding, and vascular complications) | Device success: 99.2% dual ProGlide vs. 97.5% Prostar (p = 0.001); at 30 days, lower composite primary endpoint (13.8% vs. 20.5%, p = 0.031) with fewer major bleeding complications, 9.1% vs. 11.7%, p = 0.032, with ProGlide |
ACCESS-TAVI (2025) [49] | RCT, n = 400 | Hybrid (ProGlide plus AngioSeal) vs. dual ProGlide | Access-site-related vascular complications at 30 days | Device success: 98.0% hybrid vs. 93.4% dual ProGlide (p = 0.001) Significantly fewer vascular complications and bleeding with hybrid strategy than dual ProGlide (5.9% vs. 12.8%, p = 0.02). Numerically fewer major and life-threatening bleeding events with hybrid approach, 1.5% vs. 4.6% (p = 0.09%) |
Yeh et al. (2025) [50] | RCT, n = 200 | Hybrid (ProGlide plus AngioSeal) vs. dual ProGlide | Hemostasis success and access-site-related vascular complications within 30 days (VARC-2) | Device success: 99% hybrid vs. 94% dual ProGlide (p = 0.05) Hybrid strategy reduced significant major life-threatening bleeding (BARC ≥ 3)/vascular events vs. dual ProGlide (2.0% vs. 8.7%, p = 0.04 and 3.9% vs. 12.6%, p = 0.03, respectively) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xenogiannis, I.; Lianos, I.; Karamasis, G.V.; Varlamos, C.; Kolokathis, F.; Pappas, C.; Kovra, S.; Tsaousidis, K.; Mourmouris, C.; Pavlidis, A.N.; et al. Definition, Incidence, Prediction, and Prevention of Bleeding Events After Transcatheter Aortic Valve Implantation. J. Clin. Med. 2025, 14, 7154. https://doi.org/10.3390/jcm14207154
Xenogiannis I, Lianos I, Karamasis GV, Varlamos C, Kolokathis F, Pappas C, Kovra S, Tsaousidis K, Mourmouris C, Pavlidis AN, et al. Definition, Incidence, Prediction, and Prevention of Bleeding Events After Transcatheter Aortic Valve Implantation. Journal of Clinical Medicine. 2025; 14(20):7154. https://doi.org/10.3390/jcm14207154
Chicago/Turabian StyleXenogiannis, Iosif, Ioannis Lianos, Grigoris V. Karamasis, Charalampos Varlamos, Fotios Kolokathis, Christos Pappas, Stamatia Kovra, Konstantinos Tsaousidis, Christos Mourmouris, Antonis N. Pavlidis, and et al. 2025. "Definition, Incidence, Prediction, and Prevention of Bleeding Events After Transcatheter Aortic Valve Implantation" Journal of Clinical Medicine 14, no. 20: 7154. https://doi.org/10.3390/jcm14207154
APA StyleXenogiannis, I., Lianos, I., Karamasis, G. V., Varlamos, C., Kolokathis, F., Pappas, C., Kovra, S., Tsaousidis, K., Mourmouris, C., Pavlidis, A. N., Triantafyllis, A. S., & Kalogeropoulos, A. S. (2025). Definition, Incidence, Prediction, and Prevention of Bleeding Events After Transcatheter Aortic Valve Implantation. Journal of Clinical Medicine, 14(20), 7154. https://doi.org/10.3390/jcm14207154