Association of SGLT2 Inhibitors with Mortality and Bioprosthesis Valve Failure After TAVR: A Propensity-Matched Cohort Study
Abstract
Highlights
- Can SGLT2 inhibitors improve clinical outcomes in patients undergoing transcatheter aortic valve replacement (TAVR), including reducing the risk of bioprosthetic valve failure?
- In patients undergoing TAVR, the use of SGLT2 inhibitors was associated with lower risks of mortality and bioprosthetic valve failure. These findings suggest a potential disease-modifying role for SGLT2 inhibitors in this population.
Abstract
1. Introduction
2. Methods
3. Results
4. Discussion
Study Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Usman, M.S.; Siddiqi, T.J.; Anker, S.D.; Bakris, G.L.; Bhatt, D.L.; Filippatos, G.; Fonarow, G.C.; Greene, S.J.; Januzzi, J.L., Jr.; Khan, M.S.; et al. Effect of SGLT2 Inhibitors on Cardiovascular Outcomes Across Various Patient Populations. J. Am. Coll. Cardiol. 2023, 81, 2377–2387. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, L.R. The Pleiotropic Effects of SGLT2 Inhibitors: Remodeling the Treatment of Heart Failure. J. Am. Coll. Cardiol. 2021, 77, 256–258. [Google Scholar] [CrossRef] [PubMed]
- Lindman, B.R.; El-Sabawi, B. SGLT2 Inhibition in Aortic Stenosis: A Therapy for the Ventricle, the Valve, or Both? JACC Cardiovasc. Interv. 2025, 18, 749–751. [Google Scholar] [CrossRef] [PubMed]
- Scisciola, L.; Paolisso, P.; Belmonte, M.; Gallinoro, E.; Delrue, L.; Taktaz, F.; Fontanella, R.A.; Degrieck, I.; Pesapane, A.; Casselman, F.; et al. Myocardial sodium-glucose cotransporter 2 expression and cardiac remodelling in patients with severe aortic stenosis: The BIO-AS study. Eur. J. Heart Fail. 2024, 26, 471–482. [Google Scholar] [CrossRef]
- Hmadeh, S.; Trimaille, A.; Matsushita, K.; Marchandot, B.; Carmona, A.; Zobairi, F.; Sato, C.; Kindo, M.; Hoang, T.M.; Toti, F.; et al. Human Aortic Stenotic Valve-Derived Extracellular Vesicles Induce Endothelial Dysfunction and Thrombogenicity Through AT1R/NADPH Oxidases/SGLT2 Pro-Oxidant Pathway. JACC Basic Transl. Sci. 2024, 9, 845–864. [Google Scholar] [CrossRef]
- Trimaille, A.; Hmadeh, S.; Matsushita, K.; Marchandot, B.; Kauffenstein, G.; Morel, O. Aortic stenosis and the haemostatic system. Cardiovasc. Res. 2023, 119, 1310–1323. [Google Scholar] [CrossRef]
- Trimaille, A.; Hmadeh, S.; Morel, O. Letter by Trimaille et al Regarding Article, “Native Aortic Valve Disease Progression and Bioprosthetic Valve Degeneration in Patients With Transcatheter Aortic Valve Implantation”. Circulation 2022, 145, e807–e808. [Google Scholar] [CrossRef]
- Trimaille, A.; Carmona, A.; Hmadeh, S.; Truong, D.P.; Marchandot, B.; Kikuchi, S.; Matsushita, K.; Ohlmann, P.; Schini-Kerth, V.; Rodes-Cabau, J.; et al. Transcatheter Aortic Valve Durability: Focus on Structural Valve Deterioration. J. Am. Heart Assoc. 2025, 14, e041505. [Google Scholar] [CrossRef]
- Bucci, T.; Alam, U.; Fauchier, G.; Lochon, L.; Bisson, A.; Ducluzeau, P.H.; Lip, G.Y.H.; Fauchier, L. GLP-1 receptor agonists and cardiovascular events in metabolically healthy or unhealthy obesity. Diabetes Obes. Metab. 2025, 27, 2418–2429. [Google Scholar] [CrossRef]
- Kamperidis, V.; Anastasiou, V.; Ziakas, A. Could SGLT2 inhibitors improve outcomes in patients with heart failure and significant valvular heart disease? Need for action. Heart Fail. Rev. 2025, 30, 353–356. [Google Scholar] [CrossRef]
- Mroueh, A.; Algara-Suarez, P.; Fakih, W.; Gong, D.S.; Matsushita, K.; Park, S.H.; Amissi, S.; Auger, C.; Kauffenstein, G.; Meyer, N.; et al. SGLT2 expression in human vasculature and heart correlates with low-grade inflammation and causes eNOS-NO/ROS imbalance. Cardiovasc. Res. 2024, 121, 643–657. [Google Scholar] [CrossRef]
- Mroueh, A.; Fakih, W.; Carmona, A.; Trimaille, A.; Matsushita, K.; Marchandot, B.; Qureshi, A.W.; Gong, D.S.; Auger, C.; Sattler, L.; et al. COVID-19 promotes endothelial dysfunction and thrombogenicity: Role of proinflammatory cytokines/SGLT2 prooxidant pathway. J. Thromb. Haemost. 2024, 22, 286–299. [Google Scholar] [CrossRef] [PubMed]
- Trimaille, A.; Hmadeh, S.; Kikuchi, S.; Carmona, A.; Marchandot, B.; Phi, T.D.; Manh, C.V.; Jesel, L.; Ohlmann, P.; Sattler, L.; et al. Detrimental effects of plasma from patients with severe aortic stenosis on valvular endothelial cells: Role of proinflammatory cytokines and factor Xa. J. Am. Heart Assoc. 2025, in press. [Google Scholar]
- Jansen, F.; Rohwer, K.; Vasa-Nicotera, M.; Mellert, F.; Grube, E.; Nickenig, G.; Werner, N.; Sinning, J.M. CD-144 positive endothelial microparticles are increased in patients with systemic inflammatory response syndrome after TAVI. Int. J. Cardiol. 2016, 204, 172–174. [Google Scholar] [CrossRef] [PubMed]
- Pfeifer, P.; Zietzer, A.; Holscher, M.; Jehle, J.; Nickenig, G.; Werner, N.; Gestrich, C.; Jansen, F. Transverse aortic constriction-induced heart failure leads to increased levels of circulating microparticles. Int. J. Cardiol. 2022, 347, 54–58. [Google Scholar] [CrossRef]
- Diehl, P.; Nagy, F.; Sossong, V.; Helbing, T.; Beyersdorf, F.; Olschewski, M.; Bode, C.; Moser, M. Increased levels of circulating microparticles in patients with severe aortic valve stenosis. Thromb. Haemost. 2008, 99, 711–719. [Google Scholar] [CrossRef]
- Horn, P.; Erkilet, G.; Veulemans, V.; Kropil, P.; Schurgers, L.; Zeus, T.; Heiss, C.; Kelm, M.; Westenfeld, R. Microparticle-Induced Coagulation Relates to Coronary Artery Atherosclerosis in Severe Aortic Valve Stenosis. PLoS ONE 2016, 11, e0151499. [Google Scholar] [CrossRef]
- Oliveira, J.L.R.; Santos, M.A.D.; Timerman, A. Endothelial Microparticles: Markers of Inflammatory Response After Sutureless Valve Implantation. Braz. J. Cardiovasc. Surg. 2023, 39, e20230111. [Google Scholar] [CrossRef]
- Wilimski, R.; Budzianowski, J.; Lomiak, M.; Olasinska-Wisniewska, A.; Pieniak, K.; Jedrzejczyk, S.; Domaszk, O.; Chudzik, M.; Filipiak, K.J.; Hiczkiewicz, J.; et al. Extracellular Vesicles to Predict Outcomes After Transcatheter Aortic Valve Implantation—A Prospective, Multicenter Cohort Study. J. Cardiovasc. Transl. Res. 2024, 17, 992–1003. [Google Scholar] [CrossRef]
- Paolisso, P.; Belmonte, M.; Gallinoro, E.; Scarsini, R.; Bergamaschi, L.; Portolan, L.; Armillotta, M.; Esposito, G.; Moscarella, E.; Benfari, G.; et al. SGLT2-inhibitors in diabetic patients with severe aortic stenosis and cardiac damage undergoing transcatheter aortic valve implantation (TAVI). Cardiovasc. Diabetol. 2024, 23, 420. [Google Scholar] [CrossRef]
- Raposeiras-Roubin, S.; Amat-Santos, I.J.; Rossello, X.; Gonzalez Ferreiro, R.; Gonzalez Bermudez, I.; Lopez Otero, D.; Nombela-Franco, L.; Gheorghe, L.; Diez, J.L.; Baladron Zorita, C.; et al. Dapagliflozin in Patients Undergoing Transcatheter Aortic-Valve Implantation. N. Engl. J. Med. 2025, 392, 1396–1405. [Google Scholar] [CrossRef]
- Shah, T.; Zhang, Z.; Shah, H.; Fanaroff, A.C.; Nathan, A.S.; Parise, H.; Lutz, J.; Sugeng, L.; Bellumkonda, L.; Redfors, B.; et al. Effect of Sodium-Glucose Cotransporter-2 Inhibitors on the Progression of Aortic Stenosis. JACC Cardiovasc. Interv. 2025, 18, 738–748. [Google Scholar] [CrossRef] [PubMed]
- Kwiecinski, J.; Tzolos, E.; Cartlidge, T.R.G.; Fletcher, A.; Doris, M.K.; Bing, R.; Tarkin, J.M.; Seidman, M.A.; Gulsin, G.S.; Cruden, N.L.; et al. Native Aortic Valve Disease Progression and Bioprosthetic Valve Degeneration in Patients With Transcatheter Aortic Valve Implantation. Circulation 2021, 144, 1396–1408. [Google Scholar] [CrossRef] [PubMed]
- Sellers, S.L.; Turner, C.T.; Sathananthan, J.; Cartlidge, T.R.G.; Sin, F.; Bouchareb, R.; Mooney, J.; Norgaard, B.L.; Bax, J.J.; Bernatchez, P.N.; et al. Transcatheter Aortic Heart Valves: Histological Analysis Providing Insight to Leaflet Thickening and Structural Valve Degeneration. JACC Cardiovasc. Imaging 2019, 12, 135–145. [Google Scholar] [CrossRef] [PubMed]
- Sato, Y.; Torii, S.; Kawai, K.; Yahagi, K.; Kutyna, M.; Kawakami, R.; Konishi, T.; Vozenilek, A.E.; Jinnouchi, H.; Sakamoto, A.; et al. Pathology of Self-Expanding Transcatheter Aortic Bioprostheses and Hypoattenuated Leaflet Thickening. Circ. Cardiovasc. Interv. 2025, 18, e014523. [Google Scholar] [CrossRef]
- Marchandot, B.; Trimaille, A.; Kikuchi, S.; Truong, D.P.; Carmona, A.; Morel, O. Subclinical Leaflet Thrombosis and Subclinical Aortic Valve Complex Thrombosis in TAVR. JACC Adv. 2025, 4, 102085. [Google Scholar] [CrossRef]
- Trimaille, A.; Hmadeh, S.; Marchandot, B.; Schini-Kerth, V.; Morel, O. SGLT2 Inhibition Mechanisms in Aortic Stenosis and Following Transcatheter Aortic Valve Replacement. JACC Cardiovasc. Interv. 2025, 18, 1831. [Google Scholar] [CrossRef]
- Abbas, M.T.; Awad, K.; Farina, J.M.; Tamarappoo, B.K.; Lee, K.S.; Lester, S.J.; Alsidawi, S.; Sell-Dottin, K.A.; Ayoub, C.; Arsanjani, R. The Association Between Sodium-Glucose Cotransporter 2 Inhibitors and Bioprosthetic Aortic Valve Degeneration. JACC Adv. 2025, 4, 101750. [Google Scholar] [CrossRef]
Before Propensity Score Matching | After Propensity Score Matching | |||||
---|---|---|---|---|---|---|
SGLT2i Post TAVR | No SGLT2i Post TAVR | Std Diff. (%) | SGLT2i Post TAVR | No SGLT2i Post TAVR | Std Diff. (%) | |
(n = 2372) | (n = 24,572) | (n = 2297) | (n = 2297) | |||
Demographics | ||||||
Age (years), mean ± SD | 75.9 ± 8.9 | 78.0 ± 8.5 | 23.9 | 76.0 ± 8.8 | 76.1 ± 9.3 | 0.3 |
Men, n (%) | 1441 (60.8%) | 13,136 (53.5%) | 14.8 | 1385 (60.3%) | 1381 (60.1%) | 0.4 |
White, n (%) | 1899 (80.1%) | 20,382 (82.9%) | 7.4 | 1843 (80.2%) | 1863 (81.1%) | 2.2 |
Black or African American, n (%) | 166 (7%) | 1146 (4.7%) | 10 | 160 (7%) | 152 (6.6%) | 1.4 |
Asian, n (%) | 90 (3.8%) | 695 (2.8%) | 5.4 | 87 (3.8%) | 72 (3.1%) | 3.6 |
Hispanic or Latino, n (%) | 116 (4.9%) | 770 (3.1%) | 9 | 107 (4.7%) | 114 (5%) | 1.4 |
Risk factors | ||||||
Hypertension, n (%) | 2036 (85.8%) | 20,961 (85.3%) | 1.5 | 1976 (86%) | 1973 (85.9%) | 0.4 |
Diabetes mellitus, n (%) | 1675 (70.6%) | 9833 (40%) | 64.7 | 1611 (70.1%) | 1667 (72.6%) | 5.4 |
Smoker, n (%) | 1079 (45.5%) | 9555 (38.9%) | 13.4 | 1047 (45.6%) | 1034 (45%) | 1.1 |
Overweight or obesity, n (%) | 1148 (48.4%) | 9164 (37.3%) | 22.6 | 1113 (48.5%) | 1126 (49%) | 1.1 |
Dyslipidemia, n (%) | 2071 (87.3%) | 20,710 (84.3%) | 8.7 | 2006 (87.3%) | 1998 (87%) | 1 |
Alcohol related diagnoses, n (%) | 83 (3.5%) | 617 (2.5%) | 5.8 | 81 (3.5%) | 85 (3.7%) | 0.9 |
Cardiovascular comorbidities | ||||||
Heart failure, n (%) | 2147 (90.5%) | 18,061 (73.5%) | 45.4 | 2072 (90.2%) | 2092 (91.1%) | 3 |
Coronary artery disease, n (%) | 2130 (89.8%) | 20,698 (84.2%) | 16.6 | 2059 (89.6%) | 2062 (89.8%) | 0.4 |
Myocardial infarction, n (%) | 680 (28.7%) | 4117 (16.8%) | 28.7 | 653 (28.4%) | 636 (27.7%) | 1.6 |
Ischemic stroke, n (%) | 325 (13.7%) | 2499 (10.2%) | 10.9 | 311 (13.5%) | 322 (14%) | 1.4 |
Intracranial hemorrhage, n (%) | 18 (0.8%) | 194 (0.8%) | 0.3 | 17 (0.7%) | 20 (0.9%) | 1.5 |
Atrial fibrillation or flutter, n (%) | 1303 (54.9%) | 10,481 (42.7%) | 24.8 | 1257 (54.7%) | 1246 (54.2%) | 1 |
Peripheral vascular disease, n (%) | 521 (22%) | 4459 (18.1%) | 9.5 | 501 (21.8%) | 493 (21.5%) | 0.8 |
Non-cardiovascular comorbidities | ||||||
Kidney disease, n (%) | 1487 (62.7%) | 10,765 (43.8%) | 38.5 | 1433 (62.4%) | 1475 (64.2%) | 3.8 |
COPD, n (%) | 613 (25.8%) | 4919 (20%) | 13.9 | 596 (25.9%) | 565 (24.6%) | 3.1 |
Sleep apnea syndrome, n (%) | 876 (36.9%) | 6125 (24.9%) | 26.2 | 840 (36.6%) | 872 (38%) | 2.9 |
Previous cancer, n (%) | 926 (39%) | 9112 (37.1%) | 4 | 899 (39.1%) | 930 (40.5%) | 2.8 |
Cognitive impairment, n (%) | 26 (1.1%) | 280 (1.1%) | 0.4 | 25 (1.1%) | 27 (1.2%) | 0.8 |
Laboratory tests and examinations | ||||||
Body mass index (kg/m2), mean ± SD | 30.2 ± 7.1 | 29.3 ± 6.6 | 13.2 | 30.2 ± 7.1 | 30.3 ± 6.8 | 1.3 |
Total cholesterol (mg/dL), mean ± SD | 139.8 ± 39.0 | 150.5 ± 41.3 | 26.6 | 140.0 ± 39.0 | 139.5 ± 37.2 | 1.4 |
LDL cholesterol (mg/dL), mean ± SD | 70.8 ± 30.6 | 78.3 ± 32.7 | 23.6 | 70.9 ± 30.6 | 71.2 ± 29.8 | 0.8 |
HDL cholesterol (mg/dL), mean ± SD | 42.0 ± 17.5 | 45.4 ± 20.6 | 17.9 | 42.1 ± 17.6 | 41.8 ± 18.1 | 1.6 |
Triglyceride (mg/dL), mean ± SD | 129.6 ± 95.4 | 119.2 ± 68.6 | 12.5 | 129.8 ± 95.8 | 125.9 ± 75.1 | 4.5 |
HbA1c >= 6%, n (%) | 1368 (57.7%) | 7982 (32.5%) | 52.3 | 1323 (57.6%) | 1364 (59.4%) | 3.6 |
Estimated GFR (MDRD, mL/min), mean ± SD | 61.0 ± 25.4 | 65.1 ± 26.2 | 15.7 | 61.0 ± 25.1 | 59.9 ± 26.9 | 3.9 |
BNP, ng/L, mean ± SD | 1056.9 ± 2389.7 | 1109.8 ± 4254.2 | 1.5 | 1069.6 ± 2427.7 | 927.0 ± 1902.4 | 6.5 |
NT-proBNP, ng/L, mean ± SD | 4487.0 ± 7191.7 | 3647.5 ± 8391.8 | 10.7 | 4480.4 ± 7215.8 | 4984.5 ± 9637.5 | 5.9 |
LVEF, mean ± SD | 50.9 ± 16.1 | 58.7 ± 11.4 | 56 | 51.3 ± 16.0 | 51.9 ± 15.4 | 3.8 |
Medications | ||||||
Beta Blockers, n (%) | 1989 (83.9%) | 17,417 (70.9%) | 31.4 | 1916 (83.4%) | 1929 (84%) | 1.5 |
Calcium Channel Blockers, n (%) | 1742 (73.4%) | 17,963 (73.1%) | 0.8 | 1688 (73.5%) | 1682 (73.2%) | 0.6 |
ACE Inhibitors, n (%) | 894 (37.7%) | 7865 (32%) | 11.9 | 858 (37.4%) | 893 (38.9%) | 3.1 |
Angiotensin II receptor blockers, n (%) | 1325 (55.9%) | 8580 (34.9%) | 43 | 1257 (54.7%) | 1258 (54.8%) | 0.1 |
MRA, n (%) | 969 (40.9%) | 3074 (12.5%) | 67.6 | 901 (39.2%) | 870 (37.9%) | 2.8 |
Digitalis glycosides, n (%) | 187 (7.9%) | 1076 (4.4%) | 14.6 | 177 (7.7%) | 205 (8.9%) | 4.4 |
Diuretics, n (%) | 2115 (89.2%) | 17,019 (69.3%) | 50.6 | 2040 (88.8%) | 2088 (90.9%) | 6.9 |
Lipid-lowering drugs, n (%) | 2199 (92.7%) | 20,741 (84.4%) | 26.3 | 2127 (92.6%) | 2140 (93.2%) | 2.2 |
Insulin, n (%) | 696 (29.3%) | 3195 (13%) | 40.8 | 666 (29%) | 696 (30.3%) | 2.9 |
Metformin, n (%) | 869 (36.6%) | 3578 (14.6%) | 52.3 | 824 (35.9%) | 850 (37%) | 2.4 |
Sulfonylureas, n (%) | 460 (19.4%) | 1718 (7%) | 37.3 | 436 (19%) | 473 (20.6%) | 4 |
GLP-1 receptor agonists, n (%) | 365 (15.4%) | 926 (3.8%) | 40.3 | 336 (14.6%) | 333 (14.5%) | 0.4 |
DPP4 inhibitors, n (%) | 277 (11.7%) | 925 (3.8%) | 30 | 261 (11.4%) | 258 (11.2%) | 0.4 |
Thiazolidinediones, n (%) | 105 (4.4%) | 289 (1.2%) | 19.8 | 96 (4.2%) | 98 (4.3%) | 0.4 |
Antiplatelet therapy, n (%) | 2320 (97.8%) | 23,968 (97.5%) | 1.8 | 2246 (97.8%) | 2248 (97.9%) | 0.6 |
Anticoagulant, n (%) | 1052 (44.4%) | 7718 (31.4%) | 26.9 | 1012 (44.1%) | 1019 (44.4%) | 0.6 |
SGLT2i Post TAVR | No SGLT2i Post TAVR | Hazard Ratio (95% CI) | p Value | |||
---|---|---|---|---|---|---|
(n = 2297) | (n = 2297) | |||||
Number of Events | Yearly Rate, % | Number of Events | Yearly Rate, % | |||
Death | 250 | 7.51 | 370 | 8.57 | 0.828 (0.705–0.973) | 0.02 |
Bioprosthetic valve failure | 27 | 0.75 | 51 | 1.34 | 0.617 (0.387–0.985) | 0.04 |
Incident cardiogenic shock | 50 | 1.70 | 47 | 1.49 | 1.338 (0.897–1.997) | 0.15 |
Incident acute pulmonary edema | 43 | 1.42 | 39 | 1.10 | 1.323 (0.857–2.045) | 0.21 |
Incident HF | 26 | 6.10 | 35 | 10.58 | 0.76 (0.457–1.263) | 0.29 |
Ischemic stroke or thromboembolism | 95 | 4.01 | 105 | 3.56 | 1.113 (0.842–1.471) | 0.45 |
Major bleeding | 444 | 11.70 | 550 | 12.27 | 0.925 (0.816–1.049) | 0.22 |
Acute MI | 62 | 1.63 | 81 | 1.99 | 0.893 (0.641–1.245) | 0.51 |
Pacemaker or ICD implantation | 97 | 3.70 | 97 | 3.45 | 1.204 (0.908–1.597) | 0.2 |
AV block | 80 | 4.11 | 85 | 3.56 | 1.153 (0.848–1.566) | 0.36 |
Incident AF | 90 | 6.46 | 140 | 7.53 | 0.776 (0.595–1.011) | 0.06 |
VT/VF/Cardiac arrest | 252 | 6.47 | 274 | 5.88 | 1.054 (0.888–1.251) | 0.55 |
MI/stroke/HF/death | 815 | 15.68 | 868 | 16.45 | 1.047 (0.952–1.153) | 0.35 |
ESKD | 29 | 1.08 | 34 | 1.16 | 1.087 (0.660–1.788) | 0.74 |
Incident cancer | 118 | 7.83 | 138 | 7.40 | 1.014 (0.792–1.297) | 0.91 |
Incident endocarditis | 58 | 2.30 | 75 | 2.16 | 0.933 (0.661–1.316) | 0.69 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morel, O.; Granier, A.; Lochon, L.; Trimaille, A.; Bisson, A.; Marchandot, B.; Bernard, A.; Fauchier, L. Association of SGLT2 Inhibitors with Mortality and Bioprosthesis Valve Failure After TAVR: A Propensity-Matched Cohort Study. J. Clin. Med. 2025, 14, 7001. https://doi.org/10.3390/jcm14197001
Morel O, Granier A, Lochon L, Trimaille A, Bisson A, Marchandot B, Bernard A, Fauchier L. Association of SGLT2 Inhibitors with Mortality and Bioprosthesis Valve Failure After TAVR: A Propensity-Matched Cohort Study. Journal of Clinical Medicine. 2025; 14(19):7001. https://doi.org/10.3390/jcm14197001
Chicago/Turabian StyleMorel, Olivier, Amandine Granier, Lisa Lochon, Antonin Trimaille, Arnaud Bisson, Benjamin Marchandot, Anne Bernard, and Laurent Fauchier. 2025. "Association of SGLT2 Inhibitors with Mortality and Bioprosthesis Valve Failure After TAVR: A Propensity-Matched Cohort Study" Journal of Clinical Medicine 14, no. 19: 7001. https://doi.org/10.3390/jcm14197001
APA StyleMorel, O., Granier, A., Lochon, L., Trimaille, A., Bisson, A., Marchandot, B., Bernard, A., & Fauchier, L. (2025). Association of SGLT2 Inhibitors with Mortality and Bioprosthesis Valve Failure After TAVR: A Propensity-Matched Cohort Study. Journal of Clinical Medicine, 14(19), 7001. https://doi.org/10.3390/jcm14197001