Sociodemographic and Health Determinants of Adipose Tissue Distribution in a Local Community from Eastern Poland: A Cross-Sectional Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Data Collection and Ethics Approval
2.3. Anthropometric Measurements and Determination of Anthropometric Indices Related to Overweight and Obesity
2.4. Covariates
2.5. Statistical Analysis
3. Results
3.1. General Characteristics of the Study Participants
3.2. Relationship Between Sociodemographic and Health Variables and Anthropometric Indices Related to Adipose Tissue Distribution
3.3. Multivariable Association Between Anthropometric Indices Related to Adipose Tissue Distribution and Socioeconomic and Health Factors
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Newton, S.; Braithwaite, D.; Akinyemiju, T.F. Socio-economic status over the life course and obesity: Systematic review and meta-analysis. PLoS ONE 2017, 12, e0177151. [Google Scholar] [CrossRef]
- Autret, K.; Bekelman, T.A. Socioeconomic status and obesity. J. Endocr. Soc. 2024, 8, bvae176. [Google Scholar] [CrossRef] [PubMed]
- Diamantis, D.V.; Karatzi, K.; Kantaras, P.; Liatis, S.; Iotova, V.; Bazdraska, Y.; Tankova, T.; Cardon, G.; Wikström, K.; Rurik, I.; et al. Prevalence and socioeconomic correlates of adult obesity in Europe: The Feel4Diabetes Study. Int. J. Environ. Res. Public Health 2022, 19, 12572. [Google Scholar] [CrossRef]
- Kim, T.J.; von dem Knesebeck, O. Income and obesity: What is the direction of the relationship? A systematic review and meta-analysis. BMJ Open 2018, 8, e019862. [Google Scholar] [CrossRef] [PubMed]
- van den Berg, G.; van Eijsden, M.; Vrijkotte, T.G.; Gemke, R.J. BMI may underestimate the socioeconomic gradient in true obesity. Pediatr. Obes. 2013, 8, e37–e40. [Google Scholar] [CrossRef]
- Witkam, R.; Gwinnutt, J.M.; Humphreys, J.; Gandrup, J.; Cooper, R.; Verstappen, S.M.M. Do associations between education and obesity vary depending on the measure of obesity used? A systematic literature review and meta-analysis. SSM Popul. Health 2021, 15, 100884. [Google Scholar] [CrossRef]
- Ross, R.; Neeland, I.J.; Yamashita, S.; Shai, I.; Seidell, J.; Magni, P.; Santos, R.D.; Arsenault, B.; Cuevas, A.; Hu, F.B.; et al. Waist circumference as a vital sign in clinical practice: A Consensus Statement from the IAS and ICCR Working Group on Visceral Obesity. Nat. Rev. Endocrinol. 2020, 16, 177–189. [Google Scholar] [CrossRef]
- Ehrampoush, E.; Arasteh, P.; Homayounfar, R.; Cheraghpour, M.; Alipour, M.; Naghizadeh, M.M.; Hadibarhaghtalab, M.; Davoodi, S.H.; Askari, A.; Razaz, J.M. New anthropometric indices or old ones: Which is the better predictor of body fat? Diabetes Metab. Syndr. 2017, 11, 257–263. [Google Scholar] [CrossRef] [PubMed]
- Guerrero-Romero, F.; Rodríguez-Morán, M. Abdominal volume index. An anthropometry-based index for estimation of obesity is strongly related to impaired glucose tolerance and type 2 diabetes mellitus. Arch. Med. Res. 2003, 34, 428–432. [Google Scholar] [CrossRef]
- Park, Y.; Kim, N.H.; Kwon, T.Y.; Kim, S.G. A novel adiposity index as an integrated predictor of cardiometabolic disease morbidity and mortality. Sci. Rep. 2018, 8, 16753. [Google Scholar] [CrossRef]
- Valdez, R. A simple model-based index of abdominal adiposity. J. Clin. Epidemiol. 1991, 44, 955–956. [Google Scholar] [CrossRef]
- Program PL 13. Publication of Mortality Rates for Selected Districts. Available online: https://archiwum.zdrowie.gov.pl/aktualnosc-27-2136-Program_PL_13___publikacja_wskaznikow_umieralnosci_dla_wybranych_powiatow.html (accessed on 19 October 2024).
- Nowicki, G.J.; Ślusarska, B.; Piasecka, H.; Bartoszek, A.; Kocka, K.; Deluga, A. The status of cardiovascular health in rural and urban areas of Janów Lubelski District in Eastern Poland: A population-based Study. Int. J. Environ. Res. Public Health 2018, 15, 2388. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Physical Status: The Use and Interpretation of Anthropometry. Report of a WHO Expert Committee; WHO Technical Report Series 854; World Health Organization: Geneva, Switzerland, 1995. [Google Scholar]
- Ashwell, M.; Gunn, P.; Gibson, S. Waist-to-height ratio is a better screening tool than waist circumference and BMI for adult cardiometabolic risk factors: Systematic review and meta-analysis. Obes. Rev. 2012, 13, 275–286. [Google Scholar] [CrossRef]
- Al-Ahmadi, J.; Enani, S.; Bahijri, S.; Al-Raddadi, R.; Jambi, H.; Eldakhakhny, B.; Borai, A.; Ajabnoor, G.; Tuomilehto, J. Association between anthropometric indices and nonanthropometric components of metabolic syndrome in Saudi Adults. J. Endocr. Soc. 2022, 6, bvac055. [Google Scholar] [CrossRef] [PubMed]
- Kroenke, K.; Spitzer, R.L.; Williams, J.B. The PHQ-9: Validity of a brief depression severity measure. J. Gen. Intern. Med. 2001, 16, 606–613. [Google Scholar] [CrossRef]
- Ślusarska, B.J.; Nowicki, G.; Piasecka, H.; Zarzycka, D.; Mazur, A.; Saran, T.; Bednarek, A. Validation of the Polish language version of the Patient Health Questionnaire-9 in a population of adults aged 35–64. Ann. Agric. Environ. Med. 2019, 26, 420–424. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Hernández, A.; Beneit, N.; Díaz-Castroverde, S.; Escribano, Ó. Differential role of adipose tissues in obesity and related metabolic and vascular complications. Int. J. Endocrinol. 2016, 2016, 1216783. [Google Scholar] [CrossRef] [PubMed]
- De Lorenzo, A.; Del Gobbo, V.; Premrov, M.G.; Bigioni, M.; Galvano, F.; Di Renzo, L. Normal-weight obese syndrome: Early inflammation? Am. J. Clin. Nutr. 2007, 85, 40–45. [Google Scholar] [CrossRef]
- Männistö, S.; Harald, K.; Kontto, J.; Lahti-Koski, M.; Kaartinen, N.E.; Saarni, S.E.; Kanerva, N.; Jousilahti, P. Dietary and lifestyle characteristics associated with normal-weight obesity: The National FINRISK 2007 Study. Br. J. Nutr. 2014, 111, 887–894. [Google Scholar] [CrossRef]
- Karkhaneh, M.; Qorbani, M.; Mohajeri-Tehrani, M.R.; Hoseini, S. Association of serum complement C3 with metabolic syndrome components in normal weight obese women. J. Diabetes Metab. Disord. 2017, 16, 49. [Google Scholar] [CrossRef]
- Musálek, M.; Pařízková, J.; Godina, E.; Bondareva, E.; Kokštejn, J.; Jírovec, J.; Vokounová, Š. Poor skeletal robustness on lower extremities and weak lean mass development on upper arm and calf: Normal weight obesity in middle-school-aged children (9 to 12). Front. Pediatr. 2018, 6, 371. [Google Scholar] [CrossRef] [PubMed]
- Ohlsson, B.; Manjer, J. Sociodemographic and lifestyle factors in relation to overweight defined by BMI and “normal-weight obesity”. J. Obes. 2020, 2020, 2070297. [Google Scholar] [CrossRef] [PubMed]
- Grzelak-Kostulska, E.; Sypion-Dutkowska, N.; Michalski, T. Changes in the health situation of the population of Poland following the accession to the European Union (compared to Central and Eastern European countries). J. Geogr. Politics Soc. 2017, 7, 24–38. [Google Scholar] [CrossRef]
- European Commission. Food Safety, Food Law General Principles. Available online: https://ec.europa.eu/food/horizontal-topics/general-food-law/food-law-general-principles_en (accessed on 19 October 2024).
- Statistics Poland. Statistical Yearbook of the Republic of Poland 2021. Available online: https://stat.gov.pl/en/topics/statistical-yearbooks/statistical-yearbooks/statistical-yearbook-of-the-republic-of-poland-2021,2,23.html (accessed on 19 October 2024).
- Guglielmi, V.; Maresca, L.; D’Adamo, M.; Di Roma, M.; Lanzillo, C.; Federici, M.; Lauro, D.; Preziosi, P.; Bellia, A.; Sbraccia, P. Age-related different relationships between ectopic adipose tissues and measures of central obesity in sedentary subjects. PLoS ONE 2014, 9, e103381. [Google Scholar] [CrossRef]
- Jezewska-Zychowicz, M.; Gębski, J.; Plichta, M.; Guzek, D.; Kosicka-Gębska, M. Diet-related factors, physical activity, and weight status in Polish adults. Nutrients 2019, 11, 2532. [Google Scholar] [CrossRef]
- Wadd, S.; Papadopoulos, C. Drinking behaviour and alcohol-related harm amongst older adults: Analysis of existing UK datasets. BMC Res. Notes 2014, 7, 741. [Google Scholar] [CrossRef] [PubMed]
- Krachler, B.; Eliasson, M.; Stenlund, H.; Johansson, I.; Hallmans, G.; Lindahl, B. Population-wide changes in reported lifestyle are associated with redistribution of adipose tissue. Scand. J. Public Health 2009, 37, 545–553. [Google Scholar] [CrossRef]
- Stoś, K.; Rychlik, E.; Woźniak, A.; Ołtarzewski, M.; Jankowski, M.; Gujski, M.; Juszczyk, G. Prevalence and sociodemographic factors associated with overweight and obesity among adults in Poland: A 2019/2020 nationwide cross-sectional survey. Int. J. Environ. Res. Public Health 2022, 19, 1502. [Google Scholar] [CrossRef]
- McCormack, G.R.; Friedenreich, C.; McLaren, L.; Potestio, M.; Sandalack, B.; Csizmadi, I. Interactions between neighbourhood urban form and socioeconomic status and their associations with anthropometric measurements in Canadian adults. J. Environ. Public Health 2017, 2017, 5042614. [Google Scholar] [CrossRef]
- Strandhagen, E.; Berg, C.; Lissner, L.; Nunez, L.; Rosengren, A.; Torén, K.; Thelle, D.S. Selection bias in a population survey with registry linkage: Potential effect on socioeconomic gradient in cardiovascular risk. Eur. J. Epidemiol. 2010, 25, 163–172. [Google Scholar] [CrossRef]
- Milaneschi, Y.; Simmons, W.K.; van Rossum, E.F.C.; Penninx, B.W. Depression and obesity: Evidence of shared biological mechanisms. Mol. Psychiatry 2019, 24, 18–33. [Google Scholar] [CrossRef]
- Chae, W.R.; Schienkiewitz, A.; Du, Y.; Hapke, U.; Otte, C.; Michalski, N. Comorbid depression and obesity among adults in Germany: Effects of age, sex, and socioeconomic status. J. Affect. Disord. 2022, 299, 383–392. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, A.; Jungbluth Rodriguez, K.; Sabag, A.; Mavros, Y.; Parker, H.M.; Keating, S.E.; Johnson, N.A. Effect of aerobic exercise on waist circumference in adults with overweight or obesity: A systematic review and meta-analysis. Obes. Rev. 2022, 23, e13446. [Google Scholar] [CrossRef] [PubMed]
- Cornelis, M.C.; Chiuve, S.E.; Glymour, M.M.; Chang, S.C.; Tchetgen Tchetgen, E.J.; Liang, L.; Koenen, K.C.; Rimm, E.B.; Kawachi, I.; Kubzansky, L.D. Bachelors, divorcees, and widowers: Does marriage protect men from type 2 diabetes? PLoS ONE 2014, 9, e106720. [Google Scholar] [CrossRef]
- Faulkner, J.L.; Belin de Chantemèle, E.J. Sex differences in mechanisms of hypertension associated with obesity. Hypertension 2018, 71, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Brooks, V.L.; Shi, Z.; Holwerda, S.W.; Fadel, P.J. Obesity-induced increases in sympathetic nerve activity: Sex matters. Auton. Neurosci. 2015, 187, 18–26. [Google Scholar] [CrossRef]
- Hall, J.E.; do Carmo, J.M.; da Silva, A.A.; Wang, Z.; Hall, M.E. Obesity-induced hypertension: Interaction of neurohumoral and renal mechanisms. Circ. Res. 2015, 116, 991–1006. [Google Scholar] [CrossRef]
- Engeli, S.; Sharma, A.M. The renin-angiotensin system and natriuretic peptides in obesity-associated hypertension. J. Mol. Med. 2001, 79, 21–29. [Google Scholar] [CrossRef]
- Dagne, S.; Gelaw, Y.A.; Abebe, Z.; Wassie, M.M. Factors associated with overweight and obesity among adults in northeast Ethiopia: A cross-sectional study. Diabetes Metab. Syndr. Obes. 2019, 12, 391–399. [Google Scholar] [CrossRef]
- Owolabi, E.O.; Ter Goon, D.; Adeniyi, O.V. Central obesity and normal-weight central obesity among adults attending healthcare facilities in Buffalo City Metropolitan Municipality, South Africa: A cross-sectional study. J. Health Popul. Nutr. 2017, 36, 54. [Google Scholar] [CrossRef] [PubMed]
- Silva, Y.F.R.; Martins, C.A.; Cattafesta, M.; Haraguchi, F.K.; Soares, F.L.P.; Pedraza, D.F.; Salaroli, L.B. Cut-off values of the conicity index for cardiovascular risk assessment and abdominal obesity in the Brazilian population. Nutrition 2025, 139, 112853. [Google Scholar] [CrossRef] [PubMed]
- Filgueiras, M.S.; Vieira, S.A.; Fonseca, P.C.A.; Pereira, P.F.; Ribeiro, A.Q.; Priore, S.E.; Franceschini, S.D.C.C.; Novaes, J.F. Waist circumference, waist-to-height ratio and conicity index to evaluate android fat excess in Brazilian children. Public Health Nutr. 2019, 22, 140–146. [Google Scholar] [CrossRef]
- Li, L.M.; Lei, S.F.; Chen, X.D.; Deng, F.Y.; Tan, L.J.; Zhu, X.Z.; Deng, H.W. Anthropometric indices as the predictors of trunk obesity in Chinese young adults: Receiver operating characteristic analyses. Ann. Hum. Biol. 2008, 35, 342–348. [Google Scholar] [CrossRef] [PubMed]
Variables | Total (n = 3752) a |
---|---|
Demographic data: | |
Age [years] | 51.92 ± 8.15 |
Sex | |
Female | 2201 (58.6) |
Male | 1551 (41.35) |
Place of residence | |
Rural | 2509 (66.86) |
Urban | 1243 (33.14) |
Education | |
Primary | 413 (11.01) |
Vocational | 1390 (37.06) |
Secondary | 1204 (32.07) |
Higher | 745 (19.86) |
Marital status | |
Married | 3300 (87.95) |
Single (bachelor/bachelorette) | 272 (7.25) |
Widow/widower | 180 (4.8) |
Living alone (Yes) | 174 (4.64) |
Health data: | |
Smoking status: | |
Active smoker | 595 (15.86) |
Former smoker | 782 (20.84) |
Never-smoker | 2375 (63.3) |
Alcohol consumption: | |
No or less than once a month | 3345 (89.2) |
Between once a month and once a week | 237 (6.3) |
More than once a week | 170 (4.5) |
Physical activity (performing ≥ 150 min of activity each week) | 1604 (42.76) |
Co-morbidities: | 1088 (29) |
Diabetes | 147 (3.92) |
Hypertension | 954 (25.43) |
Hypercholesterolemia | 340 (9.06) |
PHQ-9 (≥10) | 605 (16.1) |
BMI [kg/m2]: | |
Normal [18.5–24.99 kg/m2] | 905 (24.22) |
Overweight [25–29.99 kg/m2] | 1510 (40.41) |
Obesity [≥30 kg/m2] | 1322 (35.37) |
BMI | 28.55 ± 4.98 |
C-Index | 1.26 ± 0.088 |
AVI | 18.28 ± 4.96 |
WWI | 10.63 ± 0.73 |
Variables | C-Index | p | AVI | p | WWI | p |
---|---|---|---|---|---|---|
Demographic data: | ||||||
Age [years] | r = 0.33 | <0.001 | r = 0.27 | <0.001 | r = 0.4 | <0.001 |
Sex: | ||||||
Female | 1.23 ± 0.09 | <0.001 | 16.87 ± 4.77 | <0.001 | 10.56 ± 0.81 | <0.001 |
Male | 1.3 ± 0.07 | 20.28 ± 4.54 | 10.73 ± 0.59 | |||
Place of residence: | ||||||
Rural | 1.26 ± 0.09 | <0.001 | 18.96 ± 4.96 | <0.001 | 10.66 ± 0.73 | <0.001 |
Urban | 1.25 ± 0.09 | 17.74 ± 4.93 | 10.56 ± 0.73 | |||
Education: | ||||||
Primary | 1.3 ± 0.08 | <0.001 | 20.33 ± 5.13 | <0.001 | 11.07 ± 0.66 | <0.001 |
Vocational | 1.27 ± 0.08 | 18.85 ± 4.86 | 10.72 ± 0.66 | |||
Secondary | 1.25 ± 0.08 | 18.02 ± 4.78 | 10.58 ± 0.71 | |||
Higher | 1.22 ± 0.09 | 16.51 ± 4.73 | 10.3 ± 0.76 | |||
Marital status: | ||||||
Married | 1.26 ± 0.09 | 0.98 | 18.31 ± 4.91 | 0.46 | 10.62 ± 0.73 | <0.001 |
Single (bachelor/bachelorette) | 1.26 ± 0.09 | 18.08 ± 5.77 | 10.61 ± 0.76 | |||
Widow/widower | 1.26 ± 0.08 | 18.06 ± 4.7 | 10.87 ± 0.75 | |||
Living alone | ||||||
No | 1.26 ± 0.09 | 0.004 | 18.24 ± 4.91 | 0.01 | 10.62 ± 0.73 | <0.001 |
Yes | 1.27 ± 0.09 | 19.22 ± 5.83 | 10.86 ± 0.77 | |||
Health data: | ||||||
Smoking status: | ||||||
Active smoker | 1.27 ± 0.08 | <0.001 | 18.02 ± 4.86 | <0.001 | 10.64 ± 0.67 | <0.001 |
Former smoker | 1.27 ± 0.08 | 19.39 ± 4.94 | 10.71 ± 0.68 | |||
Never-smoker | 1.24 ± 0.09 | 17.98 ± 4.92 | 10.6 ± 0.75 | |||
Alcohol consumption: | ||||||
No or less than once a month | 1.25 ± 0.09 | <0.001 | 18.07 ± 4.9 | <0.001 | 10.62 ± 0.74 | 0.02 |
Between once a month and once a week | 1.29 ± 0.07 | 20.25 ± 5.43 | 10.74 ± 0.64 | |||
More than once a week | 1.29 ± 0.07 | 19.62 ± 4.78 | 10.7 ± 0.58 | |||
Physical activity (performing ≥ 150 min of activity each week): | ||||||
No | 1.26 ± 0.09 | 0.72 | 18.39 ± 5.13 | 0.113 | 10.63 ± 0.75 | 0.89 |
Yes | 1.26 ± 0.08 | 18.14 ± 4.74 | 10.63 ± 0.7 | |||
Co-morbidities: | ||||||
Diabetes: | ||||||
No | 1.25 ± 0.09 | <0.001 | 18.08 ± 4.8 | <0.001 | 10.61 ± 0.73 | <0.001 |
Yes | 1.32 ± 0.08 | 23.19 ± 6.3 | 11.17 ± 0.69 | |||
Hypertension: | ||||||
No | 1.24 ± 0.09 | <0.001 | 17.44 ± 4.66 | <0.001 | 10.51 ± 0.72 | <0.001 |
Yes | 1.29 ± 0.08 | 20.75 ± 5.0 | 10.97 ± 0.66 | |||
Hypercholesterolemia: | ||||||
No | 1.25 ± 0.09 | <0.001 | 18.04 ± 4.9 | <0.001 | 10.59 ± 0.73 | <0.001 |
Yes | 1.29 ± 0.08 | 20.68 ± 5.0 | 11 ± 0.67 | |||
PHQ-9 ≥ 10 | ||||||
No | 1.26 ± 0.08 | 0.17 | 18.2 ± 4.88 | 0.02 | 10.61 ± 0.71 | <0.001 |
Yes | 1.26 ± 0.1 | 18.71 ± 5.38 | 10.74 ± 0.84 |
Variables | C-Index | p | AVI | p | WWI | p |
---|---|---|---|---|---|---|
Demographic data: | ||||||
Age [years] | r = 0.26 | <0.001 | r = 0.21 | <0.001 | r = 0.3 | <0.001 |
Sex: | ||||||
Female | 1.17 ± 0.08 | <0.001 | 12.31 ± 1.95 | <0.001 | 10 ± 0.72 | <0.001 |
Male | 1.26 ± 0.06 | 15.15 ± 2.01 | 10.43 ± 0.57 | |||
Place of residence: | ||||||
Rural | 1.2 ± 0.09 | 0.066 | 13.28 ± 2.3 | 0.06 | 10.16 ± 0.71 | 0.13 |
Urban | 1.19 ± 0.08 | 12.98 ± 2.43 | 10.09 ± 0.69 | |||
Education: | ||||||
Primary | 1.25 ± 0.08 | <0.001 | 14.35 ± 2.36 | <0.001 | 10.61 ± 0.64 | <0.001 |
Vocational | 1.21 ± 0.08 | 13.67 ± 2.32 | 10.24 ± 0.6 | |||
Secondary | 1.19 ± 0.08 | 12.99 ± 2.29 | 10.12 ± 0.69 | |||
Higher | 1.17 ± 0.09 | 12.5 ± 2.24 | 9.91 ± 0.75 | |||
Marital status: | ||||||
Married | 1.19 ± 0.09 | 0.92 | 13.19 ± 2.36 | 0.65 | 10.13 ± 0.71 | 0.23 |
Single (bachelor/bachelorette) | 1.19 ±0.08 | 13.06 ± 2.4 | 10.08 ± 0.67 | |||
Widow/widower | 1.2 ± 0.08 | 12.86 ± 2.18 | 10.32 ± 0.69 | |||
Living alone | ||||||
No | 1.2 ± 0.09 | 0.52 | 13.19 ± 2.37 | 0.072 | 10.13 ± 0.71 | 0.95 |
Yes | 1.2 ± 0.06 | 12.46 ± 1.89 | 10.14 ± 0.57 | |||
Health data: | ||||||
Smoking status: | ||||||
Active smoker | 1.23 ± 0.08 | <0.001 | 13.94 ± 2.34 | <0.001 | 10.32 ± 0.6 | <0.001 |
Former smoker | 1.21 ± 0.09 | 13.66 ± 2.62 | 10.19 ± 0.71 | |||
Never-smoker | 1.18 ± 0.09 | 12.76 ± 2.2 | 10.05 ± 0.72 | |||
Alcohol consumption: | ||||||
No or less than once a month | 1.19 ± 0.09 | <0.001 | 13.04 ± 2.32 | <0.001 | 10.1 ± 0.71 | <0.001 |
Between once a month and once a week | 1.24 ± 0.07 | 14.42 ± 2.19 | 10.41 ± 0.58 | |||
More than once a week | 1.24 ± 0.07 | 14.18 ± 2.63 | 10.39 ± 0.59 | |||
Physical activity (performing ≥ 150 min of activity each week): | ||||||
No | 1.19 ± 0.09 | 0.013 | 13.03 ± 2.39 | 0.05 | 10.07± 0.73 | 0.008 |
Yes | 1.2 ± 0.08 | 13.33 ± 2.31 | 10.2 ±0.67 | |||
Co-morbidities: | ||||||
Diabetes: | ||||||
No | 1.19 ± 0.09 | 0.42 | 13.16 ± 2.36 | 0.3 | 10.13 ± 0.7 | 0.32 |
Yes | 1.22 ± 0.08 | 13.93 ± 1.61 | 10.35 ±0.72 | |||
Hypertension: | ||||||
No | 1.19 ± 0.08 | <0.001 | 13.07 ± 2.33 | <0.001 | 10.1 ± 0.69 | <0.001 |
Yes | 1.24 ± 0.09 | 14.16 ± 2.41 | 10.5 ± 0.76 | |||
Hypercholesterolemia: | ||||||
No | 1.19 ± 0.87 | 0.81 | 13.16 ± 2.36 | 0.91 | 10.13 ± 0.71 | 0.31 |
Yes | 1.2 ± 0.78 | 13.22 ±2.09 | 10.29 ± 0.64 | |||
PHQ-9 ≥ 10 | ||||||
No | 1.2 ± 0.08 | 0.03 | 13.22 ± 2.33 | 0.078 | 10.15 ± 0.66 | 0.12 |
Yes | 1.18 ± 0.11 | 12.83 ± 2.51 | 10.04 ± 0.94 |
Variables | C-Index | R2 | AVI | R2 | WWI | R2 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
b | SE | p | b | SE | p | b | SE | p | ||||
Demographic data: | 30% | 27% | 23% | |||||||||
Age [years] | 0.02 | 0.0002 | <0.001 | 0.089 | 0.01 | <0.001 | 0.026 | 0.001 | <0.001 | |||
Sex (reference category: Female): | ||||||||||||
Male | 0.06 | 0.003 | <0.001 | 3.19 | 0.155 | <0.001 | 0.099 | 0.023 | <0.001 | |||
Place of residence (reference category: Urban): | ||||||||||||
Rural | 0.004 | 0.003 | 0.098 | 0.602 | 0.16 | <0.001 | 0.05 | 0.024 | 0.038 | |||
Education (reference category: Primary): | ||||||||||||
Vocational | −0.018 | 0.004 | <0.001 | −0.781 | 0.244 | 0.001 | −0.186 | 0.037 | <0.001 | |||
Secondary | −0.03 | 0.004 | <0.001 | −1.027 | 0.254 | <0.001 | −0.291 | 0.038 | <0.001 | |||
Higher | −0.042 | 0.005 | <0.001 | −1.593 | 0.29 | <0.001 | −0.426 | 0.044 | <0.001 | |||
Health data: | ||||||||||||
Smoking status (reference category: Never-smoker): | ||||||||||||
Active smoker | 0.003 | 0.003 | 0.025 | −0.766 | 0.201 | <0.001 | - | - | - | |||
Former smoker | 0.007 | 0.003 | 0.314 | 0.423 | 0.18 | 0.018 | - | - | - | |||
Alcohol consumption (reference category: No or less than once a month): | ||||||||||||
Between once a month and once a week | 0.01 | 0.005 | 0.044 | 0.839 | 0.295 | 0.004 | 0.091 | 0.045 | 0.041 | |||
More than once a week | 0.011 | 0.006 | 0.059 | 0.347 | 0.347 | 0.472 | 0.076 | 0.052 | 0.144 | |||
Co-morbidities: | ||||||||||||
Diabetes (reference category: No): | ||||||||||||
Yes | 0.026 | 0.006 | <0.001 | 2.603 | 0.374 | <0.001 | 0.201 | 0.056 | <0.001 | |||
Hypertension (reference category: No): | ||||||||||||
Yes | 0.028 | 0.003 | <0.001 | 2.354 | 0.178 | <0.001 | 0.232 | 0.027 | <0.001 | |||
Hypercholesterolemia (reference category: No): | ||||||||||||
Yes | - | - | - | 0.542 | 0.259 | 0.036 | 0.089 | 0.039 | 0.022 | |||
PHQ-9 ≥ 10 (reference category: No): | ||||||||||||
Yes | - | - | - | 0.446 | 0.192 | 0.02 | - | - | - |
Variables | C-Index | R2 | AVI | R2 | WWI | R2 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
b | SE | p | b | SE | p | b | SE | p | ||||
Demographic data: | 30% | 34% | 17% | |||||||||
Age [years] | 0.001 | 0.0003 | <0.001 | 0.031 | 0.008 | <0.001 | 0.017 | 0.003 | <0.001 | |||
Sex (reference category: Female): | ||||||||||||
Male | 0.077 | 0.006 | <0.001 | 2.685 | 0.148 | <0.001 | 0.305 | 0.05 | <0.001 | |||
Education (reference category: Primary): | ||||||||||||
Vocational | −0.018 | 0.01 | 0.06 | - | - | - | −0.217 | 0.09 | 0.017 | |||
Secondary | −0.023 | 0.011 | 0.03 | - | - | - | −0.237 | 0.09 | 0.011 | |||
Higher | −0.033 | 0.011 | 0.002 | - | - | - | −0.368 | 0.1 | <0.001 | |||
Living alone (reference category: No): | ||||||||||||
Yes | - | - | - | −0.956 | 0.335 | 0.004 | - | - | - | |||
Health data: | ||||||||||||
Smoking status (reference category: Never-smoker): | ||||||||||||
Active smoker | 0.014 | 0.007 | 0.048 | 0.188 | 2.85 | 0.004 | - | - | - | |||
Former smoker | 0.013 | 0.006 | 0.045 | 0.164 | 0.734 | 0.463 | - | - | - | |||
Co-morbidities: | ||||||||||||
Hypertension (reference category: No): | ||||||||||||
Yes | 0.0347 | 0.009 | <0.001 | 0.234 | 3.596 | <0.001 | 0.281 | 0.078 | <0.001 | |||
PHQ-9 ≥ 10 (reference category: No): | ||||||||||||
Yes | −0.018 | 0.007 | 0.009 | 0.184 | −1.667 | 0.096 | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Polak, M.; Nowicki, G.J.; Kozela, M.; Matyja, M.; Ślusarska, B. Sociodemographic and Health Determinants of Adipose Tissue Distribution in a Local Community from Eastern Poland: A Cross-Sectional Study. J. Clin. Med. 2025, 14, 6642. https://doi.org/10.3390/jcm14186642
Polak M, Nowicki GJ, Kozela M, Matyja M, Ślusarska B. Sociodemographic and Health Determinants of Adipose Tissue Distribution in a Local Community from Eastern Poland: A Cross-Sectional Study. Journal of Clinical Medicine. 2025; 14(18):6642. https://doi.org/10.3390/jcm14186642
Chicago/Turabian StylePolak, Maciej, Grzegorz Józef Nowicki, Magdalena Kozela, Maciej Matyja, and Barbara Ślusarska. 2025. "Sociodemographic and Health Determinants of Adipose Tissue Distribution in a Local Community from Eastern Poland: A Cross-Sectional Study" Journal of Clinical Medicine 14, no. 18: 6642. https://doi.org/10.3390/jcm14186642
APA StylePolak, M., Nowicki, G. J., Kozela, M., Matyja, M., & Ślusarska, B. (2025). Sociodemographic and Health Determinants of Adipose Tissue Distribution in a Local Community from Eastern Poland: A Cross-Sectional Study. Journal of Clinical Medicine, 14(18), 6642. https://doi.org/10.3390/jcm14186642