Hemodynamic Markers Predict Outcomes a Decade After Acute Coronary Syndrome
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ACEI | angiotensin-converting enzyme inhibitors |
ACS | acute coronary syndrome |
ARB | angiotensin receptor blockers |
CABG | coronary artery bypass grafting |
Ea | effective arterial elastance |
Ees | end-systolic elastance |
EF | ejection fraction |
ESP | end-systolic pressure |
ESV | end-systolic volume |
excessPTI | excess pressure-time integral |
GLPSS | global longitudinal peak systolic strain |
HR | hazard ratio |
LV | left ventricular |
LVOT | left ventricular outflow tract |
MACE | major adverse cardiac events |
MI | myocardial infarction |
PCI | percutaneous coronary intervention |
PWV | pulse wave velocity |
SD | standard deviation |
STEMI | ST-elevation myocardial infarction |
SV | stroke volume |
VA coupling | ventricular–arterial coupling |
VTI | velocity-time integral |
References
- Lu, B.; Posner, D.; Vassy, J.L.; Ho, Y.L.; Galloway, A.; Raghavan, S.; Honerlaw, J.; Tarko, L.; Russo, J.; Qazi, S.; et al. Prediction of cardiovascular and all-cause mortality after Myocardial Infarction in US Veterans. Am. J. Cardiol. 2022, 169, 10–17. [Google Scholar] [CrossRef]
- Ng, V.G.; Lansky, A.J.; Meller, S.; Witzenbichler, B.; Guagliumi, G.; Peruga, J.Z.; Brodie, B.; Shah, R.; Mehran, R.; Stone, G.W. The prognostic importance of left ventricular function in patients with ST-segment elevation myocardial infarction: The HORIZONS-AMI trial. Eur. Heart J. Acute Cardiovasc. Care 2014, 3, 67–77. [Google Scholar] [PubMed]
- Holzknecht, M.; Reindl, M.; Tiller, C.; Reinstadler, S.J.; Lechner, I.; Pamminger, M.; Schwaiger, J.P.; Klug, G.; Bauer, A.; Metzler, B.; et al. Global longitudinal strain improves risk assessment after ST-segment elevation myocardial infarction: A comparative prognostic evaluation of left ventricular functional parameters. Clin. Res. Cardiol. 2021, 10, 1599–1611. [Google Scholar] [CrossRef]
- Wykretowicz, A.; Schneider, A.; Krauze, T.; Szczepanik, A.; Banaszak, A.; Minczykowski, A.; Piskorski, J.; Guzik, P. Pulse wave velocity to the global longitudinal strain ratio in survivors of myocardial infarction. Eur. J. Clin. Investig. 2019, 8, e13131. [Google Scholar] [CrossRef]
- Milewska, A.; Minczykowski, A.; Krauze, T.; Piskorski, J.; Heathers, J.; Szczepanik, A.; Banaszak, A.; Guzik, P.; Wykretowicz, A. Prognosis after acute coronary syndrome in relation with ventricular-arterial coupling and left ventricular strain. Int. J. Cardiol. 2016, 220, 343–348. [Google Scholar]
- Schneider, A.; Krauze, T.; Minczykowski, A.; Dziarmaga, M.; Piskorski, J.; Szczepanik, A.; Banaszak, A.; Guzik, P.; Wykrętowicz, A. Arterial excess reservoir pressure integral as a predictor of cardiovascular complications in patients with acute coronary syndrome. Pol. Arch. Intern. Med. 2018, 128, 228–234. [Google Scholar]
- Ikonomidis, I.; Aboyans, V.; Blacher, J.; Brodmann, M.; Brutsaert, D.L.; Chirinos, J.A.; De Carlo, M.; Delgado, V.; Lancellotti, P.; Lekakis, J.; et al. The role of ventricular-arterial coupling in cardiac disease and heart failure: Assessment, clinical implications and therapeutic interventions. Eur. J. Heart Fail. 2019, 21, 402–424. [Google Scholar]
- De Tombe, P.P.; Jones, S.; Burkhoff, D.; Hunter, W.C.; Kass, D.A. Ventricular stroke work and efficiency both remain nearly optimal despite altered vascular loading. Am. J. Physiol. 1993, 264, H1817–H1824. [Google Scholar] [CrossRef] [PubMed]
- Saeed, S.; Holm, H.; Nilsson, P.M. Ventricular-arterial coupling: Definition, pathophysiology and therapeutic targets in cardiovascular disease. Expert Rev. Cardiovasc. Ther. 2021, 19, 753–761. [Google Scholar] [CrossRef]
- Scarlatescu, A.I.; Micheu, M.M.; Petre, I.G.; Oprescu, N.; Mihail, A.M.; Cojocaru, I.D.; Vatasescu, R.G. Left Ventricular-Arterial Coupling as an Independent Predictor of Adverse Events in Young Patients with ST Elevation Myocardial Infarction—A 3D Echocardiographic Study. Biomedicines 2024, 12, 105. [Google Scholar]
- Trambaiolo, P.; Bertini, P.; Borrelli, N.; Poli, M.; Romano, S.; Ferraiuolo, G.; Penco, M.; Guarracino, F. Evaluation of ventriculo-arterial coupling in ST elevation myocardial infarction with left ventricular dysfunction treated with levosimendan. Int. J. Cardiol. 2019, 288, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Fiori, G.; Fuiano, F.; Scorza, A.; Conforto, S.; Sciuto, S.A. Non-Invasive Methods for PWV Measurement in Blood Vessel Stiffness Assessment. IEEE Rev. Biomed. Eng. 2022, 15, 169–183. [Google Scholar] [CrossRef]
- Zhong, Q.; Hu, M.J.; Cui, Y.J.; Liang, L.; Zhou, M.M.; Yang, Y.W.; Huang, F. Carotid-Femoral Pulse Wave Velocity in the Prediction of Cardiovascular Events and Mortality: An Updated Systematic Review and Meta-Analysis. Angiology 2018, 69, 617–629. [Google Scholar] [CrossRef] [PubMed]
- Vlachopoulos, C.; Aznaouridis, K.; Stefanadis, C. Prediction of cardiovascular events and all-cause mortality with arterial stiffness: A systematic review and meta-analysis. J. Am. Coll. Cardiol. 2010, 55, 1318–1327. [Google Scholar] [CrossRef] [PubMed]
- Meiszterics, Z.; Simor, T.; van der Geest, R.J.; Farkas, N.; Gaszner, B. Evaluation of pulse wave velocity for predicting major adverse cardiovascular events in post-infarcted patients; comparison of oscillometric and MRI methods. Rev. Cardiovasc. Med. 2021, 22, 1701–1710. [Google Scholar] [CrossRef]
- Tang, C.J.; Lee, P.Y.; Chuang, Y.H.; Huang, C.C. Measurement of local pulse wave velocity for carotid artery by using an ultrasound-based method. Ultrasonics 2020, 102, 106064. [Google Scholar] [CrossRef]
- Ikonomidis, I.; Katsanos, S.; Triantafyllidi, H.; Parissis, J.; Tzortzis, S.; Pavlidis, G.; Trivilou, P.; Makavos, G.; Varoudi, M.; Frogoudaki, A.; et al. Pulse wave velocity to global longitudinal strain ratio in hypertension. Eur. J. Clin. Investig. 2019, 49, e13049. [Google Scholar] [CrossRef]
- Wang, J.J.; O’Brien, A.B.; Shrive, N.G.; Parker, K.H.; Tyberg, J.V. Time-domain representation of ventricular-arterial coupling as a windkessel and wave system. Am. J. Physiol. Heart Circ. Physiol. 2003, 284, H1358–H1368. [Google Scholar] [CrossRef]
- Parker, K.H.; Alastruey, J.; Stan, G.B. Arterial reservoir-excess pressure and ventricular work. Med. Biol. Eng. Comput. 2012, 50, 419–424. [Google Scholar] [CrossRef]
- Wang, W.T.; Sung, S.H.; Wang, J.J.; Wu, C.K.; Lin, L.Y.; Lee, J.C.; Cheng, H.M.; Chen, C.H. Excess Pressure Integral Predicts Long-Term All-Cause Mortality in Stable Heart Failure Patients. Am. J. Hypertens. 2017, 30, 271–278. [Google Scholar] [CrossRef] [PubMed]
- Sung, S.H.; Cheng, H.M.; Yu, W.C.; Chen, C.H. Pulsatile hemodynamics is associated with cardiorenal syndrome in patients with acute heart failure syndrome. J. Hypertens. 2016, 34, e436. [Google Scholar] [CrossRef]
- Davies, J.E.; Lacy, P.; Tillin, T.; Collier, D.; Cruickshank, J.K.; Francis, D.P.; Malaweera, A.; Mayet, J.; Stanton, A.; Williams, B.; et al. Excess pressure integral predicts cardiovascular events independent of other risk factors in the conduit artery functional evaluation substudy of Anglo-Scandinavian Cardiac Outcomes Trial. Hypertension 2014, 64, 60–68. [Google Scholar] [CrossRef]
- Narayan, O.; Davies, J.E.; Hughes, A.D.; Dart, A.M.; Parker, K.H.; Reid, C.; Cameron, J.D. Central aortic reservoir-wave analysis improves prediction of cardiovascular events in elderly hypertensives. Hypertension 2015, 65, 629–635. [Google Scholar] [CrossRef]
- Aizawa, K.; Casanova, F.; Gates, P.E.; Mawson, D.M.; Gooding, K.M.; Strain, W.D.; Östling, G.; Nilsson, J.; Khan, F.; Colhoun, H.M.; et al. Reservoir-Excess Pressure Parameters Independently Predict Cardiovascular Events in Individuals With Type 2 Diabetes. Hypertension 2021, 78, 40–50. [Google Scholar] [CrossRef]
- Climie, R.E.; Srikanth, V.; Beare, R.; Keith, L.J.; Fell, J.; Davies, J.E.; Sharman, J.E. Aortic reservoir characteristics and brain structure in people with type 2 diabetes mellitus; a cross-sectional study. Cardiovasc. Diabetol. 2014, 13, 143. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.T.; Cheng, H.M.; Yu, W.C.; Lin, Y.P.; Sung, S.H.; Wang, J.J.; Wu, C.L.; Chen, C.H. Value of Excess Pressure Integral for Predicting 15-Year All-Cause and Cardiovascular Mortalities in End-Stage Renal Disease Patients. J. Am. Heart Assoc. 2017, 6, e006701. [Google Scholar] [CrossRef]
- Lang, R.M.; Bierig, M.; Devereux, R.B.; Flachskampf, F.A.; Foster, E.; Pellikka, P.A.; Picard, M.H.; Roman, M.J.; Seward, J.; Shanewise, J.; et al. Recommendations for chamber quantification. Eur. J. Echocardiogr. 2006, 7, 79–108. [Google Scholar] [CrossRef]
- Chen, C.H.; Fetics, B.; Nevo, E.; Rochitte, C.E.; Chiou, K.R.; Ding, P.A.; Kawaguchi, M.; Kass, D.A. Noninvasive single-beat determination of left ventricular end-systolic elastance in humans. J. Am. Coll. Cardiol. 2001, 38, 2028–2034. [Google Scholar] [CrossRef]
- Spadafora, L.; Pastena, P.; Cacciatore, S.; Betti, M.; Biondi-Zoccai, G.; D’Ascenzo, F.; De Ferrari, G.M.; De Filippo, O.; Versaci, F.; Sciarretta, S.; et al. One-year prognostic differences and management strategies between ST-elevation and non-ST-elevation myocardial infarction: Insights from the PRAISE Registry. Am. J. Cardiovasc. Drugs 2025, 25, 681–691. [Google Scholar] [CrossRef] [PubMed]
- Fazzini, L.; Padkins, M.R.; Berg-Hansen, K.; Gori, M.; Kane, G.C.; Hillerson, D.B.; Tavazzi, G.; Reddy, Y.N.V.; Jae, O.K.; Borlaug, B.; et al. Left ventricular–arterial coupling and mortality in the cardiac intensive care unit. Eur. Heart J. Acute Cardiovasc. Care 2025, 14, 394–402. [Google Scholar] [CrossRef] [PubMed]
- Antonini-Canterin, F.; Enache, R.; Popescu, B.A.; Popescu, A.C.; Ginghina, C.; Leiballi, E.; Piazza, R.; Pavan, D.; Rubin, D.; Cappelletti, P.; et al. Prognostic value of ventricular–arterial coupling and B-type natriuretic peptide in patients after myocardial infarction: A five-year follow-up study. J. Am. Soc. Echocardiogr. 2009, 22, 1239–1245. [Google Scholar] [CrossRef]
- Backhaus, S.J.; Wolter, J.S.; Stiermaier, T.; Schulz, A.; Lange, T.; Kutty, S.; Weferling, M.; Treiber, J.M.; Kowallick, J.T.; Hasenfuß, G.; et al. Left ventricular deformation predicts major adverse cardiac events following acute myocardial infarction independently of afterload and ventricular–arterial coupling. Clin. Res. Cardiol. 2025, in press. [CrossRef]
- Aghezzaf, S.; Coisne, A.; Bauters, C.; Favata, F.; Delsart, P.; Coppin, A.; Seunes, C.; Schurtz, G.; Verdier, B.; Lamblin, N.; et al. Feasibility and prognostic significance of ventricular–arterial coupling after myocardial infarction: The RIGID-MI cohort. Eur. Heart J. Cardiovasc. Imaging 2024, 25, 668–677. [Google Scholar] [CrossRef]
- Yoon, H.M.; Joo, S.J.; Boo, K.Y.; Lee, J.G.; Choi, J.H.; Kim, S.Y.; Lee, S.Y. Impact of cardiac rehabilitation on ventricular–arterial coupling and left ventricular function in patients with acute myocardial infarction. PLoS ONE 2024, 19, e0300578. [Google Scholar] [CrossRef] [PubMed]
- Lenell, J.; Lindahl, B.; Erlinge, D.; Jernberg, T.; Spaak, J.; Baron, T. Global longitudinal strain in long-term risk prediction after acute coronary syndrome: An investigation of added prognostic value to ejection fraction. Clin. Res. Cardiol. 2025, 114, 709–718. [Google Scholar] [PubMed]
- Mars, K.; Hofmann, R.; Jonsson, M.; Manouras, A.; Engvall, J.; Yndigegn, T.; Jernberg, T.; Shahgaldi, K.; Sundqvist, M.G. The prognostic value of global longitudinal strain in patients with myocardial infarction and preserved ejection fraction: A prespecified substudy of the REDUCE-AMI trial. Eur. Heart J. Cardiovasc. Imaging 2025, 26, 620–627. [Google Scholar] [CrossRef] [PubMed]
Characteristic | All Subjects | Survivors | Deceased |
---|---|---|---|
Male/Female | 403/166 | 280/116 | 122/50 |
Age (years ± SD) | 63.4 ± 10.7 | 60.8 ± 9.7 | 69.5 ± 10.5 |
MI in the past | 133 | 68 | 65 |
CABG history | 25 | 12 | 13 |
Hypertension | 454 | 307 | 147 |
Diabetes | 184 | 117 | 67 |
Parameter | Survivors | Deceased | p-Value |
---|---|---|---|
EF (%) | 53.0 ± 10.3 | 45.7 ± 13.1 | <0.001 |
GLPSS (%) | −15.1 ± 3.6 | −12.9 ± 4.4 | <0.001 |
VA coupling | 1.5 ± 0.4 | 1.9 ± 0.9 | <0.001 |
ExcessPTI (mmHg·ms) | 3906.1 ± 1172.5 | 4259.3 ± 1498.6 | <0.001 |
PWV/GLPSS (m/s %) | −0.66 ± 0.26 | −0.92 ± 0.52 | <0.001 |
Parameter | Multivariate | |
---|---|---|
HR (95% CI) | p-Value | |
GLPSS > −12.8% | 0.97 (0.84–1.11) | 0.640 |
PWV/GLPSS < −0.77 m/s % | 1.77 (1.16–2.71) | 0.008 |
ExcessPTI > 4382 mmHg·ms | 1.27 (1.14–1.41) | 0.001 |
VA coupling > 1.9 | 1.17 (1.03–1.33) | 0.020 |
EF < 47% | 1.94 (1.32–2.87) | 0.001 |
Parameter | Multivariate | |
---|---|---|
HR (95% CI) | p-Value | |
GLPSS > −12.8% | 0.99 (0.87–1.14) | 0.959 |
PWV/GLPSS < −0.77 m/s % | 1.31 (0.86–1.99) | 0.203 |
ExcessPTI > 4382 mmHg·ms | 1.18 (1.06–1.32) | 0.003 |
VA coupling > 1.9 | 1.16 (1.02–1.31) | 0.020 |
EF < 47% | 1.92 (1.31–2.82) | 0.001 |
Age | 1.05 (1.04–1.07) | 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Minczykowski, A.; Wiśniewski, O.W.; Krauze, T.; Szczepanik, A.; Banaszak, A.; Guzik, P.; Wykrętowicz, A. Hemodynamic Markers Predict Outcomes a Decade After Acute Coronary Syndrome. J. Clin. Med. 2025, 14, 6627. https://doi.org/10.3390/jcm14186627
Minczykowski A, Wiśniewski OW, Krauze T, Szczepanik A, Banaszak A, Guzik P, Wykrętowicz A. Hemodynamic Markers Predict Outcomes a Decade After Acute Coronary Syndrome. Journal of Clinical Medicine. 2025; 14(18):6627. https://doi.org/10.3390/jcm14186627
Chicago/Turabian StyleMinczykowski, Andrzej, Oskar Wojciech Wiśniewski, Tomasz Krauze, Adam Szczepanik, Agnieszka Banaszak, Przemysław Guzik, and Andrzej Wykrętowicz. 2025. "Hemodynamic Markers Predict Outcomes a Decade After Acute Coronary Syndrome" Journal of Clinical Medicine 14, no. 18: 6627. https://doi.org/10.3390/jcm14186627
APA StyleMinczykowski, A., Wiśniewski, O. W., Krauze, T., Szczepanik, A., Banaszak, A., Guzik, P., & Wykrętowicz, A. (2025). Hemodynamic Markers Predict Outcomes a Decade After Acute Coronary Syndrome. Journal of Clinical Medicine, 14(18), 6627. https://doi.org/10.3390/jcm14186627