Assessment of Gait Disorders in Cerebral Small Vessel Disease: Advantages of Different Clinical Scales
Abstract
1. Introduction
Objective
2. Materials and Methods
- Performance Oriented Mobility Assessment (POMA, or Tinetti Test, TT) [15], comprising the “balance” subscale (0–16 points) and the “gait” subscale (0–12 points). Based on the total score, all participants were classified into groups at high (<19 points), moderate (19–23 points), and low (≥24 points) risk of falls [18,37].
- Six-Meter Walk Test (6-MWT, adapted from Tiedemann A. et al., 2008) [38]. Participants were instructed to walk a 6 m distance on a flat carpeted surface. To ensure steady gait speed during the measured 6 m, walking was initiated 1.5 m before the start line (initiation phase) and concluded 1.5 m beyond the end line (deceleration phase). In addition to measuring walking time and speed, a number of additional gait parameters were assessed. Before testing, the soles of participants’ shoes were marked by walking in place on a surface coated with a coloring agent (talc). Gait parameters were assessed using a stopwatch and a measuring tape.Parameters evaluated in the 6-MWT are as follows:
- ○
- Time to cover the 6 m distance (s);
- ○
- Number of steps required to cover 6 m (n);
- ○
- Gait speed (m/s);
- ○
- Maximum and minimum step length (distance measured in the sagittal plane between the posterior [heel] edges of the right and left feet, cm) [39];
- ○
- Maximum and minimum base width (distance measured in the frontal plane between homologous points of the right and left feet, cm) [39].
- Clinical Scale for Assessing the Severity of GD in cSVD (Research Center of Neurology, RCN) [Patent No. RU2711602C1]. Testing involved walking in a straight line for 4–5 m, followed by turning and returning to the starting point. Gait was evaluated both at the usual pace and under more complex conditions (tandem and side walking). The severity category of GDs was determined according to clinical characteristics (Table 1).
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
cSVD | cerebral small vessel disease |
CI | cognitive impairment |
GDs | gait disorders |
MCI | mild cognitive impairment |
subCI | subjective cognitive impairment |
MRI | magnetic resonance imaging |
References
- Pantoni, L. Cerebral small vessel disease: From pathogenesis and clinical characteristics to therapeutic challenges. Lancet Neurol. 2010, 9, 689–701. [Google Scholar] [CrossRef] [PubMed]
- de Leeuw, F.E.; de Groot, J.C.; Achten, E.; Oudkerk, M.; Ramos, L.M.; Heijboer, R.; Hofman, A.; Jolles, J.; van Gijn, J.; Breteler, M.M. Prevalence of cerebral white matter lesions in elderly people: A population based magnetic resonance imaging study. The Rotterdam Scan Study. J. Neurol. Neurosurg. Psychiatry 2001, 70, 9–14. [Google Scholar] [CrossRef]
- Wardlaw, J.M.; Smith, E.E.; Biessels, G.J.; Cordonnier, C.; Fazekas, F.; Frayne, R.; Lindley, R.I.; O’Brien, J.T.; Barkhof, F.; Benavente, O.R.; et al. Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration. Lancet Neurol. 2013, 12, 822–838. [Google Scholar] [CrossRef]
- Stolze, H.; Klebe, S.; Baecker, C.; Zechlin, C.; Friege, L.; Pohle, S.; Deuschl, G. Prevalence of gait disorders in hospitalized neurological patients. Mov. Disord. 2005, 20, 89–94. [Google Scholar] [CrossRef] [PubMed]
- de Laat, K.F.; van Norden, A.G.; Gons, R.A.; van Oudheusden, L.J.; van Uden, I.W.; Bloem, B.R.; Zwiers, M.P.; de Leeuw, F.E. Gait in elderly with cerebral small vessel disease. Stroke 2010, 41, 1652–1658. [Google Scholar] [CrossRef]
- Srikanth, V.; Phan, T.G.; Chen, J.; Beare, R.; Stapleton, J.M.; Reutens, D.C. The location of white matter lesions and gait—A voxel-based study. Ann. Neurol. 2010, 67, 265–269. [Google Scholar] [CrossRef] [PubMed]
- Pirker, W.; Katzenschlager, R. Gait disorders in adults and the elderly: A clinical guide. Wien. Klin. Wochenschr. 2017, 129, 81–95. [Google Scholar] [CrossRef]
- Ataullah, A.H.M.; De Jesus, O. Gait Disturbances. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Okroglic, S.; Widmann, C.N.; Urbach, H.; Scheltens, P.; Heneka, M.T. Clinical symptoms and risk factors in cerebral microangiopathy patients. PLoS ONE 2013, 8, e53455. [Google Scholar] [CrossRef]
- Pinter, D.; Ritchie, S.J.; Doubal, F.; Gattringer, T.; Morris, Z.; Bastin, M.E.; Del C Valdés Hernández, M.; Royle, N.A.; Corley, J.; Muñoz Maniega, S.; et al. Impact of small vessel disease in the brain on gait and balance. Sci. Rep. 2017, 7, 41637. [Google Scholar] [CrossRef]
- Su, C.; Yang, X.; Wei, S.; Zhao, R. Association of Cerebral Small Vessel Disease with Gait and Balance Disorders. Front. Aging Neurosci 2022, 14, 834496. [Google Scholar] [CrossRef]
- van der Holst, H.M.; van Uden, I.W.; Tuladhar, A.M.; de Laat, K.F.; van Norden, A.G.; Norris, D.G.; van Dijk, E.J.; Rutten-Jacobs, L.C.; de Leeuw, F.E. Factors Associated With 8-Year Mortality in Older Patients with Cerebral Small Vessel Disease: The Radboud University Nijmegen Diffusion Tensor and Magnetic Resonance Cohort (RUN DMC) Study. JAMA Neurol. 2016, 73, 402–409. [Google Scholar] [CrossRef]
- Brissaud, E. Leçons sur les Maladies Nerveuses; Masson & Associates, Inc.: Escondido, CA, USA, 1895. [Google Scholar]
- Binswanger, O. Die abgrenzung der allgemeinen progressiven paralyse. Berl. Klin. Wochenschr. 1894, 31, 1130. [Google Scholar]
- Baezner, H.; Hennerici, M. From trepidant abasia to motor network failure--gait disorders as a consequence of subcortical vascular encephalopathy (SVE): Review of historical and contemporary concepts. J. Neurol. Sci. 2005, 229, 81–88. [Google Scholar] [CrossRef]
- Baezner, H.; Hennerici, M. Cerebral Small Vessel Disease; Pantoni, L., Gorelick, P.B., Eds.; Cambridge University Press: Cambridge, UK, 2014; pp. 251–260. [Google Scholar]
- Xu, K.; Wang, Y.; Jiang, Y.; Wang, Y.; Li, P.; Lu, H.; Suo, C.; Yuan, Z.; Yang, Q.; Dong, Q.; et al. Analysis of gait pattern related to high cerebral small vessel disease burden using quantitative gait data from wearable sensors. Comput. Methods Programs Biomed. 2024, 250, 108162. [Google Scholar] [CrossRef] [PubMed]
- Tinetti, M.E. Performance-oriented assessment of mobility problems in elderly patients. J. Am. Geriatr. Soc. 1986, 34, 119–126. [Google Scholar] [CrossRef]
- Koo, B.B.; Bergethon, P.; Qiu, W.Q.; Scott, T.; Hussain, M.; Rosenberg, I.; Caplan, L.R.; Bhadelia, R.A. Clinical prediction of fall risk and white matter abnormalities: A diffusion tensor imaging study. Arch. Neurol. 2012, 69, 733–738. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Shen, H.; Yao, X.; Liu, F.; Wang, S.; Yang, Y.; Zhang, N.; Wang, C. Clinical and Diffusion Tensor Imaging to Evaluate Falls, Balance and Gait Dysfunction in Leukoaraiosis: An Observational, Prospective Cohort Study. J. Geriatr. Psychiatry Neurol. 2020, 33, 223–230. [Google Scholar] [CrossRef]
- Hou, Y.; Li, Y.; Yang, S.; Qin, W.; Yang, L.; Hu, W. Gait impairment and upper extremity disturbance are associated with Total magnetic resonance imaging cerebral small vessel disease burden. Front. Aging Neurosci. 2021, 13, 640844. [Google Scholar] [CrossRef]
- Pinter, D.; Ritchie, S.J.; Gattringer, T.; Bastin, M.E.; Hernández, M.D.C.V.; Corley, J.; Maniega, S.M.; Pattie, A.; Dickie, D.A.; Gow, A.J.; et al. Predictors of gait speed and its change over three years in community-dwelling older people. Aging (Albany NY) 2018, 10, 144–153. [Google Scholar] [CrossRef]
- Heiland, E.G.; Welmer, A.K.; Kalpouzos, G.; Laveskog, A.; Wang, R.; Qiu, C. Cerebral small vessel disease, cardiovascular risk factors, and future gait speed in old age: A population-based cohort study. BMC Neurol. 2021, 21, 496. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Lin, H.; Peng, Y.; Zhao, Z.; Chen, L.; Wu, L.; Liu, T.; Li, J.; Liu, A.; Lo, C.-Y.Z.; et al. Incidental Brain Magnetic Resonance Imaging Findings and the Cognitive and Motor Performance in the Elderly: The Shanghai Changfeng Study. Front. Neurosci. 2021, 15, 631087. [Google Scholar] [CrossRef]
- Su, N.; Mao, H.J.; Zhang, J.; Zhu, W.-C.; Han, F.; Yao, M.; Zhou, L.-X.; Ni, J.; Fan, X.-M.; Tian, F. Analysis of clinical and imaging characteristics of patients with freezing of gait in cerebral small vessel disease (P11-5.004). Neurology 2023, 100 (Suppl. S2), 2243. [Google Scholar] [CrossRef]
- Jokinen, H.; Laakso, H.M.; Ahlström, M.; Arola, A.; Lempiäinen, J.; Pitkänen, J.; Paajanen, T.; Sikkes, S.A.M.; Koikkalainen, J.; Lötjönen, J.; et al. Synergistic associations of cognitive and motor impairments with functional outcome in covert cerebral small vessel disease. Eur. J. Neurol. 2022, 29, 158–167. [Google Scholar] [CrossRef] [PubMed]
- Dobrynina, L.; Bitsieva, E.; Byrochkina, A.; Tsypushtanova, M.; Makarova, A.; Zabitova, M.; Shamtieva, K.; Akhmetshina, Y.; Trubitsyna, V. Gait disorders in cerebral small vessel disease: The role of cerebrospinal fluid flow and venous drainage impairment. Eur. J. Neurol. 2024, 31 (Suppl. S1), 15. [Google Scholar]
- Gor-García-Fogeda, M.D.; Cano de la Cuerda, R.; Carratalá Tejada, M.; Alguacil-Diego, I.M.; Molina-Rueda, F. Observational Gait Assessments in People with Neurological Disorders: A Systematic Review. Arch. Phys. Med. Rehabil. 2016, 97, 131–140. [Google Scholar] [CrossRef] [PubMed]
- Ridao-Fernández, C.; Pinero-Pinto, E.; Chamorro-Moriana, G. Observational Gait Assessment Scales in Patients with Walking Disorders: Systematic Review. Biomed. Res. Int. 2019, 2019, 2085039. [Google Scholar] [CrossRef]
- Beck Jepsen, D.; Robinson, K.; Ogliari, G.; Montero-Odasso, M.; Kamkar, N.; Ryg, J.; Freiberger, E.; Masud, T. Predicting falls in older adults: An umbrella review of instruments assessing gait, balance, and functional mobility. BMC Geriatr. 2022, 22, 615, Erratum in BMC Geriatr. 2022, 22, 780. https://doi.org/10.1186/s12877-022-03352-5. [Google Scholar] [CrossRef]
- Christopher, A.; Kraft, E.; Olenick, H.; Kiesling, R.; Doty, A. The reliability and validity of the Timed Up and Go as a clinical tool in individuals with and without disabilities across a lifespan: A systematic review. Disabil. Rehabil. 2021, 43, 1799–1813. [Google Scholar] [CrossRef]
- Miranda, N.; Tiu, T.K. Berg Balance Testing. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Santamaría-Peláez, M.; González-Bernal, J.J.; Da Silva-González, Á.; Medina-Pascual, E.; Gentil-Gutiérrez, A.; Fernández-Solana, J.; Mielgo-Ayuso, J.; González-Santos, J. Validity and Reliability of the Short Physical Performance Battery Tool in Institutionalized Spanish Older Adults. Nurs. Rep. 2023, 13, 1354–1367. [Google Scholar] [CrossRef]
- Nasreddine, Z.S.; Phillips, N.A.; Bédirian, V.; Charbonneau, S.; Whitehead, V.; Collin, I.; Cummings, J.L.; Chertkow, H. The Montreal Cognitive Assessment, MoCA: A brief screening tool for mild cognitive impairment. J Am. Geriatr. Soc. 2005, 53, 695–699, Erratum in J. Am. Geriatr. Soc. 2019, 67, 1991. https://doi.org/10.1111/jgs.15925. [Google Scholar] [CrossRef]
- Mahoney, F.I.; Barthel, D.W. Functional evaluation: The Barthel index. Md. State Med. J. 1965, 14, 61–65. [Google Scholar] [PubMed]
- Lawton, M.P.; Brody, E.M. Assessment of older people: Self-maintaining and instrumental activities of daily living. Gerontologist 1969, 9, 179–186. [Google Scholar] [CrossRef]
- Lewis, C. Balance, gait test proves simple yet useful. PT Bull. 1993, 2, 9. [Google Scholar]
- Tiedemann, A.; Shimada, H.; Sherrington, C.; Murray, S.; Lord, S. The comparative ability of eight functional mobility tests for predicting falls in community-dwelling older people. Age Ageing 2008, 37, 430–435. [Google Scholar] [CrossRef]
- Skvortsov, D.V. Clinical analysis of movements. Gait analysis; Stimul: Ivanovo, Russia, 1996; pp. 191–192. [Google Scholar]
- Baezner, H.; Blahak, C.; Poggesi, A.; Pantoni, L.; Inzitari, D.; Chabriat, H.; Erkinjuntti, T.; Fazekas, F.; Ferro, J.M.; Langhorne, P.; et al. Association of gait and balance disorders with age-related white matter changes: The LADIS study. Neurology 2008, 70, 935–942. [Google Scholar] [CrossRef]
- Feng, M.; Song, Z.; Zhou, Z.; Wu, Z.; Ma, M.; Liu, Y.; Wang, Y.; Dai, H. Cognitive impairment mediates the white matter injury load and gait disorders in subcortical ischemic vascular disease. Brain Imaging Behav. 2024, 18, 1418–1427. [Google Scholar] [CrossRef]
- Li, H.; Jacob, M.A.; Cai, M.; Kessels, R.P.C.; Norris, D.G.; Duering, M.; de Leeuw, F.-E.; Tuladhar, A.M. Meso-cortical pathway damage in cognition, apathy and gait in cerebral small vessel disease. Brain 2024, 147, 3804–3816. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhang, L.; Yang, S.; Liu, R.; Yi, L.; Liu, M.; Liu, S.; Zhang, Z. Predictive role of gait parameters and MRI markers in assessing cognitive decline in CSVD patients. BMC Geriatr. 2025, 25, 116. [Google Scholar] [CrossRef]
- Zhao, P.; Gu, Y.; Feng, W.; Xia, X.; Tian, X.; Du, Y.; Li, X. Gait Disorders and Magnetic Resonance Imaging Characteristics in Older Adults with Cerebral Small Vessel Disease. J. Integr. Neurosci. 2022, 21, 129. [Google Scholar] [CrossRef]
- Oberg, T.; Karsznia, A.; Oberg, K. Basic gait parameters: Reference data for normal subjects, 10-79 years of age. J. Rehabil. Res. Dev. 1993, 30, 210–223. [Google Scholar] [PubMed]
- Samson, M.M.; Crowe, A.; de Vreede, P.L.; Dessens, J.A.; Duursma, S.A.; Verhaar, H.J. Differences in gait parameters at a preferred gait speed in healthy subjects due to age, height and body weight. Aging (Milano) 2001, 13, 16–21. [Google Scholar] [CrossRef] [PubMed]
- Cesari, M.; Kritchevsky, S.B.; Penninx, B.W.; Nicklas, B.J.; Simonsick, E.M.; Newman, A.B.; Tylavsky, F.A.; Brach, J.S.; Satterfield, S.; Bauer, D.C.; et al. Prognostic value of usual gait speed in well-functioning older people--results from the Health, Aging and Body Composition Study. J. Am. Geriatr. Soc. 2005, 53, 1675–1680. [Google Scholar] [CrossRef]
- Oh-Park, M.; Holtzer, R.; Xue, X.; Verghese, J. Conventional and robust quantitative gait norms in community-dwelling older adults. J. Am. Geriatr. Soc. 2010, 58, 1512–1518. [Google Scholar] [CrossRef]
- Hollman, J.H.; McDade, E.M.; Petersen, R.C. Normative spatiotemporal gait parameters in older adults. Gait Posture 2011, 34, 111–118. [Google Scholar] [CrossRef]
- Hass, C.J.; Malczak, P.; Nocera, J.; Stegemöller, E.L.; Wagle S., A.; Malaty, I.; Jacobson, C.E.; Okun, M.S.; McFarland, N. Quantitative normative gait data in a large cohort of ambulatory persons with Parkinson’s disease. PLoS ONE 2012, 7, e42337, Erratum in. PLoS ONE 2012, 7. https://doi.org/10.1371/annotation/d4b5158e-0dd1-4e14-b03a-1af4d5f06c0e. [Google Scholar] [CrossRef]
- Middleton, A.; Fritz, S.L.; Lusardi, M. Gait speed: The functional vital sign. J. Aging Phys. Act. 2015, 23, 314–322. [Google Scholar] [CrossRef]
- Li, P.; Wang, Y.; Jiang, Y.; Zhang, K.; Yang, Q.; Yuan, Z.; Zhu, Z.; Tang, W.; Fan, M.; Ye, W.; et al. Cerebral small vessel disease is associated with gait disturbance among community-dwelling elderly individuals: The Taizhou imaging study. Aging 2020, 12, 2814–2824. [Google Scholar] [CrossRef]
- Sharma, B.; Wang, M.; McCreary, C.R.; Camicioli, R.; Smith, E. Gait and falls in cerebral small vessel disease: A systematic review and meta-analysis. Age Ageing 2023, 52, afad011. [Google Scholar] [CrossRef]
- Dobrynina, L.A.; Akhmetzyanov, B.M.; Gadzhieva, Z.S.; Kremneva, E.I.; Kalashnikova, L.A.; Krotenkova, M.V. The role of arterial and venous blood flow and cerebrospinal fluid flow disturbances in the development of cognitive impairments in cerebral microangiopathy. Ann. Clin. Exp. Neurol. 2019, 13, 19–31. (In Russian) [Google Scholar] [CrossRef]
- Dobrynina, L.A.; Gadzhieva, Z.S.; Shamtieva, K.V.; Kremneva, E.I.; Akhmetzyanov, B.M.; Tsypushtanova, M.M.; Makarova, A.G.; Trubitsyna, V.V.; Krotenkova, M.V. Relations of impaired blood flow and cerebrospinal fluid flow with damage of strategic for cognitive impairment brain regiones in cerebral small vessel disease. Ann. Clin. Exp. Neurol. 2022, 16, 25–35. (In Russian) [Google Scholar] [CrossRef]
- Blair, G.W.; Thrippleton, M.J.; Shi, Y.; Hamilton, I.; Stringer, M.; Chappell, F.; Dickie, D.A.; Andrews, P.; Marshall, I.; Doubal, F.N.; et al. Intracranial hemodynamic relationships in patients with cerebral small vessel disease. Neurology 2020, 94, e2258–e2269. [Google Scholar] [CrossRef]
- Birnefeld, J.; Wåhlin, A.; Eklund, A.; Malm, J. Cerebral arterial pulsatility is associated with features of small vessel disease in patients with acute stroke and TIA: A 4D flow MRI study. J. Neurol. 2020, 267, 721–730. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Huang, P.; Jiaerken, Y.; Wang, S.; Hong, H.; Luo, X.; Xu, X.; Yu, X.; Li, K.; Zeng, Q.; et al. Venous disruption affects white matter integrity through increased interstitial fluid in cerebral small vessel disease. J. Cereb. Blood Flow Metab. 2021, 41, 157–165. [Google Scholar] [CrossRef] [PubMed]
- Binnie, L.R.; Pauls, M.M.H.; Benjamin, P.; Dhillon, M.K.; Betteridge, S.; Clarke, B.; Ghatala, R.; Hainsworth, F.A.H.; Howe, F.A.; Khan, U.; et al. Test-retest reliability of arterial spin labelling for cerebral blood flow in older adults with small vessel disease. Transl. Stroke Res. 2022, 13, 583–594. [Google Scholar] [CrossRef] [PubMed]
- Webb, A.J.S.; Werring, D.J. New Insights into Cerebrovascular Pathophysiology and Hypertension. Stroke 2022, 53, 1054–1064. [Google Scholar] [CrossRef]
- Morgan, A.G.; Thrippleton, M.J.; Stringer, M.; Jin, N.; Wardlaw, J.M.; Marshall, I. Repeatability and comparison of 2D and 4D flow MRI measurement of intracranial blood flow and pulsatility in healthy individuals and patients with cerebral small vessel disease. Front. Psychol. 2023, 14, 1125038. [Google Scholar] [CrossRef]
Severity of GD | Clinical Characteristics of Gait | |
---|---|---|
0 | No GD | No disorders, including in complicated samples (phalanx, tandem walking) |
1 | Mild | Instability when performing the complicated samples |
2 | Moderate | Shortening of the length of the step, a slowing down of the rate, wherein the rhythm and base of the support correspond to the norm |
3 | Severe | Shortening of the length of the pitch relative to the norm, difficulties in turning, but with retention of walking without support |
3a | A—frontal-cerebellar type: the presence of an increase in the base of the support relative to the norm, “adhesion” of the feet to the floor during walking and instability during flanking and tandem walking, wherein there is no posture change, disturbed walking, and propulsion initiation | |
3b | B—frontal-subcortical type: shortening of length of pitch and support base reduction in standing position relative to norm, presence of disturbed initiation of walking in form of obstruction of walking, change in posture, accompanied by forward inclination, and presence of propulsions | |
4 | Profound | The need for single- or double-sided support |
Parameter | cSVD (n = 124) | Control (n = 30) | p |
---|---|---|---|
Sex, n (%) | 0.734 | ||
male | 58 (46.8%) | 13 (43.3%) | |
female | 66 (53.2%) | 17 (56.7%) | |
Age, years (M ± SD) | 62.18 ± 7.852 | 59.77 ± 6.361 | 0.121 |
HTN, n (%) | 122 (98.4%) | 17 (56.7%) | p < 0.05 |
HTN stage, n (%) | |||
1 | 11 (8.9%) | 8 (26.7%) | |
2 | 35 (28.2%) | 4 (13.3%) | |
3 | 76 (61.3%) | 5 (16.7%) | |
Type 2 diabetes mellitus, n (%) | 27 (21.8%) | 1 (3.3%) | p < 0.05 |
Cholesterol mmol/ L (Me [25%; 75%]) | 5.60 [4.70; 6.70] | 5.20 [4.10; 6.10] | p < 0.05 |
Obesity, n (%) | 50 (40.3%) | 6 (20.0%) | p < 0.05 |
Smoking, n (%) | 39 (31.5%) | 10 (33.3%) | 0.976 |
Parameter | cSVD (n = 124) |
---|---|
CI, n (%) | 124 (100%) |
Subjective/Moderate/Dementia | 44 (35.5%)/47 (37.9%)/33 (26.6%) |
MoCA score (M ± SD) | 22.85 ± 4.72 |
GD, n (%) | 85 (68.5%) |
Mild | 34 (27.4%) |
Moderate | 18 (14.5%) |
Severe | 29 (23.4%) |
Profound | 4 (3.2%) |
Pseudobulbar palsy, n (%) | 35 (28.2%) |
Urinary disturbances, n (%) | 38 (30.6%) |
Sensory polyneuropathy, n (%) | 8 (6.5%) |
Mild pallhypesthesia, n (%) | 3 (2.4%) |
Proprioceptive deficit, n (%) | 0 (0%) |
Arthrosis of the joints of the lower limbs 1–2 grade, n (%) | 4 (3.2%) |
White matter hyperintensity, Fazekas scale, n (%) | |
F2/F3 | 30 (24.2%)/94 (75.8%) |
Lacunes, n (%) | 82 (66.1%) |
Microbleeds, n (%) | 86 (69.4%) |
Enlarged perivascular spaces, n (%) | 123 (99.2%) |
Parameter Me [25%; 75%] | cSVD (n = 124) | Control (n = 30) | p |
---|---|---|---|
Tinetti Test | |||
Balance score | 14.0 [11.0; 15.0] | 16.0 [16.0; 16.0] | <0.05 |
Gait score | 11.0 [10.0; 12.0] | 12.0 [12.0; 12.0] | <0.05 |
Total Test score | 25.0 [21.0; 27.0] | 28.0 [28.0; 28.0] | <0.05 |
Risk of falls, n (%) | |||
Low | 72 (58.1%) | 30 (100%) | <0.05 |
Medium | 34 (27.4%) | ||
High | 18 (14.5%) | ||
“6-m Walk” Test | |||
Total time taken to ambulate 6 m, s | 8.50 [6.80; 10.89] | 5.50 [4.90; 6.20] | <0.05 |
Number of steps in “6-m walk” test, n | 13.00 [11.00; 16.00] | 9.00 [9.00; 10.00] | <0.05 |
Maximum step length, cm | 55.00 [46.00; 64.45] | 70.25 [63.00; 77.00] | <0.05 |
Minimum step length, cm | 47.00 [35.50; 54.00] | 64.25 [57.00; 71.50] | <0.05 |
Maximum base width, cm | 31.00 [26.15; 35.75] | 23.00 [19.60; 27.00] | <0.05 |
Minimum base width, cm | 23.50 [19.25; 30.00] | 16.00 [13.50; 18.50] | <0.05 |
Gait speed, m/s | 0.71 [0.55; 0.88] | 1.09 [0.97; 1.22] | <0.05 |
Parameter | Threshold Value | Sensitivity, % | Specificity, % | AUC | 95% Confidence Interval | p | |
---|---|---|---|---|---|---|---|
Gait speed, m/s | 0.75 | 79.4% | 72.0% | 0.842 | 0.780 | 0.905 | <0.001 |
Total time taken to ambulate 6 m, s | 7.24 | 80.5% | 70.6% | 0.842 | 0.780 | 0.905 | <0.001 |
Number of steps in “6-m walk” test, n | 11.5 | 80.5% | 72.1% | 0.844 | 0.782 | 0.906 | <0.001 |
Maximum step length, cm | 56.5 | 82.4% | 72.0% | 0.820 | 0.754 | 0.886 | <0.001 |
Maximum base width, cm | 28.6 | 78.0% | 73.5% | 0.812 | 0.740 | 0.876 | <0.001 |
Parameter Me [25%; 75%] | No Gait Disorders 0 (n = 39) | Mild 1 (n = 34) | Moderate 2 (n = 18) | Severe 3 (n = 29) | p |
---|---|---|---|---|---|
Tinetti Test | |||||
Balance score | 16.0 [15.0; 16.0] | 14.0 [12.75; 15.25] | 12.0 [10.5; 14.0] | 10.0 [8.0; 11.0] | p0-2,3; 1-3 < 0.001 p1-0 = 0.003 |
Gait score | 12.0 [12.0; 12.0] | 12.0 [11.0; 12.0] | 11.0 [10.5; 12.0] | 8.0 [7.0; 10.0] | p3-0,1 < 0.001 p3-2 = 0.001 p2-0 = 0.007 |
Total test score | 28.0 [27.0; 28.0] | 26.0 [24.0; 27.0] | 23.0 [21.0; 25.0] | 18.5 [15.0; 21.0] | p3-0,1; 2-0 < 0.001 p1-0 = 0.001 |
“6-m Walk” Test | |||||
Total time taken to ambulate 6 m, s | 6.08 [5.41; 7.8] | 8.36 [6.78; 9.14] | 8.5 [7.25; 10.18] | 13.36 [9.83; 16.2] | p0-3 < 0.001 p1-3 = 0.001 p0-1,2 = 0.002 |
Number of steps in “6-m walk” test, n | 10.0 [9.0; 12.0] | 12.5 [10.75; 14.0] | 13.0 [12.0; 15.0] | 18.0 [15.0; 23.25] | p0-2,3; 1-3 < 0.001 p0-1 = 0.005 |
Maximum step length, cm | 66.0 [59.0; 73.0] | 54.0 [52.0; 67.63] | 54.0 [47.0; 58.0] | 41.25 [37.0; 51.75] | p0-3 < 0.001 p3-1;2-0 = 0.001 p1-0 < 0.05 |
Gait speed, m/s | 0.99 [0.77; 1.11] | 0.72 [0.66; 0.89] | 0.71 [0.59; 0.83] | 0.45 [0.37; 0.61] | p3-0 < 0.001 p3-1 = 0.001 p2-0;1-0 = 0.002 |
Parameter | Frontal-Cerebellar Type (n = 11) | Frontal-Subcortical Type (n = 18) | p |
---|---|---|---|
Tinetti Test | |||
Balance score | 11.0 [11.0; 12.0] | 9.0 [8.0; 11.0] | 0.057 |
Gait score | 10.0 [8.0; 11.0] | 8.0 [7.0; 9.0] | 0.031 |
Total test score | 21.0 [18.0; 22.0] | 17.0 [15.0; 20.0] | 0.031 |
Results of individual tests in subscales: | |||
| 0 (0%) 4 (36.4%) 6 (54.5%) | 2 (11.1%) 14 (77.8%) 2 (11.1%) | 0.019 |
| 0 (0%) 1 (9.1%) 9 (81.8%) | 0 (0%) 11 (61.1%) 7 (38.9%) | 0.009 |
| 1 (9.1%) 9 (81.8%) | 11 (61.1%) 7 (38.9%) | 0.009 |
“6-m Walk” Test | |||
Number of steps in “6-m walk” test, n | 15.00 | 20.00 | 0.035 |
[13.00; 18.00] | [18.00; 24.00] | ||
Average step length, cm (based on the number of steps per 6 m) | 40.00 | 30.79 | 0.035 |
[33.33; 46.15] | [25.00; 33.33] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dobrynina, L.A.; Bitsieva, E.T.; Shamtieva, K.V.; Zabitova, M.R.; Krotenkova, M.V. Assessment of Gait Disorders in Cerebral Small Vessel Disease: Advantages of Different Clinical Scales. J. Clin. Med. 2025, 14, 6626. https://doi.org/10.3390/jcm14186626
Dobrynina LA, Bitsieva ET, Shamtieva KV, Zabitova MR, Krotenkova MV. Assessment of Gait Disorders in Cerebral Small Vessel Disease: Advantages of Different Clinical Scales. Journal of Clinical Medicine. 2025; 14(18):6626. https://doi.org/10.3390/jcm14186626
Chicago/Turabian StyleDobrynina, Larisa A., Elina T. Bitsieva, Kamila V. Shamtieva, Maryam R. Zabitova, and Marina V. Krotenkova. 2025. "Assessment of Gait Disorders in Cerebral Small Vessel Disease: Advantages of Different Clinical Scales" Journal of Clinical Medicine 14, no. 18: 6626. https://doi.org/10.3390/jcm14186626
APA StyleDobrynina, L. A., Bitsieva, E. T., Shamtieva, K. V., Zabitova, M. R., & Krotenkova, M. V. (2025). Assessment of Gait Disorders in Cerebral Small Vessel Disease: Advantages of Different Clinical Scales. Journal of Clinical Medicine, 14(18), 6626. https://doi.org/10.3390/jcm14186626