Stimulated Hyperinsulinemia Is Independently Associated with Higher Serum DHEAS in PCOS: A Retrospective Study
Abstract
1. Introduction
2. Subjects and Methods
2.1. Parameters Studied
2.2. Statistical Analysis
3. Results
3.1. Comparative Analysis of PCOS Patients According to Their DHEAS Levels
3.2. DHEAS Correlations in PCOS
3.3. DHEAS Multivariate Regression Analysis in PCOS
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dapas, M.; Dunaif, A. Deconstructing a Syndrome: Genomic Insights into PCOS Causal Mechanisms and Classification. Endocr. Rev. 2022, 43, 927–965. [Google Scholar] [CrossRef]
- Carmina, E.; Stanczyk, F.Z.; Chang, L.; Miles, R.A.; Lobo, R.A. The Ratio of Androstenedione:11 Beta-Hydroxyandrostenedione Is an Important Marker of Adrenal Androgen Excess in Women. Fertil. Steril. 1992, 58, 148–152. [Google Scholar] [CrossRef]
- Yoshida, T.; Matsuzaki, T.; Miyado, M.; Saito, K.; Iwasa, T.; Matsubara, Y.; Ogata, T.; Irahara, M.; Fukami, M. 11-Oxygenated C19 Steroids as Circulating Androgens in Women with Polycystic Ovary Syndrome. Endocr. J. 2018, 65, 979–990. [Google Scholar] [CrossRef]
- Tosi, F.; Villani, M.; Garofalo, S.; Faccin, G.; Bonora, E.; Fiers, T.; Kaufman, J.-M.; Moghetti, P. Clinical Value of Serum Levels of 11-Oxygenated Metabolites of Testosterone in Women With Polycystic Ovary Syndrome. J. Clin. Endocrinol. Metab. 2022, 107, e2047–e2055. [Google Scholar] [CrossRef]
- Kempegowda, P.; Melson, E.; Manolopoulos, K.N.; Arlt, W.; O’Reilly, M.W. Implicating Androgen Excess in Propagating Metabolic Disease in Polycystic Ovary Syndrome. Ther. Adv. Endocrinol. Metab. 2020, 11, 2042018820934319. [Google Scholar] [CrossRef] [PubMed]
- O’Reilly, M.W.; Kempegowda, P.; Jenkinson, C.; Taylor, A.E.; Quanson, J.L.; Storbeck, K.-H.; Arlt, W. 11-Oxygenated C19 Steroids Are the Predominant Androgens in Polycystic Ovary Syndrome. J. Clin. Endocrinol. Metab. 2017, 102, 840–848. [Google Scholar] [CrossRef] [PubMed]
- Lutfallah, C.; Wang, W.; Mason, J.I.; Chang, Y.T.; Haider, A.; Rich, B.; Castro-Magana, M.; Copeland, K.C.; David, R.; Pang, S. Newly Proposed Hormonal Criteria via Genotypic Proof for Type II 3beta-Hydroxysteroid Dehydrogenase Deficiency. J. Clin. Endocrinol. Metab. 2002, 87, 2611–2622. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Azziz, R. Abnormalities of Adrenocortical Steroidogenesis in PCOS. In Androgen Excess Disorders in Women; Azziz, R., Nestler, J.E., Dewaill, D., Eds.; Lippincott-Raven: Philadelphia, PA, USA, 1997; pp. 403–414. [Google Scholar]
- Azziz, R.; Black, V.; Hines, G.A.; Fox, L.M.; Boots, L.R. Adrenal Androgen Excess in the Polycystic Ovary Syndrome: Sensitivity and Responsivity of the Hypothalamic-Pituitary-Adrenal Axis. J. Clin. Endocrinol. Metab. 1998, 83, 2317–2323. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Goodarzi, M.O.; Carmina, E.; Azziz, R. DHEA, DHEAS and PCOS. J. Steroid Biochem. Mol. Biol. 2015, 145, 213–225. [Google Scholar] [CrossRef]
- Pasquali, R.; Casimirri, F.; Venturoli, S.; Paradisi, R.; Mattioli, L.; Capelli, M.; Melchionda, N.; Labò, G. Insulin Resistance in Patients with Polycystic Ovaries: Its Relationship to Body Weight and Androgen Levels. Eur. J. Endocrinol. 1983, 104, 110–116. [Google Scholar] [CrossRef]
- Brennan, K.; Huang, A.; Azziz, R. Dehydroepiandrosterone Sulfate and Insulin Resistance in Patients with Polycystic Ovary Syndrome. Fertil. Steril. 2009, 91, 1848–1852. [Google Scholar] [CrossRef]
- Kauffman, R.P.; Baker, V.M.; DiMarino, P.; Castracane, V.D. Hyperinsulinemia and Circulating Dehydroepiandrosterone Sulfate in White and Mexican American Women with Polycystic Ovary Syndrome. Fertil. Steril. 2006, 85, 1010–1016. [Google Scholar] [CrossRef]
- Alpañés, M.; Luque-Ramírez, M.; Martínez-García, M.Á.; Fernández-Durán, E.; Álvarez-Blasco, F.; Escobar-Morreale, H.F. Influence of Adrenal Hyperandrogenism on the Clinical and Metabolic Phenotype of Women with Polycystic Ovary Syndrome. Fertil. Steril. 2015, 103, 795–801.e2. [Google Scholar] [CrossRef] [PubMed]
- Lanzone, A.; Fulghesu, A.M.; Guido, M.; Fortini, A.; Caruso, A.; Mancuso, S. Differential Androgen Response to Adrenocorticotropic Hormone Stimulation in Polycystic Ovarian Syndrome: Relationship with Insulin Secretion. Fertil. Steril. 1992, 58, 296–301. [Google Scholar] [CrossRef]
- Azziz, R.; Bradley, E.L.J.; Potter, H.D.; Parker, C.R.J.; Boots, L.R. Chronic Hyperinsulinemia and the Adrenal Androgen Response to Acute Corticotropin-(1-24) Stimulation in Hyperandrogenic Women. Am. J. Obstet. Gynecol. 1995, 172, 1251–1256. [Google Scholar] [CrossRef] [PubMed]
- Moghetti, P.; Castello, R.; Negri, C.; Tosi, F.; Spiazzi, G.G.; Brun, E.; Balducci, R.; Toscano, V.; Muggeo, M. Insulin Infusion Amplifies 17 Alpha-Hydroxycorticosteroid Intermediates Response to Adrenocorticotropin in Hyperandrogenic Women: Apparent Relative Impairment of 17,20-Lyase Activity. J. Clin. Endocrinol. Metab. 1996, 81, 881–886. [Google Scholar] [CrossRef][Green Version]
- Tosi, F.; Negri, C.; Brun, E.; Castello, R.; Faccini, G.; Bonora, E.; Muggeo, M.; Toscano, V.; Moghetti, P. Insulin Enhances ACTH-Stimulated Androgen and Glucocorticoid Metabolism in Hyperandrogenic Women. Eur. J. Endocrinol. 2011, 164, 197–203. [Google Scholar] [CrossRef] [PubMed]
- Elkind-Hirsch, K.E.; Valdes, C.T.; McConnell, T.G.; Malinak, L.R. Androgen Responses to Acutely Increased Endogenous Insulin Levels in Hyperandrogenic and Normal Cycling Women. Fertil. Steril. 1991, 55, 486–491. [Google Scholar] [CrossRef]
- Buyalos, R.P.; Bradley, E.L.J.; Judd, H.L.; Zacur, H.A.; Azziz, R. No Acute Effect of Physiological Insulin Increase on Dehydroepiandrosterone Sulfate in Women with Obesity and/or Polycystic Ovarian Disease. Fertil. Steril. 1991, 56, 1179–1182. [Google Scholar] [CrossRef]
- Buyalos, R.P.; Geffner, M.E.; Azziz, R.; Judd, H.L. Impact of Overnight Dexamethasone Suppression on the Adrenal Androgen Response to an Oral Glucose Tolerance Test in Women with and without Polycystic Ovary Syndrome. Hum. Reprod. 1997, 12, 1138–1141. [Google Scholar] [CrossRef]
- Falcone, T.; Finegood, D.T.; Fantus, I.G.; Morris, D. Androgen Response to Endogenous Insulin Secretion during the Frequently Sampled Intravenous Glucose Tolerance Test in Normal and Hyperandrogenic Women. J. Clin. Endocrinol. Metab. 1990, 71, 1653–1657. [Google Scholar] [CrossRef] [PubMed]
- Rainey, W.E.; Carr, B.R.; Sasano, H.; Suzuki, T.; Mason, J.I. Dissecting Human Adrenal Androgen Production. Trends Endocrinol. Metab. 2002, 13, 234–239. [Google Scholar] [CrossRef]
- Stanczyk, F.Z. Diagnosis of Hyperandrogenism: Biochemical Criteria. Best Pract. Res. Clin. Endocrinol. Metab. 2006, 20, 177–191. [Google Scholar] [CrossRef]
- Rotterdam ESHRE/ASRM-Sponsored PCOS Consensus Workshop Group. Revised 2003 Consensus on Diagnostic Criteria and Long-Term Health Risks Related to Polycystic Ovary Syndrome (PCOS). Hum. Reprod. 2004, 19, 41–47. [Google Scholar] [CrossRef]
- Ferriman, D.; Gallwey, J.D. Clinical Assessment of Body Hair Growth in Women. J. Clin. Endocrinol. Metab. 1961, 21, 1440–1447. [Google Scholar] [CrossRef]
- Goodarzi, M.O.; Dumesic, D.A.; Chazenbalk, G.; Azziz, R. Polycystic Ovary Syndrome: Etiology, Pathogenesis and Diagnosis. Nat. Rev. Endocrinol. 2011, 7, 219–231. [Google Scholar] [CrossRef] [PubMed]
- Azziz, R.; Sanchez, L.A.; Knochenhauer, E.S.; Moran, C.; Lazenby, J.; Stephens, K.C.; Taylor, K.; Boots, L.R. Androgen Excess in Women: Experience with over 1000 Consecutive Patients. J. Clin. Endocrinol. Metab. 2004, 89, 453–462. [Google Scholar] [CrossRef] [PubMed]
- Moller, D.E.; Cohen, O.; Yamaguchi, Y.; Assiz, R.; Grigorescu, F.; Eberle, A.; Morrow, L.A.; Moses, A.C.; Flier, J.S. Prevalence of Mutations in the Insulin Receptor Gene in Subjects with Features of the Type A Syndrome of Insulin Resistance. Diabetes 1994, 43, 247–255. [Google Scholar] [CrossRef]
- Carmina, E.; Rosato, F.; Jannì, A.; Rizzo, M.; Longo, R.A. Extensive Clinical Experience: Relative Prevalence of Different Androgen Excess Disorders in 950 Women Referred Because of Clinical Hyperandrogenism. J. Clin. Endocrinol. Metab. 2006, 91, 2–6. [Google Scholar] [CrossRef]
- Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis Model Assessment: Insulin Resistance and Beta-Cell Function from Fasting Plasma Glucose and Insulin Concentrations in Man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef]
- Mathur, R.S.; Moody, L.O.; Landgrebe, S.; Williamson, H.O. Plasma Androgens and Sex Hormone-Binding Globulin in the Evaluation of Hirsute Females. Fertil. Steril. 1981, 35, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Alberti, K.G.M.M.; Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z.; Cleeman, J.I.; Donato, K.A.; Fruchart, J.-C.; James, W.P.T.; Loria, C.M.; Smith, S.C.J. Harmonizing the Metabolic Syndrome: A Joint Interim Statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International. Circulation 2009, 120, 1640–1645. [Google Scholar] [CrossRef]
- Kumar, A.; Magoffin, D.; Munir, I.; Azziz, R. Effect of Insulin and Testosterone on Androgen Production and Transcription of SULT2A1 in the NCI-H295R Adrenocortical Cell Line. Fertil. Steril. 2009, 92, 793–797. [Google Scholar] [CrossRef][Green Version]
- Amato, M.C.; Magistro, A.; Gambino, G.; Vesco, R.; Giordano, C. Visceral Adiposity Index and DHEAS Are Useful Markers of Diabetes Risk in Women with Polycystic Ovary Syndrome. Eur. J. Endocrinol. 2015, 172, 79–88. [Google Scholar] [CrossRef]
- Maliqueo, M.; Sir-Petermann, T.; Pérez, V.; Echiburú, B.; de Guevara, A.L.; Gálvez, C.; Crisosto, N.; Azziz, R. Adrenal Function during Childhood and Puberty in Daughters of Women with Polycystic Ovary Syndrome. J. Clin. Endocrinol. Metab. 2009, 94, 3282–3288. [Google Scholar] [CrossRef]
- Arslanian, S.A.; Lewy, V.; Danadian, K.; Saad, R. Metformin Therapy in Obese Adolescents with Polycystic Ovary Syndrome and Impaired Glucose Tolerance: Amelioration of Exaggerated Adrenal Response to Adrenocorticotropin with Reduction of Insulinemia/Insulin Resistance. J. Clin. Endocrinol. Metab. 2002, 87, 1555–1559. [Google Scholar] [CrossRef]
- Azziz, R.; Ehrmann, D.A.; Legro, R.S.; Fereshetian, A.G.; O’Keefe, M.; Ghazzi, M.N. Troglitazone Decreases Adrenal Androgen Levels in Women with Polycystic Ovary Syndrome. Fertil. Steril. 2003, 79, 932–937. [Google Scholar] [CrossRef]
- Romualdi, D.; Giuliani, M.; Draisci, G.; Costantini, B.; Cristello, F.; Lanzone, A.; Guido, M. Pioglitazone Reduces the Adrenal Androgen Response to Corticotropin-Releasing Factor without Changes in ACTH Release in Hyperinsulinemic Women with Polycystic Ovary Syndrome. Fertil. Steril. 2007, 88, 131–138. [Google Scholar] [CrossRef] [PubMed]
- Abbott, D.H.; Zhou, R.; Bird, I.M.; Dumesic, D.A.; Conley, A.J. Fetal Programming of Adrenal Androgen Excess: Lessons from a Nonhuman Primate Model of Polycystic Ovary Syndrome. Endocr. Dev. 2008, 13, 145–158. [Google Scholar] [CrossRef] [PubMed]
- Yildiz, B.O.; Azziz, R. The Adrenal and Polycystic Ovary Syndrome. Rev. Endocr. Metab. Disord. 2007, 8, 331–342. [Google Scholar] [CrossRef]
- Azziz, R.; Rittmaster, R.S.; Fox, L.M.; Bradley, E.L.J.; Potter, H.D.; Boots, L.R. Role of the Ovary in the Adrenal Androgen Excess of Hyperandrogenic Women. Fertil. Steril. 1998, 69, 851–859. [Google Scholar] [CrossRef]
- l’Allemand, D.; Penhoat, A.; Lebrethon, M.C.; Ardèvol, R.; Baehr, V.; Oelkers, W.; Saez, J.M. Insulin-like Growth Factors Enhance Steroidogenic Enzyme and Corticotropin Receptor Messenger Ribonucleic Acid Levels and Corticotropin Steroidogenic Responsiveness in Cultured Human Adrenocortical Cells. J. Clin. Endocrinol. Metab. 1996, 81, 3892–3897. [Google Scholar] [CrossRef]
- Zhang, L.H.; Rodriguez, H.; Ohno, S.; Miller, W.L. Serine Phosphorylation of Human P450c17 Increases 17,20-Lyase Activity: Implications for Adrenarche and the Polycystic Ovary Syndrome. Proc. Natl. Acad. Sci. USA 1995, 92, 10619–10623. [Google Scholar] [CrossRef]
- Walzer, D.; Turcu, A.F.; Jha, S.; Abel, B.S.; Auchus, R.J.; Merke, D.P.; Brown, R.J. Excess 11-Oxygenated Androgens in Women with Severe Insulin Resistance Are Mediated by Adrenal Insulin Receptor Signaling. J. Clin. Endocrinol. Metab. 2022, 107, 2626–2635. [Google Scholar] [CrossRef]
- Munir, I.; Yen, H.-W.; Geller, D.H.; Torbati, D.; Bierden, R.M.; Weitsman, S.R.; Agarwal, S.K.; Magoffin, D.A. Insulin Augmentation of 17alpha-Hydroxylase Activity Is Mediated by Phosphatidyl Inositol 3-Kinase but Not Extracellular Signal-Regulated Kinase-1/2 in Human Ovarian Theca Cells. Endocrinology 2004, 145, 175–183. [Google Scholar] [CrossRef] [PubMed]
- Franks, S.; Gilling-Smith, C.; Watson, H.; Willis, D. Insulin Action in the Normal and Polycystic Ovary. Endocrinol. Metab. Clin. N. Am. 1999, 28, 361–378. [Google Scholar] [CrossRef]
- Sir-Petermann, T.; Maliqueo, M.; Codner, E.; Echiburú, B.; Crisosto, N.; Pérez, V.; Pérez-Bravo, F.; Cassorla, F. Early Metabolic Derangements in Daughters of Women with Polycystic Ovary Syndrome. J. Clin. Endocrinol. Metab. 2007, 92, 4637–4642. [Google Scholar] [CrossRef] [PubMed]
- Legro, R.S.; Bentley-Lewis, R.; Driscoll, D.; Wang, S.C.; Dunaif, A. Insulin Resistance in the Sisters of Women with Polycystic Ovary Syndrome: Association with Hyperandrogenemia Rather than Menstrual Irregularity. J. Clin. Endocrinol. Metab. 2002, 87, 2128–2133. [Google Scholar] [CrossRef][Green Version]
- Legro, R.S.; Kunselman, A.R.; Demers, L.; Wang, S.C.; Bentley-Lewis, R.; Dunaif, A. Elevated Dehydroepiandrosterone Sulfate Levels as the Reproductive Phenotype in the Brothers of Women with Polycystic Ovary Syndrome. J. Clin. Endocrinol. Metab. 2002, 87, 2134–2138. [Google Scholar] [CrossRef] [PubMed]
- Sam, S.; Coviello, A.D.; Sung, Y.-A.; Legro, R.S.; Dunaif, A. Metabolic Phenotype in the Brothers of Women with Polycystic Ovary Syndrome. Diabetes Care 2008, 31, 1237–1241. [Google Scholar] [CrossRef]
- Sir-Petermann, T.; Codner, E.; Pérez, V.; Echiburú, B.; Maliqueo, M.; Ladrón de Guevara, A.; Preisler, J.; Crisosto, N.; Sánchez, F.; Cassorla, F.; et al. Metabolic and Reproductive Features before and during Puberty in Daughters of Women with Polycystic Ovary Syndrome. J. Clin. Endocrinol. Metab. 2009, 94, 1923–1930. [Google Scholar] [CrossRef]
- Yue, J.; Wang, L.; Huang, R.; Li, S.; Ma, J.; Teng, X.; Liu, W. Dehydroepiandrosterone-Sulfate (DHEAS) Promotes MIN6 Cells Insulin Secretion via Inhibition of AMP-Activated Protein Kinase. Biochem. Biophys. Res. Commun. 2013, 440, 756–761. [Google Scholar] [CrossRef] [PubMed]
- Buffington, C.K.; Givens, J.R.; Kitabchi, A.E. Opposing Actions of Dehydroepiandrosterone and Testosterone on Insulin Sensitivity. In Vivo and In Vitro Studies of Hyperandrogenic Females. Diabetes 1991, 40, 693–700. [Google Scholar] [CrossRef] [PubMed]
- Mottl, R.; Cerman, J. A relationship between dehydroepiandrosterone sulphate and insulin resistance in obese men and women. Vnitr. Lek. 2004, 50, 923–929. [Google Scholar] [PubMed]
- Feldman, H.A.; Johannes, C.B.; Araujo, A.B.; Mohr, B.A.; Longcope, C.; McKinlay, J.B. Low Dehydroepiandrosterone and Ischemic Heart Disease in Middle-Aged Men: Prospective Results from the Massachusetts Male Aging Study. Am. J. Epidemiol. 2001, 153, 79–89. [Google Scholar] [CrossRef] [PubMed]
- Kameda, W.; Daimon, M.; Oizumi, T.; Jimbu, Y.; Kimura, M.; Hirata, A.; Yamaguchi, H.; Ohnuma, H.; Igarashi, M.; Tominaga, M.; et al. Association of Decrease in Serum Dehydroepiandrosterone Sulfate Levels with the Progression to Type 2 Diabetes in Men of a Japanese Population: The Funagata Study. Metabolism 2005, 54, 669–676. [Google Scholar] [CrossRef]
- Teede, H.J.; Tay, C.T.; Laven, J.J.E.; Dokras, A.; Moran, L.J.; Piltonen, T.T.; Costello, M.F.; Boivin, J.; Redman, L.M.; Boyle, J.A.; et al. Recommendations from the 2023 International Evidence-Based Guideline for the Assessment and Management of Polycystic Ovary Syndrome. Eur. J. Endocrinol. 2023, 189, G43–G64. [Google Scholar] [CrossRef]
- Barber, T.M.; Hanson, P.; Weickert, M.O.; Franks, S. Obesity and Polycystic Ovary Syndrome: Implications for Pathogenesis and Novel Management Strategies. Clin. Med. Insights Reprod. Health 2019, 13, 1179558119874042. [Google Scholar] [CrossRef]
Characteristics | Median (25–75th Percentile) | Observed Range |
---|---|---|
Age (yrs) | 23 (21–27) | 16–41 |
BMI (kg/m2) | 24.78 (20.83–31.23) | 15.23–48.11 |
Obesity (BMI ≥ 30 kg/m2) # | 73/240 (30.42%) | - |
Waist (cm) | 83 (73.6–100) | 60–126 |
mFG score | 7 (3–10) | 0–34 |
LH (U/L) | 8.88 (5.31–13.13) | 1.46–49.4 |
FSH (U/L) | 6.24 (4.83–7.54) | 0.7–15.04 |
E2 (pg/mL) | 48.5 (35.2–68) | 2.46–413 |
Total testosterone (ng/mL) | 0.72 (0.55–0.88) | 0.09–2.56 |
SHBG (nmol/L) | 42.73 (26.37–69.58) | 4.5–278.05 |
FAI | 5.83 (3.35–9.75) | 0.55–57.2 |
DHEAS (µg/dL) | 267.9 (185.5–353.35) | 20.04–810.9 |
17OH progesterone (ng/mL) | 1.03 (0.76–1.31) | 0.29–1.94 |
Fasting glucose (mg/dL) | 84.4 (79.25–91) | 45–133 |
Fasting insulin (mU/L) | 14.4 (8.75–23.4) | 1–69 |
HOMA-IR | 2.98 (1.84–5.11) | 0.19–15.53 |
2 h glucose (mg/dL) | 99 (86.1–114) | 39–203.5 |
2 h insulin (mU/L) | 54 (31.7–98) | 4–252 |
SBP (mmHg) | 110 (100–120) | 85–180 |
DBP (mmHg) | 70 (60–80) | 50–150 |
Triglycerides (mg/dL) | 79.25 (58–120.5) | 29–470 |
HDL cholesterol (mg/dL) | 52 (43–62.75) | 16–110 |
MetS # | 51/237 (21.52%) | - |
Lower Tertile DHEAS ≤ 216.7 (n = 86) | Middle Tertile DHEAS = 216.8–317.2 (n = 86) | Upper Tertile DHEAS ≥ 318.8 (n = 85) | p | |
---|---|---|---|---|
DHEAS (µg/dL) | 152.85 (123.92–186.72) a | 268.8 (244.45–293.75) b | 397.9 (353.35–479.8) c | <0.001 |
Age (yrs) | 24 (21.25–29.75) a | 23 (21–27) a,b | 22.5 (20.25–26.75) b | <0.05 |
BMI (kg/m2) | 24.05 (20.25–31.87) | 23.98 (20.96–29.81) | 26.21 (21.7–32) | 0.29 |
Waist (cm) | 83 (71–94) | 80 (73.27–95.5) | 88.5 (75.62–103.75) | 0.16 |
Total testosterone (ng/mL) | 0.63 (0.44–74) a | 0.72 (0.56–0.83) b | 0.83 (0.7–1.03) c | <0.001 |
SHBG (nmol/L) | 54.3 (34.9–81.09) a | 41.38 (25.87–59.92) a,b | 35.3 (19.67–56.95) b | <0.01 |
FAI | 4.24 (2.13–7.27) a | 5.16 (3.51–9.82) b | 8.1 (4.46–15.5) c | <0.001 |
Fasting glucose (mg/dL) | 84.1 (78.25–90.15) | 85.25 (80.45–91) | 83.4 (79.25–92.3) | 0.59 |
Fasting insulin (mU/L) | 16 (9.9–23) | 13 (7.08–23.4) | 15 (9.81–26.11) | 0.25 |
HOMA-IR | 3.11 (2.13–4.98) | 2.66 (1.48–4.97) | 3.26 (2.07–5.88) | 0.30 |
2 h glucose (mg/dL) | 92.25 (79.55–105) a | 99.8 (88.37–118) b | 103.7 (91.75–123.55) b | 0.001 |
2 h insulin (mU/L) | 45 (29.6–68.6) a | 54.95 (32–117.5) a,b | 66.4 (38.97–114.9) b | <0.05 |
All PCOS (n = 257) | Non-Obese PCOS (n = 167) | Obese PCOS (n = 73) | ||||
---|---|---|---|---|---|---|
Variables | r | p | r | p | r | p |
Age (yrs) | −0.146 | <0.05 | −0.073 | 0.35 | −0.317 | <0.01 |
BMI (kg/m2) | 0.098 | 0.13 | 0.147 | 0.07 | −0.031 | 0.79 |
Waist (cm) | 0.105 | 0.14 | 0.044 | 0.61 | 0.037 | 0.77 |
Fasting glucose (mg/dL) | 0.021 | 0.74 | 0.028 | 0.72 | −0.067 | 0.57 |
Fasting insulin (mU/L) | −0.0001 | 0.99 | −0.091 | 0.27 | −0.009 | 0.94 |
HOMA-IR | 0.0105 | 0.87 | −0.072 | 0.38 | −0.004 | 0.97 |
2 h glucose (mg/dL) | 0.231 | <0.001 | 0.334 | <0.0001 | 0.006 | 0.96 |
2 h insulin (mU/L) | 0.246 | <0.001 | 0.283 | <0.01 | 0.097 | 0.48 |
Total testosterone (ng/mL) | 0.416 | <0.0001 | 0.473 | <0.0001 | 0.341 | <0.01 |
FAI | 0.386 | <0.0001 | 0.387 | <0.0001 | 0.504 | <0.0001 |
Model 1 (n = 171) | Model 2 (n = 212) | Model 3 (n = 236) | Model 4 (n = 187) | Model 5 (n = 165) | Model 6 (n = 130) | |
---|---|---|---|---|---|---|
Age | −0.148 p = 0.0439 | −0.160 p = 0.018 | −0.159 p = 0.009 | −0.239 p = 0.0004 | −0.160 p = 0.0261 | −0.197 p = 0.014 |
BMI | - p = NS | - p = NS | - p = NS | - p = NS | - p = NS | - p = NS |
2 h insulin | 0.286 p = 0.0001 | X | X | X | 0.280 p = 0.0001 | 0.214 p = 0.009 |
2 h glucose | X | 0.247 p = 0.0003 | X | X | - p = NS | - p = NS |
Total testosterone | X | X | 0.321 p < 0.0001 | X | 0.245 p = 0.0009 | X |
FAI | X | X | X | −0.398 p < 0.0001 | X | 0.331 p = 0.0001 |
R2 (adjusted) | 0.10 (p < 0.0001) | 0.067 (p = 0.0002) | 0.12 (p < 0.0001) | 0.192 (p < 0.0001) | 0.15 (p < 0.0001) | 0.20 (p < 0.0001) |
Model 1 (n = 116) | Model 2 (n = 143) | Model 3 (n = 163) | Model 4 (n = 131) | Model 5 (n = 112) | Model 6 (n = 89) | |
---|---|---|---|---|---|---|
Age | - p = NS | - p = NS | - p = NS | −0.174 p = 0.039 | - p = NS | - p = NS |
BMI | - p = NS | - p = NS | - p = NS | - p = NS | - p = NS | - p = NS |
2 h insulin | 0.370 p < 0.0001 | X | X | X | 0.407 p < 0.0001 | 0.438 p < 0.0001 |
2 h glucose | X | 0.323 p = 0.0001 | X | X | - p = NS | - p = NS |
Total testosterone | X | X | 0.311 p = 0.0001 | X | 0.199 p = 0.022 | X |
FAI | X | X | X | 0.311 p = 0.0003 | X | - p = NS |
R2 (adjusted) | 0.13 (p < 0.0001) | 0.098 (p = 0.0001) | 0.092 (p = 0.0001) | 0.10 (p = 0.0004) | 0.18 (p < 0.0001) | 0.18 (p < 0.0001) |
Model 1 (n = 55) | Model 2 (n = 69) | Model 3 (n = 73) | Model 4 (n = 56) | Model 5 (n = 53) | Model 6 (n = 41) | |
---|---|---|---|---|---|---|
Age | −0.293 p = 0.029 | −0.326 p = 0.006 | −0.281 p = 0.01 | −0.311 p = 0.007 | −0.262 p = 0.039 | −0.358 p = 0.01 |
BMI | - p = NS | - p = NS | - p = NS | - p = NS | - p = NS | - p = NS |
2 h insulin | - p = NS | X | X | X | - p = NS | - p = NS |
2 h glucose | X | - p = NS | X | X | - p = NS | - p = NS |
Total testosterone | X | X | 0.328 p = 0.002 | X | 0.383 p = 0.003 | X |
FAI | X | X | X | 0.452 p = 0.0002 | X | 0.403 p = 0.004 |
R2 (adjusted) | 0.068 (p = 0.029) | 0.092 (p = 0.006) | 0.18 (p = 0.0003) | 0.31 (p = 0.0001) | 0.20 (p = 0.001) | 0.27 (p = 0.0008) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baculescu, N.; Radian, S.; Manda, D.; Serban, C.G.; Niculescu, D.A.; Gheorghiu, M.L.; Grigorescu, F.; Poiana, C. Stimulated Hyperinsulinemia Is Independently Associated with Higher Serum DHEAS in PCOS: A Retrospective Study. J. Clin. Med. 2025, 14, 6246. https://doi.org/10.3390/jcm14176246
Baculescu N, Radian S, Manda D, Serban CG, Niculescu DA, Gheorghiu ML, Grigorescu F, Poiana C. Stimulated Hyperinsulinemia Is Independently Associated with Higher Serum DHEAS in PCOS: A Retrospective Study. Journal of Clinical Medicine. 2025; 14(17):6246. https://doi.org/10.3390/jcm14176246
Chicago/Turabian StyleBaculescu, Nicoleta, Serban Radian, Dana Manda, Cristina Georgiana Serban, Dan Alexandru Niculescu, Monica Livia Gheorghiu, Florin Grigorescu, and Catalina Poiana. 2025. "Stimulated Hyperinsulinemia Is Independently Associated with Higher Serum DHEAS in PCOS: A Retrospective Study" Journal of Clinical Medicine 14, no. 17: 6246. https://doi.org/10.3390/jcm14176246
APA StyleBaculescu, N., Radian, S., Manda, D., Serban, C. G., Niculescu, D. A., Gheorghiu, M. L., Grigorescu, F., & Poiana, C. (2025). Stimulated Hyperinsulinemia Is Independently Associated with Higher Serum DHEAS in PCOS: A Retrospective Study. Journal of Clinical Medicine, 14(17), 6246. https://doi.org/10.3390/jcm14176246