A Pilot Study of the Role of Salivary Biomarkers in the Diagnosis of PCOS in Adolescents Across Different Body Weight Categories
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Medical and Dental Examination
2.3. Saliva Assays
2.4. Biochemical Parameters
2.5. Statistical Analysis
3. Results
3.1. Clinical and Hormonal Characteristics of PCOS Participants
3.2. Comparison of Salivary Biomarkers and Clinical Parameters Between PCOS and Control Groups
3.3. Serum Hormonal and Metabolic Profiles in PCOS
3.4. Diagnostic Performance of Salivary Biomarkers in PCOS
3.5. Associations Between Salivary Biomarkers and Clinical or Hormonal Variables in PCOS
3.6. Predictive Utility of Salivary Biomarkers for Hormonal and Metabolic Abnormalities in PCOS
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Islam, H.; Masud, J.; Islam, Y.N.; Haque, F.K.M. An update on polycystic ovary syndrome: A review of the current state of knowledge in diagnosis, genetic etiology, and emerging treatment options. Women’s Health 2022, 18, 17455057221117966. [Google Scholar] [CrossRef]
- Meczekalski, B.; Niwczyk, O.; Kostrzak, A.; Maciejewska-Jeske, M.; Bala, G.; Szeliga, A. PCOS in Adolescents—Ongoing Riddles in Diagnosis and Treatment. J. Clin. Med. 2023, 12, 1221. [Google Scholar] [CrossRef]
- Blay, S.L.; Aguiar, J.V.; Passos, I.C. Polycystic ovary syndrome and mental disorders: A systematic review and exploratory meta-analysis. Neuropsychiatr. Dis. Treat. 2016, 12, 2895–2903. [Google Scholar] [CrossRef] [PubMed]
- Rudnicka, E.; Suchta, K.; Grymowicz, M.; Calik-Ksepka, A.; Smolarczyk, K.; Duszewska, A.M.; Smolarczyk, R.; Meczekalski, B. Chronic Low Grade Inflammation in Pathogenesis of PCOS. Int. J. Mol. Sci. 2021, 22, 3789. [Google Scholar] [CrossRef] [PubMed]
- Tarkun, I.; Cetinarslan, B.; Türemen, E.; Cantürk, Z.; Biyikli, M. Association between circulating tumor necrosis factor-alpha, interleukin-6, and insulin resistance in normal-weight women with polycystic ovary syndrome. Metab. Syndr. Relat. Disord. 2006, 4, 122–128. [Google Scholar] [CrossRef] [PubMed]
- González, F. Inflammation in Polycystic Ovary Syndrome: Underpinning of insulin resistance and ovarian dysfunction. Steroids 2012, 77, 300–305. [Google Scholar] [CrossRef]
- Wendland, N.; Opydo-Szymaczek, J.; Formanowicz, D.; Blacha, A.; Jarząbek-Bielecka, G.; Mizgier, M. Association between metabolic and hormonal profile, proinflammatory cytokines in saliva and gingival health in adolescent females with polycystic ovary syndrome. BMC Oral Health 2021, 21, 193. [Google Scholar] [CrossRef]
- Küçük, M.; Altınkaya, S.Ö.; Nergiz, S.; Sezer, S.D.; Yüksel, H.; Bağlı, İ.; Yıldız, G.M. Interleukin-6 levels in relation with hormonal and metabolic profile in patients with polycystic ovary syndrome. Gynecol. Endocrinol. 2014, 30, 423–427. [Google Scholar] [CrossRef]
- Peng, Z.; Sun, Y.; Lv, X.; Zhang, H.; Liu, C.; Dai, S. Interleukin-6 Levels in Women with Polycystic Ovary Syndrome: A Systematic Review and Meta-Analysis. PLoS ONE 2016, 11, e0148531. [Google Scholar] [CrossRef]
- Zafari Zangeneh, F.; Naghizadeh, M.M.; Masoumi, M. Polycystic ovary syndrome and circulating inflammatory markers. Int. J. Reprod. Biomed. 2017, 15, 375–382. [Google Scholar] [CrossRef]
- Roman, Y.M. The Role of Uric Acid in Human Health: Insights from the Uricase Gene. J. Pers. Med. 2023, 13, 1409. [Google Scholar] [CrossRef] [PubMed]
- Du, L.; Du, L.; Zong, Y.; Li, H.; Wang, Q.; Xie, L.; Yang, B.; Pang, Y.; Zhang, C.; Zhong, Z.; et al. Hyperuricemia and its related diseases: Mechanisms and advances in therapy. Sig. Transduct. Target. Ther. 2024, 9, 212. [Google Scholar] [CrossRef] [PubMed]
- Lubawy, M.; Blacha, A.; Nowicki, M.; Deja, T.; Wałkowski, K.; Formanowicz, D. Ghrelin and Leptin among Patients with Urolithiasis with Concomitant Hyperuricemia and Metabolic Syndrome. Biomedicines 2023, 11, 285. [Google Scholar] [CrossRef]
- Jaiswal, A.; Madaan, S.; Acharya, N.; Kumar, S.; Talwar, D.; Dewani, D.; Jaiswal, A. Salivary Uric Acid: A Noninvasive Wonder for Clinicians? Cureus 2021, 13, e19649. [Google Scholar] [CrossRef]
- Mizgier, M.; Więckowska, B.; Formanowicz, D.; Lombardi, G.; Brożek, A.; Nowicki, M.; Durkalec-Michalski, K.; Kędzia, W.; Jarząbek-Bielecka, G.M. Effects of AIDiet intervention to improve diet quality, immuno-metabolic health in normal and overweight PCOS girls: A pilot study. Sci. Rep. 2024, 14, 3525. [Google Scholar] [CrossRef]
- Mizgier, M.; Jarząbek-Bielecka, G.; Formanowicz, D.; Jodłowska-Siewert, E.; Mruczyk, K.; Cisek Woźniak, A.; Kędzia, W.; Opydo-Szymaczek, J. Dietary and Physical Activity Habits in Adolescent Girls with Polycystic Ovary Syndrome (PCOS)-HAstudy. J. Clin. Med. 2021, 10, 3469. [Google Scholar] [CrossRef]
- Mizgier, M.; Watrowski, R.; Opydo-Szymaczek, J.; Jodłowska-Siewert, E.; Lombardi, G.; Kędzia, W.; Jarząbek-Bielecka, G. Association of Macronutrients Composition, Physical Activity and Serum Androgen Concentration in Young Women with Polycystic Ovary Syndrome. Nutrients 2021, 14, 73. [Google Scholar] [CrossRef]
- Mizgier, M.; Jarząbek-Bielecka, G.; Wendland, N.; Jodłowska-Siewert, E.; Nowicki, M.; Brożek, A.; Kędzia, W.; Formanowicz, D.; Opydo-Szymaczek, J. Relation between Inflammation, Oxidative Stress, and Macronutrient Intakes in Normal and Excessive Body Weight Adolescent Girls with Clinical Features of Polycystic Ovary Syndrome. Nutrients 2021, 13, 896. [Google Scholar] [CrossRef]
- Mizgier, M.; Jarząbek-Bielecka, G.; Opydo-Szymaczek, J.; Wendland, N.; Więckowska, B.; Kędzia, W. Risk Factors of Overweight and Obesity Related to Diet and Disordered Eating Attitudes in Adolescent Girls with Clinical Features of Polycystic Ovary Syndrome. J. Clin. Med. 2020, 9, 3041. [Google Scholar] [CrossRef]
- Yıldız, B.O.; Bolour, S.; Woods, K.; Moore, A.; Azziz, R. Visually scoring hirsutism. Hum. Reprod. Update 2010, 16, 51–64. [Google Scholar] [CrossRef] [PubMed]
- Melina, A.; Melina, A.; Dinh, N.N.; Tafuri, B.; Schipani, G.; Nisticò, S.; Cosentino, C.; Amato, F.; Thiboutot, D.; Cherubini, A. Artificial Intelligence for the Objective Evaluation of Acne Investigator Global Assessment. J. Drugs Dermatol. 2018, 17, 1006–1009. [Google Scholar]
- World Health Organization. Growth Reference 5–19. BMI-for-Age for Girls. 2007. Available online: https://www.who.int/tools/growth-reference-data-for-5to19-years/indicators/bmi-for-age (accessed on 1 April 2025).
- Loe, H. The gingival index, the plaque index and the retention index systems. J. Periodontol. 1967, 38, 610–616. [Google Scholar] [CrossRef]
- Silness, J.; Loe, H. Periodontal disease in pregnancy II. Correlation between oral hygiene and periodontal condition. Acta Odontol. Scand. 1964, 22, 121–135. [Google Scholar] [CrossRef]
- Chissini, R.B.C.; Kuschnir, M.C.; de Oliveira, C.L.; Giannini, D.T.; Santos, B. Cutoff values for HOMA-IR associated with metabolic syndrome in the Study of Cardiovascular Risk in Adolescents (ERICA Study). Nutrition 2020, 71, 110608. [Google Scholar] [CrossRef]
- Bui, H.N.; Sluss, P.M.; Hayes, F.J.; Blincko, S.; Knol, D.L.; Blankenstein, M.A.; Heijboer, A.C. Testosterone, free testosterone, and free androgen index in women: Reference intervals, biological variation, and diagnostic value in polycystic ovary syndrome. Clin. Chim. Acta 2015, 450, 227–232. [Google Scholar] [CrossRef]
- Banaszewska, B.; Spaczyński, R.Z.; Pelesz, M.; Pawelczyk, L. Incidence of elevated LH/FSH ratio in polycystic ovary syndrome women with normo- and hyperinsulinemia. Rocz. Akad. Med. Bialymst. 2023, 48, 131–134. [Google Scholar]
- Forrester-Dumont, K.; Galescu, O.; Kolesnikov, A.; Raissouni, N.; Bhangoo, A.; Ten, S.; Suss, A. Hyperandrogenism Does Not Influence Metabolic Parameters in Adolescent Girls with PCOS. Int. J. Endocrinol. 2012, 2012, 434830. [Google Scholar] [CrossRef] [PubMed]
- Suh, E.; Cho, A.R.; Haam, J.H.; Gil, M.; Lee, Y.K.; Kim, Y.S. Relationship between Serum Cortisol, Dehydroepiandrosterone Sulfate (DHEAS) Levels, and Natural Killer Cell Activity: A Cross-Sectional Study. J. Clin. Med. 2023, 12, 4027. [Google Scholar] [CrossRef] [PubMed]
- Tomo, S.; Banerjee, M.; Karli, S.; Purohit, P.; Mitra, P.; Sharma, P.; Garg, M.K.; Kumar, B. Assessment of DHEAS, cortisol, and DHEAS/cortisol ratio in patients with COVID-19: A pilot study. Hormones 2022, 21, 515–518. [Google Scholar] [CrossRef] [PubMed]
- Dey, R.; Bhattacharya, K.; Basak, A.K.; Paul, N.; Bandyopadhyay, R.; Chaudhuri, G.R.; Purkait, M.P.; Bhattacharjee, A.; Bose, C.; Shukla, N.; et al. Inflammatory perspectives of polycystic ovary syndrome: Role of specific mediators and markers. Middle East Fertil. Soc. J. 2023, 28, 33. [Google Scholar] [CrossRef]
- Escobar-Morreale, H.F.; Calvo, R.M.; Sancho, J.; San Millan, J.L. TNF-alpha and hyperandrogenism: A clinical, biochemical, and molecular genetic study. J. Clin. Endocrinol. Metab. 2001, 86, 3761–3767. [Google Scholar] [CrossRef]
- Gonzalez, F.; Thusu, K.; Abdel-Rahman, E.; Prabhala, A.; Tomani, M.; Dandona, P. Elevated serum levels of tumor necrosis factor alpha in normal-weight women with polycystic ovary syndrome. Metabolism 1999, 48, 437–441. [Google Scholar] [CrossRef]
- Vgontzas, A.N.; Trakada, G.; Bixler, E.O.; Lin, H.M.; Pejovic, S.; Zoumakis, E.; Chrousos, G.P.; Legro, R.S. Plasma interleukin 6 levels are elevated in polycystic ovary syndrome independently of obesity or sleep apnea. Metabolism 2006, 55, 1076–1082. [Google Scholar] [CrossRef]
- Shabbir, S.; Khurram, E.; Moorthi, V.S.; Eissa, Y.T.H.; Kamal, M.A.; Butler, A.E. The interplay between androgens and the immune response in polycystic ovary syndrome. J. Transl. Med. 2023, 21, 259. [Google Scholar] [CrossRef] [PubMed]
- Knebel, B.; Janssen, O.E.; Hahn, S.; Jacob, S.; Gleich, J.; Kotzka, J.; Muller-Wieland, D. Increased low grade inflammatory serum markers in patients with Polycystic ovary syndrome (PCOS) and their relationship to PPARgamma gene variants. Exp. Clin. Endocrinol. Diabetes 2008, 116, 481–486. [Google Scholar] [CrossRef]
- Brannstrom, M.; Friden, B.E.; Jasper, M.; Norman, R.J. Variations in peripheral blood levels of immunoreactive tumor necrosis factor alpha (TNFalpha) throughout the menstrual cycle and secretion of TNFalpha from the human corpus luteum. Eur. J. Obstet. Gynecol. Reprod. Biol. 1999, 83, 213–217. [Google Scholar] [CrossRef]
- Deligeoroglou, E.; Vrachnis, N.; Athanasopoulos, N.; Iliodromiti, Z.; Sifakis, S.; Iliodromiti, S.; Siristatidis, C.; Creatsas, G. Mediators of Chronic Inflammation in Polycystic Ovarian Syndrome. Gynecol. Endocrinol. 2012, 28, 974–978. [Google Scholar] [CrossRef]
- Escobar-Morreale, H.F.; Luque-Ramírez, M.; González, F. Circulating inflammatory markers in polycystic ovary syndrome: A systematic review and metaanalysis. Fertil. Steril. 2011, 95, 1048–1058. [Google Scholar] [CrossRef] [PubMed]
- Guzelmeric, K.; Alkan, N.; Pirimoglu, M.; Unal, O.; Turan, C. Chronic inflammation and elevated homocysteine levels are associated with increased body mass index in women with polycystic ovary syndrome. Gynecol. Endocrinol. 2007, 23, 505–510. [Google Scholar] [CrossRef]
- Möhlig, M.; Spranger, J.; Osterhoff, M.; Ristow, M.; Pfeiffer, A.F.; Schill, T.; Schlösser, H.W.; Brabant, G.; Schöfl, C. The polycystic ovary syndrome per se is not associated with increased chronic inflammation. Eur. J. Endocrinol. 2004, 150, 525–532. [Google Scholar] [CrossRef] [PubMed]
- Vasyukova, E.; Zaikova, E.; Kalinina, O.; Gorelova, I.; Pyanova, I.; Bogatyreva, E.; Vasilieva, E.; Grineva, E.; Popova, P. Inflammatory and Anti-Inflammatory Parameters in PCOS Patients Depending on Body Mass Index: A Case-Control Study. Biomedicines 2003, 11, 2791. [Google Scholar] [CrossRef] [PubMed]
- Villuendas, G.; San Millan, J.L.; Sancho, J.; Escobar-Morreale, H.F. The -597 G->A and -174 G->C polymorphisms in the promoter of the IL-6 gene are associated with hyperandrogenism. J. Clin. Endocrinol. Metab. 2002, 87, 1134–1141. [Google Scholar] [CrossRef]
- Cooper, G.; Ajak, A.; Tymoszuk, U. Identifying novel relationships between salivary biomarkers and biographical health data in study of reproductive age females with and without polycystic ovary syndrome (PCOS). Endocr. Abstr. 2012, 28, 298. Available online: https://www.endocrine-abstracts.org/ea/0028/ea0028p298 (accessed on 15 August 2025).
- Youssef, O.; El Atty, S.A.; El Din, H.M.S.; Kamal, M.; Youssef, G.; Al-Inany, H. Reliability of salivary testosterone measurements in diagnosis of Polycystic Ovarian Syndrome. Middle East Fertil. Soc. J. 2010, 15, 183–187. [Google Scholar] [CrossRef]
- Yarali, H.; Yildirir, A.; Aybar, F.; Kabakçi, G.; Bükülmez, O.; Akgül, E.; Oto, A. Diastolic dysfunction and increased serum homocysteine concentrations may contribute to increased cardiovascular risk in patients with polycystic ovary syndrome. Fertil. Steril. 2001, 76, 511–516. [Google Scholar] [CrossRef]
- Mu, L.; Pan, J.; Yang, L.; Chen, Q.; Chen, Y.; Teng, Y.; Wang, P.; Tang, R.; Huang, X.; Chen, X.; et al. Association between the prevalence of hyperuricemia and reproductive hormones in polycystic ovary syndrome. Reprod. Biol. Endocrinol. 2018, 16, 104. [Google Scholar] [CrossRef]
- Quiñónez Zarza, C.; Silva Ruiz, R.; Torres Juárez, J.M. Obesity, arterial hypertension, metabolic disorders, and polycystic ovary syndrome. Ginecol. Obstet. Mex. 2000, 68, 317–322. [Google Scholar]
- Anttila, L.; Rouru, J.; Penttila, T.; Irjala, K. Normal serum uric acid concentrations in women with polycystic ovary syndrome. Hum. Reprod. 1996, 11, 2405–2407. [Google Scholar] [CrossRef]
- Luque-Ramirez, M.; Alvarez-Blasco, F.; Uriol Rivera, M.G.; Escobar-Morreale, H.F. Serum uric acid concentration as non-classic cardiovascular risk factor in women with polycystic ovary syndrome: Effect of treatment with ethinyl-estradiol plus cyproterone acetate versus metformin. Hum. Reprod. 2008, 23, 1594–1601. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Fu, L.; Li, R.; Wang, L.N.; Yang, Y.; Liu, N.N.; Zhang, C.M.; Wang, Y.; Liu, P.; Tu, B.B.; et al. Metabolic profiles characterizing different phenotypes of polycystic ovary syndrome: Plasma metabolomics analysis. BMC Med. 2012, 10, 153. [Google Scholar] [CrossRef]
- Lubawy, M.; Formanowicz, D. High-Fructose Diet-Induced Hyperuricemia Accompanying Metabolic Syndrome-Mechanisms and Dietary Therapy Proposals. Int. J. Environ. Res. Public Health 2023, 20, 3596. [Google Scholar] [CrossRef]
- Jakše, B.; Jakše, B.; Pajek, M.; Pajek, J. Uric Acid and Plant-Based Nutrition. Nutrients 2019, 11, 1736. [Google Scholar] [CrossRef]
- Yuan, H.; Yu, C.; Li, X.; Sun, L.; Zhu, X.; Zhao, C.; Zhang, Z.; Yang, Z.; Yuan, H.; Yu, C.; et al. Serum Uric Acid Levels and Risk of Metabolic Syndrome: A Dose-Response Meta-Analysis of Prospective Studies. J. Clin. Endocrinol. Metab. 2015, 100, 4198–4207. [Google Scholar] [CrossRef] [PubMed]
- Gholizadeh, N.; Koopaie, M.; Aleyasin, A.; Milani, A.M.; Aghahosseini, M.; Kharrazifard, M.J.; Bahmaee, M. The role of salivary antioxidant level in polycystic ovary syndrome women under assisted reproductive technology treatment: A case-control study. Int. J. Reprod. Biomed. 2025, 22, 975–984. [Google Scholar] [CrossRef]
- Phillips, A.C.; Carroll, D.; Gale, C.R.; Lord, J.M.; Arlt, W.; Batty, G.D. Cortisol, DHEAS, their ratio and the metabolic syndrome: Evidence from the Vietnam Experience Study. Eur. J. Endocrinol. 2010, 162, 919–923. [Google Scholar] [CrossRef] [PubMed]
- Butcher, S.K.; Killampalli, V.; Lascelles, D.; Wang, K.; Alpar, E.K.; Lord, J.M. Raised cortisol: DHEAS ratios in the elderly after injury: Potential impact upon neutrophil function and immunity. Aging Cell 2005, 4, 319–324. [Google Scholar] [CrossRef]
- Khanfer, R.; Lord, J.M.; Phillips, A.C. Neutrophil function and cortisol: DHEAS ratio in bereaved older adults. Brain Behav. Immun. 2011, 25, 1182–1186. [Google Scholar] [CrossRef]
- Ishisaka, A.; Ansai, T.; Soh, I.; Inenaga, K.; Awano, S.; Yoshida, A.; Hamasaki, T.; Sonoki, K.; Takata, Y.; Nishihara, T.; et al. Association of cortisol and dehydroepiandrosterone sulphate levels in serum with periodontal status in older Japanese adults. J. Clin. Periodontol. 2008, 35, 853–861. [Google Scholar] [CrossRef] [PubMed]
- Lerchbaum, E.; Schwetz, V.; Giuliani, A.; Pieber, T.R.; Obermayer-Pietsch, B. Opposing effects of dehydroepiandrosterone sulfate and free testosterone on metabolic phenotype in women with polycystic ovary syndrome. Fertil. Steril. 2012, 98, 1318–1325. [Google Scholar] [CrossRef]
- Boucher, H.; Robin, G.; Ribière, L.; Martin, C.; Espiard, S.; Catteau-Jonard, S. Is it useful to measure DHEAS levels in PCOS? Ann. Endocrinol. 2024, 85, 95–99. [Google Scholar] [CrossRef]
- Lucas, T.; Riis, J.L.; Buchalski, Z.; Drolet, C.E.; Dawadi, A.; Granger, D.A. Reactivity of salivary uric acid in response to social evaluative stress in African Americans. Biol. Psychol. 2020, 153, 107882. [Google Scholar] [CrossRef]
- Torlińska-Walkowiak, N.; Majewska, K.A.; Sowińska, A.; Kędzia, A.; Opydo-Szymaczek, J. Skeletal and dental age discrepancy and occlusal traits in children with growth hormone deficiency and idiopathic short stature. Clin. Oral Investig. 2022, 26, 6165–6175. [Google Scholar] [CrossRef]
- Vale-Fernandes, E.; Pignatelli, D.; Monteiro, M.P. Should anti-Müllerian hormone be a diagnosis criterion for polycystic ovary syndrome? An in-depth review of pros and cons. Eur. J. Endocrinol. 2025, 27, 29–43. [Google Scholar] [CrossRef]
- Şener, R.; Alataş, S.E.; Güler, Ö.T. Evaluation of serum calprotectin levels in patients with polycystic ovary syndrome. Sci. Rep. 2025, 15, 14471. [Google Scholar] [CrossRef] [PubMed]
- Di Segni, C.; Silvestrini, A.; Fato, R.; Bergamini, C.; Guidi, F.; Raimondo, S.; Meucci, E.; Romualdi, D.; Apa, R.; Lanzone, A.; et al. Plasmatic and Intracellular Markers of Oxidative Stress in Normal Weight and Obese Patients with Polycystic Ovary Syndrome. Exp. Clin. Endocrinol. Diabetes 2017, 125, 506–513. [Google Scholar] [CrossRef] [PubMed]
- Singh, I.; Moar, K.; Maurya, P.K. Diagnostic and prognostic biomarkers in Polycystic Ovary Syndrome. Clin. Chim. Acta 2025, 576, 120425. [Google Scholar] [CrossRef] [PubMed]
Characteristic | PCOS (n = 41) | Controls (n = 30) | p-Value |
---|---|---|---|
Age (years) | 16 (16; 17) | 16 (15; 17) | 0.2031 |
BMI (kg/m2) | 25.2 (21.2; 30.1) | 19.9 (18.0; 22.0) | <0.0001 |
Salivary biomarkers | |||
Testosterone (pg/mL) | 41.81 ± 12.20 | 28.74 ± 7.59 | <0.0001 |
TNF-α (pg/mL) | 16.69 (14.83; 19.03) | 12.04 (10.79; 13.22) | <0.0001 |
IL-6 (pg/mL) | 9.46 (7.18; 12.85) | 5.93 ± 1.66 | <0.0001 |
IL-1β (pg/mL) | 170.82 (151.13; 194.13) | 126.46 (106.10; 143.02) | <0.0001 |
Uric acid (µmol/L) | 137.50 (120.19; 193.40) | 217.24 (159.20; 304.07) | 0.0001 |
Oral health indices | |||
GI | 0.33 (0.13; 0.72) | 0.25 (0.08; 0.58) | 0.3214 |
PI | 0.63 (0.25; 0.89) | 0.71 (0.17; 1.04) | 0.9582 |
Parameter | Mean ± SD or Median (Q1; Q3) | Reference Values | Abnormal Values [n] |
---|---|---|---|
FSH (mIU/mL) | 5.08 ± 2.03 | 3.5–12.5 * | 11 ↓ |
LH (mIU/mL) | 10.97 (6.55; 18.06) | 2.4–12.6 * | 3 ↓ 19 ↑ |
LH/FSH | 2.29 (1.27; 3.35) | ≤2 [27] | 23 ↑ |
estradiol (pg/mL) | 46.70 (36.89; 70.16) | 12.5–166 * (follicular phase) | 5 ↑ |
testosterone (ng/dL) | 53.76 ± 19.40 | <51 [28] | 21 ↑ |
SHBG (nmol/L) | 41.11 (24.85; 56.54) | 26.1–110 * | 11 ↓ |
FAI | 4.10 (2.97; 10.05) | ≤4.4 [26] | 19 ↑ |
DHEA-S (µmol/L) | 7.37 ± 3.03 | 1.77–9.99 * | 10 ↑ |
cortisol (nmol/L) | 411.65 ± 122.97 | 166–507 * | 2 ↓ 9 ↑ |
cortisol/DHEA-S ratio | 0.06 (0.04; 0.08) | <0.05 [29,30] | 21 ↑ |
fasting glucose (mg/dL) | 88.65 ± 5.98 | 60–99 * | 0 ↑ |
fasting insulin (mU/L) | 14.96 ± 11.32 | 2.6–24.9 * | 7 ↑ |
HOMA-IR | 3.35 (2.48; 4.38) | <2.32 [25] | 33 ↑ |
TC (mg/dL) | 158.2 ± 24.6 | <190 * | 4 ↑ |
HDL-C (mg/dL) | 53.1 ± 8.3 | ≥45 * | ↓ 5 |
LDL-C (mg/dL) | 85.8 ± 20.5 | <115 * | 4 ↑ |
TG (mg/dL) | 87.8 (69.78; 118.5) | <150 * | 6 ↑ |
AUC | p-Value | Sensitivity | Specificity | Youden Index | Associate Criterion (Cut-Off) | |
---|---|---|---|---|---|---|
All subjects | ||||||
Salivary testosterone | 0.797 | <0.0001 | 53.66 | 96.67 | 0.502 | >38.3 pg/mL |
TNF-α | 0.921 | <0.0001 | 90.24 | 86.67 | 0.769 | >13.8 pg/mL |
IL-1β | 0.870 | <0.0001 | 82.93 | 83.33 | 0.663 | >147.1 pg/mL |
IL-6 | 0.891 | <0.0001 | 87.80 | 73.33 | 0.611 | >6.8 pg/mL |
Uric acid | 0.773 | <0.0001 | 60.98 | 86.67 | 0.476 | ≤152 µmol/L |
Subjects with normal weight | ||||||
Salivary testosterone | 0.806 | <0.0001 | 47.39 | 100.00 | 0.474 | >38.3 pg/mL |
TNF-α | 0.891 | <0.0001 | 89.49 | 80.00 | 0.695 | >13.6 pg/mL |
IL-1β | 0.880 | <0.0001 | 89.47 | 88.00 | 0.775 | >149.9 pg/mL |
IL-6 | 0.896 | <0.0001 | 63.16 | 100.00 | 0.632 | >8.8 pg/mL |
Uric acid | 0.766 | 0.0002 | 52.63 | 92.00 | 0.446 | ≤149.6 µmol/L |
Characteristic | Salivary Testosterone (pg/mL) | TNF-α (pg/mL) | IL-1β (pg/mL) | IL-6 (pg/mL) | Uric Acid (µmol/L) |
---|---|---|---|---|---|
BMI | |||||
normal n = 19 | 42.19± 13.99 | 15.90 (14.78; 18.34) | 170.82 (160.66; 184.63) | 9.46 (7.53; 11.12) | 149.57 (127.93; 204.55) |
overweight n = 22 | 41.48 ± 10.76 | 17.91 (15.96; 20.60) | 171.06 (148.20; 194.13) | 9.17 (7.17; 16.33) | 136.30 (113.63; 162.22) |
p-value | 0.8523 | 0.0798 | 0.7437 | 0.9791 | 0.3740 |
Serum testosterone | |||||
<51 ng/dL n = 20 | 35.46 (30.69; 44.87) | 16.52 (14.87; 19.01) | 179.33 ± 64.76 | 8.44 (7.02; 11.81) | 152.51 ± 52.21 |
≥51 ng/dL n = 21 | 45.35 (35.29; 54.55) | 17.23 (14.83; 19.45) | 174.20± 20.26 | 9.59 (8.16; 15.01) | 149.57 (112.43; 208.42) |
p-value | 0.1552 | 0.5060 | 0.7306 | 0.3090 | 0.8449 |
FAI | |||||
≤4.4 n = 22 | 35.46 (28.75;45.35) | 15.80 (14.50; 17.27) | 183.78 ± 60.10 | 8.29 (6.99; 10.92) | 140.64 (122.18; 206.35) |
>4.4 n = 19 | 45.28 ± 11.64 | 18.69 (16.18; 23.74) | 168.50 ± 23.47 | 9.79 (8.63; 17.82) | 137.50 (116.92; 167.54) |
p-value | 0.0844 | 0.0121 | 0.3049 | 0.0214 | 0.6853 |
Estradiol | |||||
≤166 pg/mL n = 36 | 37.06 (30.69; 49.35) | 16.60 (14.67; 19.04) | 170.82 (150.16; 194.35) | 8.94 (7.18; 11.96) | 137.50 (113.93; 195.31) |
>166 pg/mL n = 5 | 52.39 ± 6.91 | 17.23 (15.91; 27.91) | 180.91 (146.90; 185.97) | 13.32 ± 6.59 | 152.20 (136.28; 176.65) |
p-value | 0.0257 | 0.4733 | 0.9682 | 0.4141 | 0.4856 |
LH/FSH ratio | |||||
≤2 n = 18 | 33.77 (27.62; 44.40) | 16.52 (15.71; 18.87) | 182.78 (152.11; 215.88) | 8.78 (7.19; 10.92) | 165.90 (126.23; 224.72) |
>2 n = 23 | 45.30 ± 11.36 | 17.23 (14.78; 20.22) | 170.32 (150.53; 18.23) | 9.60 (7.45; 18.19) | 136.30 (110.19; 155.64) |
p-value | 0.0292 | 0.5198 | 0.1411 | 0.3181 | 0.1309 |
Cortisol | |||||
≤507 nmol/L n = 32 | 41.76 ± 11.96 | 16.82 (15.39; 19.84) | 170.82 (150.16; 189.61) | 8.82 (7.11; 11.34) | 137.50 (118.20; 202.75) |
>507 nmol/L n = 9 | 41.99 ± 13.80 | 16.09 ± 2.39 | 180.91 (160.65; 199.56) | 12.91± 5.91 | 151.64 ± 48.97 |
p-value | 0.9604 | 0.2252 | 0.5600 | 0.2134 | 1.0000 |
DHEA-S | |||||
≤9.99 µmol/L n = 31 | 40.50 ± 12.12 | 16.51 (14.88; 19.05) | 170.32 (148.20; 184.63) | 8.97 (7.22; 13.36) | 152.20 (117.17; 220.13) |
>9.99 µmol/L n = 10 | 45.86 ± 12.18 | 18.78 (14.86; 19.01) | 177.30 (169.83; 201.13) | 9.69 (7.05; 12.43) | 126.87 (122.18; 13.75) |
p-value | 0.2319 | 0.6058 | 0.1670 | 0.6488 | 0.0980 |
cortisol/DHEA-S ratio | |||||
<0.05 n = 20 | 42.84 ± 12.56 | 17.64 (15.06; 19.04) | 184.82 ± 50.78 | 8.82 (70.20; 11.2) | 128.35 (111.24; 146.68) |
>0.05 n = 21 | 40.83 ± 12.08 | 16.52 (14.69; 19.22) | 167.84 (148.20; 182.90) | 9.58 (7.43; 17.89) | 181.17 ± 76.58 |
p-value | 0.6039 | 0.6294 | 0.1589 | 0.3411 | 0.0304 |
HOMA-IR | |||||
<2.32 n = 8 | 42.25 (29.93; 54.08) | 15.62 (14.81; 17.60) | 160.42 ± 47.13 | 8.55 (7.16; 11.77) | 143.54 (96.76; 228.34) |
>2.32 n = 33 | 38.65 (32.18; 51.67) | 16.96 (15.09; 19.27) | 171.80 (156.17; 194.24) | 9.59 (7.18; 13.41) | 137.50 (124.27; 181.69) |
p-value | 0.8693 | 0.4015 | 0.3483 | 0.5106 | 0.9869 |
Lipidogram | |||||
normal n = 31 | 41.03 (32.77; 53.51) | 16.51 (14.63; 19.01) | 170.82 (157.92; 183.25) | 8.97 (7.08; 11.35) | 143.78 (122.88; 188.22) |
abnormal n = 10 | 37.91 (30.83; 45.35) | 16.90 (16.14; 19.07) | 177.71 (148.20; 222.42) | 10.38 (8.59; 18.16) | 131.87 (114.23; 206.35) |
p-value | 0.6164 | 0.4299 | 0.5138 | 0.1917 | 0.6819 |
AUC | p-Value | Sensitivity | Specificity | Youden Index | Associate Criterion (Cut-Off) | |
---|---|---|---|---|---|---|
All PCOS subjects—prediction of abnormal LH/FSH ratio | ||||||
Salivary testosterone | 0.700 | 0.0234 | 73.91 | 72.22 | 0.461 | >37.2 pg/mL |
TNF-α | 0.559 | 0.5278 | 39.13 | 83.33 | 0.225 | >18.9 pg/mL |
IL-1β | 0.635 | 0.1634 | 95.65 | 38.89 | 0.345 | ≤194.6 pg/mL |
IL-6 | 0.592 | 0.3111 | 26.09 | 100.00 | 0.261 | >18.16 pg/mL |
Uric acid | 0.639 | 0.1213 | 78.26 | 55.56 | 0.338 | ≤156.78 µmol/L |
Subjects with normal weight—prediction of abnormal LH/FSH ratio | ||||||
Salivary testosterone | 0.811 | 0.0044 | 100.00 | 60.00 | 0.600 | >32.6 pg/mL |
TNF-α | 0.600 | 0.4992 | 44.44 | 90.00 | 0.344 | >17.29 pg/mL |
IL-1β | 0.639 | 0.3567 | 100.00 | 50.00 | 0.500 | ≤183.2 pg/mL |
IL-6 | 0.733 | 0.0614 | 55.56 | 90.00 | 0.456 | >10.92 pg/mL |
Uric acid | 0.617 | 0.3946 | 88.89 | 40.00 | 0.289 | ≤199.14 µmol/L |
All PCOS subjects—prediction of too high FAI | ||||||
Salivary testosterone | 0.658 | 0.0749 | 52.63 | 81.82 | 0.345 | >45.35 pg/mL |
TNF-α | 0.730 | 0.0042 | 73.68 | 68.18 | 0.419 | >16.52 pg/mL |
IL-1β | 0.597 | 0.2912 | 84.21 | 50.00 | 0.342 | ≤182.78 pg/mL |
IL-6 | 0.711 | 0.0104 | 63.16 | 72.73 | 0.359 | >9.58 pg/mL |
Uric acid | 0.537 | 0.6911 | 73.68 | 45.45 | 0.191 | ≤156.78 µmol/L |
Subjects with normal weight—prediction of too high FAI | ||||||
Salivary testosterone | 0.671 | 0.2090 | 100.00 | 42.86 | 0.429 | >32.63 pg/mL |
TNF-α | 0.657 | 0.3530 | 60.00 | 85.71 | 0.460 | >17.27 pg/mL |
IL-1β | 0.629 | 0.3206 | 100.00 | 50.00 | 0.500 | ≤182.78 pg/mL |
IL-6 | 0.700 | 0.2697 | 60.00 | 92.86 | 0.529 | >11.18 pg/mL |
Uric acid | 0.593 | 0.5151 | 100.00 | 35.71 | 0.357 | >127.51 µmol/L |
All PCOS subjects—prediction of higher cortisol/DHEA-S ratio | ||||||
Salivary testosterone | 0.543 | 0.6490 | 80.95 | 45.00 | 0.260 | ≤47.52 pg/mL |
TNF-α | 0.544 | 0.6357 | 71.43 | 50.00 | 0.214 | ≤17.27 pg/ mL |
IL-1β | 0.629 | 0.1547 | 85.71 | 40.00 | 0.257 | ≤185.09 pg/ mL |
IL-6 | 0.587 | 0.3417 | 33.33 | 90.00 | 0.233 | >14.08 pg/ mL |
Uric acid | 0.698 | 0.0223 | 57.14 | 85.00 | 0.421 | >156.78 µmol/L |
Subjects with normal weight—prediction of high cortisol/DHEA-S ratio | ||||||
Salivary testosterone | 0.667 | 0.2166 | 80.00 | 66.67 | 0.467 | ≤40.61 pg/ mL |
TNF-α | 0.522 | 0.8778 | 40.00 | 88.89 | 0.289 | ≤14.75 pg/ mL |
IL-1β | 0.600 | 0.4713 | 90.00 | 33.33 | 0.233 | ≤185.09 pg/ mL |
IL-6 | 0.589 | 0.5332 | 70.00 | 55.56 | 0.256 | >8.90 pg/ mL |
Uric acid | 0.828 | 0.0030 | 80.00 | 88.89 | 0.689 | >149.57 µmol/L |
All PCOS subjects—prediction of too high estradiol level | ||||||
Salivary testosterone | 0.811 | <0.0001 | 100.00 | 69.44 | 0.694 | >44.40 pg/ mL |
TNF-α | 0.600 | 0.4224 | 100.00 | 30.56 | 0.306 | >14.86 pg/ mL |
IL-1β | 0.506 | 0.9684 | 80.00 | 47.22 | 0.272 | >169.83 pg/ mL |
IL-6 | 0.614 | 0.4981 | 80.00 | 61.11 | 0.411 | >9.59 pg/ mL |
Uric acid | 0.597 | 0.3368 | 100.00 | 44.44 | 0.444 | >129.18 µmol/L |
Subjects with normal weight—prediction of too high estradiol level—N.A. (number of positive cases = 1) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Opydo-Szymaczek, J.; Wendland, N.; Formanowicz, D.; Blacha, A.; Jarząbek-Bielecka, G.; Radomyska, P.; Kruszyńska, D.; Mizgier, M. A Pilot Study of the Role of Salivary Biomarkers in the Diagnosis of PCOS in Adolescents Across Different Body Weight Categories. J. Clin. Med. 2025, 14, 6159. https://doi.org/10.3390/jcm14176159
Opydo-Szymaczek J, Wendland N, Formanowicz D, Blacha A, Jarząbek-Bielecka G, Radomyska P, Kruszyńska D, Mizgier M. A Pilot Study of the Role of Salivary Biomarkers in the Diagnosis of PCOS in Adolescents Across Different Body Weight Categories. Journal of Clinical Medicine. 2025; 14(17):6159. https://doi.org/10.3390/jcm14176159
Chicago/Turabian StyleOpydo-Szymaczek, Justyna, Natalia Wendland, Dorota Formanowicz, Anna Blacha, Grażyna Jarząbek-Bielecka, Paulina Radomyska, Dominika Kruszyńska, and Małgorzata Mizgier. 2025. "A Pilot Study of the Role of Salivary Biomarkers in the Diagnosis of PCOS in Adolescents Across Different Body Weight Categories" Journal of Clinical Medicine 14, no. 17: 6159. https://doi.org/10.3390/jcm14176159
APA StyleOpydo-Szymaczek, J., Wendland, N., Formanowicz, D., Blacha, A., Jarząbek-Bielecka, G., Radomyska, P., Kruszyńska, D., & Mizgier, M. (2025). A Pilot Study of the Role of Salivary Biomarkers in the Diagnosis of PCOS in Adolescents Across Different Body Weight Categories. Journal of Clinical Medicine, 14(17), 6159. https://doi.org/10.3390/jcm14176159