The Fibrinolytic System in Bacterial Sepsis: A Comprehensive Review of Current Assessment Methods
Abstract
1. Introduction
2. The Clotting and Fibrinolytic Disturbances Associated with Sepsis
2.1. Immunotrombosis
2.2. Stages of Septic Coagulopathy
2.3. Fibrinolysis
2.4. Fibrinolysis in Sepsis
3. Assessment of Fibrinolysis in Sepsis
3.1. Measurement of Plasma Biomarkers Reflecting Fibrinolysis
3.1.1. Fibrin Degradation Products in Sepsis
3.1.2. Plasminogen Activators and Inhibitors in Sepsis
3.1.3. Fibrinolysis Biomarkers and Disseminated Intravascular Coagulation (DIC)
3.1.4. Fibrinolysis Biomarkers in Melioidosis
3.2. Global Tests of Fibrinolysis in Sepsis
3.2.1. Global Tests of Fibrinolysis from Plasma
3.2.2. Global Tests of Fibrinolysis from the Euglobulin Fraction of Plasma
3.2.3. Global Tests of Fibrinolysis from Whole Blood
4. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Abbreviations
VET | Viscoelastic tests |
ROTEM | Rotational thromboelastometry |
TEG | Thromboelastography |
PAMPs | Pathogen-associated molecular patterns |
DAMPs | Damage-associated molecular patterns |
TF | Tissue factor |
NETs | Netrophil extracellular traps |
PAR-1 | Protease-activated receptor-1 |
SIC | Sepsis-induced coagulopathy |
DIC | Disseminated intravascular coagulation |
tPA | Tissue-type plasminogen activator |
uPA | Urokinase-type plasminogen activator |
PAI-1 | Plasminogen activator inhibitor |
TAFI | Thrombin-activatable fibrinolysis inhibitor |
CFDNA | Cell-free DNA |
TAT | Thrombin-antithrombin complex |
PAP | Plasmin-antiplasmin complex |
FDP | Fibrin degradation products |
ECLT | Euglobulin clot lysis time |
LI60 | Lysis index at 60 min |
LT | Lysis time |
ML | Maximum lysis |
df | Fractal dimension |
References
- Lijnen, H.R.; Rijken, D.C. Chapter 646-t-Plasminogen Activator. In Handbook of Proteolytic Enzymes, 3rd ed.; Rawlings, N.D., Salvesen, G., Eds.; Academic Press: Cambridge, MA, USA, 2013; pp. 2946–2952. [Google Scholar]
- Chapin, J.C.; Hajjar, K.A. Fibrinolysis and the control of blood coagulation. Blood Rev. 2015, 29, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Lippi, G.; Favaloro, E.J. Laboratory hemostasis: From biology to the bench. Clin. Chem. Lab. Med. 2018, 56, 1035–1045. [Google Scholar] [CrossRef] [PubMed]
- Williams, B.; Zou, L.; Pittet, J.F.; Chao, W. Sepsis-Induced Coagulopathy: A Comprehensive Narrative Review of Pathophysiology, Clinical Presentation, Diagnosis, and Management Strategies. Anesth. Analg. 2024, 138, 696–711. [Google Scholar] [CrossRef] [PubMed]
- Longstaff, C. Measuring fibrinolysis: From research to routine diagnostic assays. J. Thromb. Haemost. JTH 2018, 16, 652–662. [Google Scholar] [CrossRef]
- Lang, T.; Bauters, A.; Braun, S.L.; Potzsch, B.; von Pape, K.W.; Kolde, H.J.; Lakner, M. Multi-centre investigation on reference ranges for ROTEM thromboelastometry. Blood Coagul. Fibrinolysis Int. J. Haemost. Thromb. 2005, 16, 301–310. [Google Scholar] [CrossRef]
- Scarlatescu, E.; Kim, P.Y.; Marchenko, S.P.; Tomescu, D.R. Validation of the time to attain maximal clot amplitude after reaching maximal clot formation velocity parameter as a measure of fibrinolysis using rotational thromboelastometry and its application in the assessment of fibrinolytic resistance in septic patients: A prospective observational study: Communication from the ISTH SSC Subcommittee on Fibrinolysis. J. Thromb. Haemost. 2024, 22, 1223–1235. [Google Scholar] [CrossRef]
- Ilich, A.; Bokarev, I.; Key, N.S. Global assays of fibrinolysis. Int. J. Lab. Hematol. 2017, 39, 441–447. [Google Scholar] [CrossRef]
- Ilich, A.; Noubouossie, D.F.; Henderson, M.; Ellsworth, P.; Betbadal, K.F.; Campello, E. Development and application of global assays of hyper- and hypofibrinolysis. Res. Pr. Thromb. Haemost. 2020, 4, 46–53. [Google Scholar] [CrossRef]
- Schmoch, T.; Möhnle, P.; Weigand, M.A.; Briegel, J.; Bauer, M.; Bloos, F.; Meybohm, P.; Keh, D.; Löffler, M.; Elke, G.; et al. The prevalence of sepsis-induced coagulopathy in patients with sepsis-a secondary analysis of two German multicenter randomized controlled trials. Ann. Intensiv. Care 2023, 13, 3. [Google Scholar] [CrossRef]
- Levi, M. The coagulant response in sepsis and inflammation. Hamostaseologie 2010, 30, 10–16. [Google Scholar] [CrossRef]
- Levi, M.; van der Poll, T. Coagulation and sepsis. Thromb. Res. 2017, 149, 38–44. [Google Scholar] [CrossRef]
- Pawlinski, R.; Mackman, N. Cellular sources of tissue factor in endotoxemia and sepsis. Thromb. Res. 2010, 125 (Suppl. S1), S70–S73. [Google Scholar] [CrossRef] [PubMed]
- Allen, K.S.; Sawheny, E.; Kinasewitz, G.T. Anticoagulant modulation of inflammation in severe sepsis. World J. Crit. Care Med. 2015, 4, 105–115. [Google Scholar] [CrossRef] [PubMed]
- Scarlatescu, E.; Iba, T. Deranged Balance of Hemostasis and Fibrinolysis in Disseminated Intravascular Coagulation: Assessment and Relevance in Different Clinical Settings. Anesthesiology 2024, 141, 570–583. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; Pretorius, E. A Champion of Host Defense: A Generic Large-Scale Cause for Platelet Dysfunction and Depletion in Infection. Semin. Thromb. Hemost. 2020, 46, 302–319. [Google Scholar] [CrossRef]
- Iba, T.; Levi, M. Intracellular communication and immunothrombosis in sepsis. J. Thromb. Haemost. 2022, 20, 2475–2484. [Google Scholar] [CrossRef]
- Delabranche, X.; Helms, J.; Meziani, F. Immunohaemostasis: A new view on haemostasis during sepsis. Ann. Intensiv. Care 2017, 7, 117. [Google Scholar] [CrossRef]
- Iba, T.; Helms, J. The pathophysiology, diagnosis, and management of sepsis-associated disseminated intravascular coagulation. J. Intensiv. Care 2023, 11, 24. [Google Scholar] [CrossRef]
- Maneta, E.; Aivalioti, E.; Tual-Chalot, S.; Emini Veseli, B.; Gatsiou, A.; Stamatelopoulos, K.; Stellos, K. Endothelial dysfunction and immunothrombosis in sepsis. Front. Immunol. 2023, 14, 1144229. [Google Scholar] [CrossRef]
- Fiusa, M.M.; Carvalho-Filho, M.A.; Annichino-Bizzacchi, J.M.; De Paula, E.V. Causes and consequences of coagulation activation in sepsis: An evolutionary medicine perspective. BMC Med. 2015, 13, 105. [Google Scholar] [CrossRef]
- Engelmann, B.; Massberg, S. Thrombosis as an intravascular effector of innate immunity. Nat. Reviews. Immunol. 2013, 13, 34–45. [Google Scholar] [CrossRef]
- Ito, T. PAMPs and DAMPs as triggers for DIC. J. Intensiv. Care 2014, 2, 67. [Google Scholar] [CrossRef]
- Iba, T.; Levy, J.H.; Maier, C.L.; Helms, J.; Umemura, Y.; Moore, H.; Othman, M.; Thachil, J.; Connors, J.M.; Levi, M.; et al. Updated definition and scoring of disseminated intravascular coagulation in 2025: Communication from the ISTH SSC Subcommittee on Disseminated Intravascular Coagulation. J. Thromb. Haemost. 2025, 23, 2356–2362. [Google Scholar] [CrossRef] [PubMed]
- Wada, T.; Gando, S. Phenotypes of Disseminated Intravascular Coagulation. Thromb. Haemost. 2024, 124, 181–191. [Google Scholar] [CrossRef] [PubMed]
- Longstaff, C.; Kolev, K. Basic mechanisms and regulation of fibrinolysis. J. Thromb. Haemost. 2015, 13 (Suppl. S1), S98–S105. [Google Scholar] [CrossRef] [PubMed]
- Weitz, J.I.; Fredenburgh, J.C.; Eikelboom, J.W. A Test in Context: D-Dimer. J. Am. Coll. Cardiol. 2017, 70, 2411–2420. [Google Scholar] [CrossRef]
- Pepperell, D.; Morel-Kopp, M.-C.; Ward, C. Clinical Application of Fibrinolytic Assays; IntechOpen: London, UK, 2014. [Google Scholar] [CrossRef]
- Mahmood, N.; Mihalcioiu, C.; Rabbani, S.A. Multifaceted Role of the Urokinase-Type Plasminogen Activator (uPA) and Its Receptor (uPAR): Diagnostic, Prognostic, and Therapeutic Applications. Front. Oncol. 2018, 8, 24. [Google Scholar] [CrossRef]
- Hack, C.E. Fibrinolysis in disseminated intravascular coagulation. Semin. Thromb. Hemost. 2001, 27, 633–638. [Google Scholar] [CrossRef]
- Gando, S. Role of fibrinolysis in sepsis. Semin. Thromb. Hemost. 2013, 39, 392–399. [Google Scholar] [CrossRef]
- Plug, T.; Meijers, J.C. Structure-function relationships in thrombin-activatable fibrinolysis inhibitor. J. Thromb. Haemost. 2016, 14, 633–644. [Google Scholar] [CrossRef]
- Suffredini, A.F.; Harpel, P.C.; Parrillo, J.E. Promotion and subsequent inhibition of plasminogen activation after administration of intravenous endotoxin to normal subjects. N. Engl. J. Med. 1989, 320, 1165–1172. [Google Scholar] [CrossRef]
- Vincent, J.-L. Microvascular endothelial dysfunction: A renewed appreciation of sepsis pathophysiology. Crit. Care 2001, 5, S1–S5. [Google Scholar] [CrossRef]
- Kuiper, G.J.; Kleinegris, M.C.; van Oerle, R.; Spronk, H.M.; Lance, M.D.; Ten Cate, H.; Henskens, Y.M. Validation of a modified thromboelastometry approach to detect changes in fibrinolytic activity. Thromb. J. 2016, 14, 1. [Google Scholar] [CrossRef]
- Panigada, M.; Sampietro, F.; L’Acqua, C.; Zacchetti, L.; Anzoletti, M.B.; Bader, R.; Gattinoni, L.; D’Angelo, A. Impaired dynamics of clot formation and hypofibrinolysis in severe sepsis are coexisting and strictly related. Intensiv. Care Med. 2016, 42, 622–623. [Google Scholar] [CrossRef] [PubMed]
- Panigada, M.; Zacchetti, L.; L’Acqua, C.; Cressoni, M.; Anzoletti, M.B.; Bader, R.; Protti, A.; Consonni, D.; D’Angelo, A.; Gattinoni, L. Assessment of Fibrinolysis in Sepsis Patients with Urokinase Modified Thromboelastography. PLoS ONE 2015, 10, e0136463. [Google Scholar] [CrossRef] [PubMed]
- Koyama, K.; Madoiwa, S.; Nunomiya, S.; Koinuma, T.; Wada, M.; Sakata, A.; Ohmori, T.; Mimuro, J.; Sakata, Y. Combination of thrombin-antithrombin complex, plasminogen activator inhibitor-1, and protein C activity for early identification of severe coagulopathy in initial phase of sepsis: A prospective observational study. Crit. Care 2014, 18, R13. [Google Scholar] [CrossRef] [PubMed]
- van Deventer, S.J.; Buller, H.R.; ten Cate, J.W.; Aarden, L.A.; Hack, C.E.; Sturk, A. Experimental endotoxemia in humans: Analysis of cytokine release and coagulation, fibrinolytic, and complement pathways. Blood 1990, 76, 2520–2526. [Google Scholar] [CrossRef]
- Hermans, P.W.; Hazelzet, J.A. Plasminogen activator inhibitor type 1 gene polymorphism and sepsis. Clin. Infect. Dis. 2005, 41 (Suppl. S7), S453–S458. [Google Scholar] [CrossRef]
- Emonts, M.; Bruijne, E.L.E.D.; GuimarÃEs, A.H.C.; Declerck, P.J.; Leebeek, F.W.G.; Maat, M.P.M.D.; Rijken, D.C.; Hazelzet, J.A.; Gils, A. Thrombin activatable fibrinolysis inhibitor is associated with severity and outcome of severe meningococcal infection in children. J. Thromb. Haemost. 2008, 6, 268–276. [Google Scholar] [CrossRef]
- Zeerleder, S.; Schroeder, V.; Hack, C.E.; Kohler, H.P.; Wuillemin, W.A. TAFI and PAI-1 levels in human sepsis. Thromb. Res. 2006, 118, 205–212. [Google Scholar] [CrossRef]
- Madoiwa, S. Recent advances in disseminated intravascular coagulation: Endothelial cells and fibrinolysis in sepsis-induced DIC. J. Intensiv. Care 2015, 3, 8. [Google Scholar] [CrossRef]
- Madoiwa, S.; Tanaka, H.; Nagahama, Y.; Dokai, M.; Kashiwakura, Y.; Ishiwata, A.; Sakata, A.; Yasumoto, A.; Ohmori, T.; Mimuro, J.; et al. Degradation of cross-linked fibrin by leukocyte elastase as alternative pathway for plasmin-mediated fibrinolysis in sepsis-induced disseminated intravascular coagulation. Thromb. Res. 2011, 127, 349–355. [Google Scholar] [CrossRef] [PubMed]
- Aird, W.C. The role of the endothelium in severe sepsis and multiple organ dysfunction syndrome. Blood 2003, 101, 3765–3777. [Google Scholar] [CrossRef] [PubMed]
- Gando, S.; Kameue, T.; Sawamura, A.; Hayakawa, M.; Hoshino, H.; Kubota, N. An alternative pathway for fibrinolysis is activated in patients who have undergone cardiopulmonary bypass surgery and major abdominal surgery. Thromb. Res. 2007, 120, 87–93. [Google Scholar] [CrossRef] [PubMed]
- Gando, S.; Hayakawa, M.; Sawamura, A.; Hoshino, H.; Oshiro, A.; Kubota, N.; Jesmin, S. The activation of neutrophil elastase-mediated fibrinolysis is not sufficient to overcome the fibrinolytic shutdown of disseminated intravascular coagulation associated with systemic inflammation. Thromb. Res. 2007, 121, 67–73. [Google Scholar] [CrossRef]
- Bach-Gansmo, E.T.; Halvorsen, S.; Godal, H.C.; Skjønsberg, O.H. Impaired clot lysis in the presence of human neutrophil elastase. Thromb. Res. 1995, 80, 153–159. [Google Scholar] [CrossRef]
- Gould, T.J.; Vu, T.T.; Stafford, A.R.; Dwivedi, D.J.; Kim, P.Y.; Fox-Robichaud, A.E.; Weitz, J.I.; Liaw, P.C. Cell-Free DNA Modulates Clot Structure and Impairs Fibrinolysis in Sepsis. Arter. Thromb. Vasc. Biol. 2015, 35, 2544–2553. [Google Scholar] [CrossRef]
- Adamzik, M.; Eggmann, M.; Frey, U.H.; Gorlinger, K.; Brocker-Preuss, M.; Marggraf, G.; Saner, F.; Eggebrecht, H.; Peters, J.; Hartmann, M. Comparison of thromboelastometry with procalcitonin, interleukin 6, and C-reactive protein as diagnostic tests for severe sepsis in critically ill adults. Crit. Care 2010, 14, R178. [Google Scholar] [CrossRef]
- Andersen, M.G.; Hvas, C.L.; Tonnesen, E.; Hvas, A.M. Thromboelastometry as a supplementary tool for evaluation of hemostasis in severe sepsis and septic shock. Acta Anaesthesiol. Scand. 2014, 58, 525–533. [Google Scholar] [CrossRef]
- Bouck, E.G.; Denorme, F.; Holle, L.A.; Middelton, E.A.; Blair, A.M.; Laat, B.d.; Schiffman, J.D.; Yost, C.C.; Rondina, M.T.; Wolberg, A.S.; et al. COVID-19 and Sepsis Are Associated With Different Abnormalities in Plasma Procoagulant and Fibrinolytic Activity. Arterioscler. Thromb. Vasc. Biol. 2021, 41, 401–414. [Google Scholar] [CrossRef]
- Zouaoui Boudjeltia, K.; Piagnerelli, M.; Brohée, D.; Guillaume, M.; Cauchie, P.; Vincent, J.-L.; Remacle, C.; Bouckaert, Y.; Vanhaeverbeek, M. Relationship between CRP and hypofibrinolysis: Is this a possible mechanism to explain the association between CRP and outcome in critically ill patients? Thromb. J. 2004, 2, 7. [Google Scholar] [CrossRef] [PubMed]
- Brenner, T.; Schmidt, K.; Delang, M.; Mehrabi, A.; Bruckner, T.; Lichtenstern, C.; Martin, E.; Weigand, M.A.; Hofer, S. Viscoelastic and aggregometric point-of-care testing in patients with septic shock-cross-links between inflammation and haemostasis. Acta Anaesthesiol. Scand. 2012, 56, 1277–1290. [Google Scholar] [CrossRef] [PubMed]
- Brewer, J.S.; Hvas, C.L.; Hvas, A.-M.; Larsen, J.B. Impaired Whole-Blood Fibrinolysis is a Predictor of Mortality in Intensive Care Patients. TH Open 2024, 08, e164–e174. [Google Scholar] [CrossRef] [PubMed]
- Cruz, D.B.D.; Helms, J.; Aquino, L.R.; Stiel, L.; Cougourdan, L.; Broussard, C.; Chafey, P.; Riès-Kautt, M.; Meziani, F.; Toti, F.; et al. DNA-bound elastase of neutrophil extracellular traps degrades plasminogen, reduces plasmin formation, and decreases fibrinolysis: Proof of concept in septic shock plasma. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2019, 33, 14270–14280. [Google Scholar] [CrossRef]
- Davies, G.R.; Pillai, S.; Lawrence, M.; Mills, G.M.; Aubrey, R.; D’Silva, L.; Battle, C.; Williams, R.; Brown, R.; Thomas, D.; et al. The effect of sepsis and its inflammatory response on mechanical clot characteristics: A prospective observational study. Intensiv. Care Med. 2016, 42, 1990–1998. [Google Scholar] [CrossRef]
- Davies, G.R.; Lawrence, M.; Pillai, S.; Mills, G.M.; Aubrey, R.; Thomas, D.; Williams, R.; Morris, K.; Evans, P.A. The effect of sepsis and septic shock on the viscoelastic properties of clot quality and mass using rotational thromboelastometry: A prospective observational study. J. Crit. Care 2017, 44, 7–11. [Google Scholar] [CrossRef]
- Hartemink, K.J.; Hack, C.E.; Groeneveld, A.B. Relation between coagulation/fibrinolysis and lactate in the course of human septic shock. J. Clin. Pathol. 2010, 63, 1021–1026. [Google Scholar] [CrossRef]
- Hayakawa, M.; Sawamura, A.; Gando, S.; Jesmin, S.; Naito, S.; Ieko, M. A low TAFI activity and insufficient activation of fibrinolysis by both plasmin and neutrophil elastase promote organ dysfunction in disseminated intravascular coagulation associated with sepsis. Thromb. Res. 2012, 130, 906–913. [Google Scholar] [CrossRef]
- Helling, H.; Schenk, H.J.; Pindur, G.; Weinrich, M.; Wagner, B.; Stephan, B. Fibrinolytic and procoagulant activity in septic and haemorrhagic shock. Clin. Hemorheol. Microcirc. 2010, 45, 295–300. [Google Scholar] [CrossRef]
- Hesselvik, J.F.; Blomback, M.; Brodin, B.; Maller, R. Coagulation, fibrinolysis, and kallikrein systems in sepsis: Relation to outcome. Crit Care Med. 1989, 17, 724–733. [Google Scholar] [CrossRef]
- Hoppensteadt, D.; Tsuruta, K.; Hirman, J.; Kaul, I.; Osawa, Y.; Fareed, J. Dysregulation of Inflammatory and Hemostatic Markers in Sepsis and Suspected Disseminated Intravascular Coagulation. Clin. Appl. Thromb. Hemost. 2015, 21, 120–127. [Google Scholar] [CrossRef] [PubMed]
- Hoshino, K.; Kitamura, T.; Nakamura, Y.; Irie, Y.; Matsumoto, N.; Kawano, Y.; Ishikura, H. Usefulness of plasminogen activator inhibitor-1 as a predictive marker of mortality in sepsis. J. Intensiv. Care 2017, 5, 42. [Google Scholar] [CrossRef]
- Hoshino, K.; Nakashio, M.; Maruyama, J.; Irie, Y.; Kawano, Y.; Ishikura, H. Validating plasminogen activator inhibitor-1 as a poor prognostic factor in sepsis. Acute Med. Surg. 2020, 7, e581. [Google Scholar] [CrossRef] [PubMed]
- Iba, T.; Kidokoro, A.; Fukunaga, M.; Sugiyama, K.; Sawada, T.; Kato, H. Association between the Severity of Sepsis and the Changes in Hemostatic Molecular Markers and Vascular Endothelial Damage Markers. Shock 2005, 23, 25–29. [Google Scholar] [CrossRef]
- Johansson, P.I.; Haase, N.; Perner, A.; Ostrowski, S.R. Association between sympathoadrenal activation, fibrinolysis, and endothelial damage in septic patients: A prospective study. J. Crit. Care 2014, 29, 327–333. [Google Scholar] [CrossRef] [PubMed]
- Koami, H.; Sakamoto, Y.; Ohta, M.; Goto, A.; Narumi, S.; Imahase, H.; Yahata, M.; Miike, T.; Iwamura, T.; Yamada, K.C.; et al. Can rotational thromboelastometry predict septic disseminated intravascular coagulation? Blood Coagul. Fibrinolysis Int. J. Haemost. Thromb. 2015, 26, 778–783. [Google Scholar] [CrossRef]
- Koami, H.; Sakamoto, Y.; Hirota, Y.; Sasaki, A.; Ogawa, H.; Furukawa, Y.; Matsuoka, A.; Shinada, K.; Nakayama, K.; Sakurai, R.; et al. Effect of hypofibrinolysis on clinical outcomes of patients with septic disseminated intravascular coagulation. Thromb. Res. 2025, 245, 109235. [Google Scholar] [CrossRef]
- Koh, G.C.; Meijers, J.C.; Maude, R.R.; Limmathurotsakul, D.; Day, N.P.; Peacock, S.J.; van der Poll, T.; Wiersinga, W.J. Diabetes does not influence activation of coagulation, fibrinolysis or anticoagulant pathways in Gram-negative sepsis (melioidosis). Thromb. Haemost. 2011, 106, 1139–1148. [Google Scholar] [CrossRef]
- Larsen, J.B.; Aggerbeck, M.A.; Larsen, K.M.; Hvas, C.L.; Hvas, A.-M. Fibrin Network Formation and Lysis in Septic Shock Patients. Int. J. Mol. Sci. 2021, 22, 9540. [Google Scholar] [CrossRef]
- Lorente, J.A.; García-Frade, L.J.; Landín, L.; de Pablo, R.; Torrado, C.; Renes, E.; García-Avello, A. Time Course of Hemostatic Abnormalities in Sepsis and its Relation to Outcome. Chest 1993, 103, 1536–1542. [Google Scholar] [CrossRef]
- Madoiwa, S.; Nunomiya, S.; Ono, T.; Shintani, Y.; Ohmori, T.; Mimuro, J.; Sakata, Y. Plasminogen activator inhibitor 1 promotes a poor prognosis in sepsis-induced disseminated intravascular coagulation. Int. J. Hematol. 2006, 84, 398–405. [Google Scholar] [CrossRef]
- Massignon, D.; Lepape, A.; Bienvenu, J.; Barbier, Y.; Boileau, C.; Coeur, P. Coagulation/fibrinolysis balance in septic shock related to cytokines and clinical state. Haemostasis 1994, 24, 36–48. [Google Scholar] [CrossRef]
- Mauri, T.; Bellani, G.; Patroniti, N.; Coppadoro, A.; Peri, G.; Cuccovillo, I.; Cugno, M.; Iapichino, G.; Gattinoni, L.; Pesenti, A.; et al. Persisting high levels of plasma pentraxin 3 over the first days after severe sepsis and septic shock onset are associated with mortality. Intensiv. Care Med. 2010, 36, 621–629. [Google Scholar] [CrossRef]
- Mavrommatis, A.C.; Theodoridis, T.; Economou, M.; Kotanidou, A.; El Ali, M.; Christopoulou-Kokkinou, V.; Zakynthinos, S.G. Activation of the fibrinolytic system and utilization of the coagulation inhibitors in sepsis: Comparison with severe sepsis and septic shock. Intensiv. Care Med. 2001, 27, 1853–1859. [Google Scholar] [CrossRef] [PubMed]
- Mei, H.; Jiang, Y.; Luo, L.; Huang, R.; Su, L.; Hou, M.; Wang, X.; Deng, J.; Hu, Y. Evaluation the combined diagnostic value of TAT, PIC, tPAIC, and sTM in disseminated intravascular coagulation: A multi-center prospective observational study. Thromb. Res. 2019, 173, 20–26. [Google Scholar] [CrossRef] [PubMed]
- Müller, M.C.A.; Meijers, J.C.; van Meenen, D.M.; Thachil, J.; Juffermans, N.P. Thromboelastometry in critically ill patients with disseminated intravascular coagulation. Blood Coagul. Fibrinolysis Int. J. Haemost. Thromb. 2019, 30, 181–187. [Google Scholar] [CrossRef] [PubMed]
- Park, K.J.; Kim, H.J.; Hwang, S.C.; Lee, S.M.; Lee, Y.H.; Hahn, M.H.; Kim, S.K.; Lee, W.Y. The imbalance between coagulation and fibrinolysis is related to the severity of the illness and the prognosis in sepsis. Korean J. Intern. Med. 1999, 14, 72–77. [Google Scholar] [CrossRef]
- Park, R.; Song, J.; An, S.S. Elevated levels of activated and inactivated thrombin-activatable fibrinolysis inhibitor in patients with sepsis. Korean J. Hematol. 2010, 45, 264–268. [Google Scholar] [CrossRef]
- Prakash, S.; Verghese, S.; Roxby, D.; Dixon, D.; Bihari, S.; Bersten, A. Changes in fibrinolysis and severity of organ failure in sepsis: A prospective observational study using point-of-care test--ROTEM. J. Crit. Care 2015, 30, 264–270. [Google Scholar] [CrossRef]
- Sanches, L.C.; Pontes Azevedo, L.C.; Salomão, R.; Noguti, M.A.; Brunialti, M.; Lourenço, D.M.; Machado, F.R. Association between early glycemic control and improvements in markers of coagulation and fibrinolysis in patients with septic shock–induced stress hyperglycemia. J. Crit. Care 2014, 29, e881–e884. [Google Scholar] [CrossRef]
- Savioli, M.; Cugno, M.; Polli, F.; Taccone, P.; Bellani, G.; Spanu, P.; Pesenti, A.; Iapichino, G.; Gattinoni, L. Tight glycemic control may favor fibrinolysis in patients with sepsis. Crit. Care Med. 2009, 37, 424–431. [Google Scholar] [CrossRef]
- Scarlatescu, E.; Lance, M.D.; White, N.J.; Tomescu, D.R. Thromboelastometric prediction of mortality using the kinetics of clot growth in critically ill septic patients. Blood Coagul. Fibrinolysis Int. J. Haemost. Thromb. 2018, 29, 533–539. [Google Scholar] [CrossRef]
- Scarlatescu, E.; White, N.J.; Tomescu, D.R. Standard and derived rotational thromboelastometry parameters for prediction of disseminated intravascular coagulation in septic patients. Blood Coagul. Fibrinolysis Int. J. Haemost. Thromb. 2020, 31, 317–323. [Google Scholar] [CrossRef] [PubMed]
- Schmitt, F.C.F.; Manolov, V.; Morgenstern, J.; Fleming, T.; Heitmeier, S.; Uhle, F.; Al-Saeedi, M.; Hackert, T.; Bruckner, T.; Schöchl, H.; et al. Acute fibrinolysis shutdown occurs early in septic shock and is associated with increased morbidity and mortality: Results of an observational pilot study. Ann. Intensiv. Care 2019, 9, 19. [Google Scholar] [CrossRef] [PubMed]
- Semeraro, F.; Colucci, M.; Caironi, P.; Masson, S.; Ammollo, C.T.; Teli, R.; Semeraro, N.; Magnoli, M.; Salati, G.; Isetta, M.; et al. Platelet Drop and Fibrinolytic Shutdown in Patients With Sepsis. Crit. Care Med. 2017, 46, e221–e228. [Google Scholar] [CrossRef] [PubMed]
- Semeraro, F.; Ammollo, C.; Caironi, P.; Masson, S.; Latini, R.; Panigada, M.; Semeraro, N.; Gattinoni, L.; Colucci, M. Low D-dimer levels in sepsis: Good or bad? Thromb Res. 2018, 174, 13–15. [Google Scholar] [CrossRef]
- Semeraro, F.; Ammollo, C.T.; Caironi, P.; Masson, S.; Latini, R.; Panigada, M.; Pesenti, A.; Semeraro, N.; Gattinoni, L.; Colucci, M. D-dimer corrected for thrombin and plasmin generation is a strong predictor of mortality in patients with sepsis. Blood Transfus. 2020, 18, 304–311. [Google Scholar] [CrossRef]
- Shaw, A.D.; Vail, G.M.; Haney, D.J.; Xie, J.; Williams, M.D. Severe protein C deficiency is associated with organ dysfunction in patients with severe sepsis. J. Crit. Care 2011, 26, 539–545. [Google Scholar] [CrossRef]
- Sivula, M.; Pettila, V.; Niemi, T.T.; Varpula, M.; Kuitunen, A.H. Thromboelastometry in patients with severe sepsis and disseminated intravascular coagulation. Blood Coagul. Fibrinolysis Int. J. Haemost. Thromb. 2009, 20, 419–426. [Google Scholar] [CrossRef]
- Wiersinga, W.J.; Meijers, J.C.; Levi, M.; Van ‘t Veer, C.; Day, N.P.; Peacock, S.J.; van der Poll, T. Activation of coagulation with concurrent impairment of anticoagulant mechanisms correlates with a poor outcome in severe melioidosis. J. Thromb. Haemost. 2008, 6, 32–39. [Google Scholar] [CrossRef]
- Zheng, Z.; Mukhametova, L.; Boffa, M.B.; Moore, E.E.; Wolberg, A.S.; Urano, T.; Kim, P.Y. Assays to quantify fibrinolysis: Strengths and limitations. Communication from the International Society on Thrombosis and Haemostasis Scientific and Standardization Committee on fibrinolysis. J. Thromb. Haemost. 2023, 21, 1043–1054. [Google Scholar] [CrossRef]
- Raaphorst, J.; Johan Groeneveld, A.B.; Bossink, A.W.; Erik Hack, C. Early inhibition of activated fibrinolysis predicts microbial infection, shock and mortality in febrile medical patients. Thromb. Haemost. 2001, 86, 543–549. [Google Scholar] [CrossRef]
- Mesters, R.M.; Florke, N.; Ostermann, H.; Kienast, J. Increase of plasminogen activator inhibitor levels predicts outcome of leukocytopenic patients with sepsis. Thromb. Haemost. 1996, 75, 902–907. [Google Scholar] [CrossRef]
- Tipoe, T.L.; Wu, W.K.K.; Chung, L.; Gong, M.; Dong, M.; Liu, T.; Roever, L.; Ho, J.; Wong, M.C.S.; Chan, M.T.V.; et al. Plasminogen Activator Inhibitor 1 for Predicting Sepsis Severity and Mortality Outcomes: A Systematic Review and Meta-Analysis. Front. Immunol. 2018, 9, 1218. [Google Scholar] [CrossRef] [PubMed]
- Miszta, A.; Huskens, D.; Donkervoort, D.; Roberts, M.J.M.; Wolberg, A.S. Assessing Plasmin Generation in Health and Disease. Int. J. Mol. Sci. 2021, 22, 2758. [Google Scholar] [CrossRef] [PubMed]
- Rijken, D.C.; Hoegee-De Nobel, E.; Jie, A.F.H.; Atsma, D.E.; Schalij, M.J.; Nieuwenhuizen, W. Development of a new test for the global fibrinolytic capacity in whole blood. J. Thromb. Haemost. 2008, 6, 151–157. [Google Scholar] [CrossRef] [PubMed]
- Scarlatescu, E.; Lance, M.D.; White, N.J.; Arama, S.S.; Tomescu, D.R. Effects of malignancy on blood coagulation in septic intensive care patients. Blood Coagul. Fibrinolysis Int. J. Haemost. Thromb. 2018, 29, 92–96. [Google Scholar] [CrossRef]
- Raza, I.; Davenport, R.; Rourke, C.; Platton, S.; Manson, J.; Spoors, C.; Khan, S.; De’Ath, H.D.; Allard, S.; Hart, D.P.; et al. The incidence and magnitude of fibrinolytic activation in trauma patients. J. Thromb. Haemost. JTH 2013, 11, 307–314. [Google Scholar] [CrossRef]
- Coupland, L.A.; Rabbolini, D.J.; Schoenecker, J.G.; Crispin, P.J.; Miller, J.J.; Ghent, T.; Medcalf, R.L.; Aneman, A.E. Point-of-care diagnosis and monitoring of fibrinolysis resistance in the critically ill: Results from a feasibility study. Crit. Care 2023, 27, 55. [Google Scholar] [CrossRef]
- Evans, P.A.; Hawkins, K.; Morris, R.H.; Thirumalai, N.; Munro, R.; Wakeman, L.; Lawrence, M.J.; Williams, P.R. Gel point and fractal microstructure of incipient blood clots are significant new markers of hemostasis for healthy and anticoagulated blood. Blood 2010, 116, 3341–3346. [Google Scholar] [CrossRef]
Article | Study Population | Fibrinolysis Assessment Method | Key Findings | Relationship with Outcomes |
---|---|---|---|---|
Adamzik 2010 [50] | 56 sepsis ICU pts, 52 PO controls | ROTEM NATEM +heparinase: LI60 | LI60 increased in sepsis compared to PO controls | LI60 > 96.5% predicted sepsis; early diagnostic value |
Andersen 2014 [51] | 36 ICU sepsis or septic shock pts; no controls | ROTEM LI45. D-dimer on days 1, 2, 3, 7 | LI45 increased from Day 1 to Day 3; D-dimers had increased values (>7 × ULN) | Pts with overt DIC had lower LI45 than pts without overt DIC |
Bouck 2021 [52] | 46 COVID-19 pts, 53 sepsis pts (52 with bacterial sepsis), 18 healthy controls | Plasma PG, D-dimer, PAP, plasma-based turbidimetric clot-lysis | Both cohorts: increased D-dimer and PAP; in sepsis pts delayed and decreased PG | Longer fibrinolysis lag linked to higher SOFA and longer ICU LOS |
Boudjeltia 2004 [53] | 11 septic ICU pts, 21 non-septic ICU pts; | ECLT | ECLT prolonged in sepsis compared to non-septic pts; | ECLT positively correlated with CRP and ICU LOS |
Brenner 2012 [54] | 30 septic shock pts; 30 surgical pts; 30 healthy volunteers | ROTEM LI45, LI60; | Increased LI45, LI60 in sepsis; | LI45 predicted sepsis diagnosis |
Brewer 2024 [55] | 159 ICU pts (30 sepsis, 129 non-sepsis), 38 healthy controls | ROTEM modified with exogenous tPA (tPA-LT, FS) | 61% of ICU pts had prolonged LT > 50 min; significantly impaired fibrinolysis activity in sepsis pts compared to ICU pts without sepsis and controls | LT > 97.5th percentile associated with 30-day mortality and VTE |
da Cruz 2019 [56] | 7 septic shock pts with DIC, 10 healthy controls | NET-bound elastase assay; plasminogen; plasminogen fragments; PG onto fibrin | Pts with DIC had HNE-DNA complexes, HNE-derived plasminogen fragments, lower plasminogen concentration, and capacity to generate plasmin onto fibrin compared to controls | Presence of plasminogen fragments and reduced PG linked to DIC severity |
Davies 2016 [57] | 100 pts (70 sepsis, 30 septic shock), 44 healthy controls | Fractal dimension (df) rheometry | Sepsis: increased df (dense hypercoagulable clots, resistant to lysis); septic shock: decreased df (weak clots) | Lower df associated with 28-day mortality |
Davies 2018 [58] | 100 pts (70 sepsis, 30 septic shock) | ROTEM EXTEM/INTEM (CT, MCF, LI60) | Sepsis: increased MCF (hypercoagulable); septic shock: prolonged CT & impaired lysis (LI60) | LI60 > 95% and prolonged CT associated with 28-day mortality |
Gando 2007 [47] | 45 SIRS/sepsis patients (11 DIC, 34 non-DIC) | E-XDP, FDP, D-dimer, PAI-1, soluble fibrin | Increased soluble fibrin, PAI-1, FDP, Peak E-XDP in DIC compared to non-DIC pts | DIC correlated with organ dysfunction/mortality. Peak E-XDP inversely correlated with death |
Gould 2015 [49] | 60 sepsis pts; 10 healthy controls | plasma-based turbidimetric clot-lysis; D-dimer, PAI-1; | CFDNA >5 µg/mL impaired fibrinolysis (dense clots; reversible with DNase). Plasmin-CFDNA-fibrin ternary complex inhibited lysis. | NA |
Hartemink 2010 [59] | 14 septic shock pts | tPA, PAI-1, PAP, fibrinogen | PAI-1 time course predicted lactate independent of hemodynamics/inflammation. | High PAI-1persisted in non-survivors |
Hayakawa 2012 [60] | 50 sepsis pts (37 DIC, 13 non-DIC); 15 healthy controls | PAI-1, TAFI antigen and activity, E-XDP, PAP, tPAIC, D-dimer | decreased TAFI activity and insufficient fibrinolysis activation by plasmin/neutrophil elastase; increased PAI-1, E-XDP, tPAIC, D-dimer in DIC | High neutrophil elastase and low TAFI, PAP independently predict death and OD; tPAIC predicts E-XDP elevation |
Helling 2010 [61] | 39 pts (21 hemorrhagic shock, 18 septic shock) | Plasminogen, PAP, D-dimer | Decreased plasminogen in non-survivors (day 1); plasminogen levels, PAP continuously increasing in survivors up to day 7 | Plasminogen recovery correlates with survival; |
Hesselvik 1989 [62] | 53 sepsis pts | PAI-1, α2-plasmin inhibitor, D-dimer. | Plasminogen levels lower, and PAI-1 levels higher in septic shock compared to sepsis pts | High PAI-1 correlates with mortality |
Hoppensteadt 2013 [63] | 617 sepsis pts (98 overt DIC, 518 non-overt DIC); 30 healthy controls | PAI-1 | Increased PAI-1 in overt DIC; | High PAI-1 correlates with overt DIC |
Hoshino 2017 [64] | 186 sepsis pts (150 survivors, 36 non-survivors) | PAI-1, D-dimer, PAP | PAI-1 increased in non-survivors | PAI-1 ≥83 ng/mL independently predicted 28-day mortality in sepsis |
Hoshino 2020 [65] | 113 sepsis pts (61 PAI-1 ≥83 ng/mL, 52 PAI-1 <83 ng/mL) | PAI-1, D-dimer, PAP | PAI-1 ≥83 ng/mL linked to pre-DIC state, OD | Increased PAI 1 correlated with lower ICU/CRRT/catecholamine-free days and with decreased 28-day survival |
Iba 2005 [66] | 78 surgical ICU pts with sepsis (15 with OD, 63 without); | D-dimer, FDP, PAP, total PAI-1, E-XDP | Patients with OD had significantly higher D-dimer, FDP, PAP, PAI-1, E-XDP. | Early elevation of D-dimer, FDP, E-XDP, and PAI-1 associated with OD and mortality. |
Johansson 2014 [67] | 67 septic pts (14 with, 53 without noradrenaline infusion) | tPA, PAI-1 | Endogenous noradrenaline correlated with increasedPAI-1, tPA, and endothelial damage markers. | High PAI-1 associated with higher 28- and 90-day mortality. |
Koami 2015 [68] | 13 septic pts (7 DIC, 6 non-DIC) | ROTEM EXTEM LI30, 45, 60, ML; FDP; D-dimer | Higher D-dimer and FDP in DIC than in non-DIC | LI30, 45, 60, ML were not significantly different between DIC and non-DIC |
Koami 2025 [69] | 63 septic ICU pts (lysis classified by EXTEM LI60: Hyper ≤85%, Normal 86–96%, Hypo ≥97%) | ROTEM EXTEM LI60; FDP, D-dimer | Hypofibrinolysis pts had higher FDP, D-dimer levels than normofibrinolysis pts + higher APACHEII/SOFA/DIC scores. | LI60 ≥97% predicted DIC and higher 28-day mortality |
Koh 2011 [70] | 44 pts with culture-proven melioidosis (34 with diabetes, 10 without); 30 healthy blood donors; 52 otherwise healthy diabetes patients | D-dimer, PAP | Higher PAP and D-dimer in meloidosis and in diabetes pts compared to healthy controls | Severity of coagulopathy and fibrinolysis impairment correlated with mortality in melioidosis, but diabetes status did not influence the degree of coagulation/fibrinolysis disturbance or outcomes in septic patients. |
Koyama 2014 [38] | 77 sepsis pts (37 developed overt DIC within 5 days) | PAI-1, plasminogen, α2-plasmin inhibitor, PAP | Plasminogen, α2-plasmin inhibitor were lower and PAI-1 higher in DIC compare to non-DIC | PAI-1 >269 ng/mL predicted overt DIC and 28-day mortality |
Kuiper 2016 [35] | 40 healthy volunteers, 21 sepsis, 20 CTS (19 with tranexamic acid), 15 cirrhosis, 7 pregnant pts | ROTEM modified with exogenous tPA (LOT, LT, FS);PAI-1, tPA activity, D-dimers, TAFI; ECLT | Hypofibrinolysis in sepsis (increased ROTEM LOT/LT; high PAI-1 and D-dimers, low tPA activity, prolonged ECLT) | NA |
Larsen 2021 [71] | 34 septic shock pts | Plasma-based clot-lysis assay; tPA, PAI-1, TAFI | Three distinct profiles: (1) Severely decreased fibrin formation (flat curve), (2) Normal fibrin formation/lysis, (3) Pronounced lysis resistance. Lower plasma levels of plasminogen and higher PAI-1 levels in (3) compared to (2) | Abnormal profiles (flat/lysis-resistant) associated with OD |
Lorente 1993 [72] | 48 septic shock pts (25 nonsurvivors) | t-PA, u-PA, PAI-1, plasminogen, α2-antiplasmin, D-dimer | Increased t-PA, PAI-1, and low plasminogen, plasminogen/α2-antiplasmin ratio | Survivors had progressive normalization of fibrinolysis markers. |
Madoiwa 2006 [73] | 117 sepsis-induced DIC; 1627 non-septic DIC | Plasma PAI-1, D-dimer, FDP | Increased PAI-1 and decreased FDP, D-dimer in septic DIC vs. non-septic DIC; D-dimer negatively correlated with PAI-1 | PAI-1 >90 ng/mL linked to increased 28-day mortality |
Madoiwa 2011 [44] | 117 sepsis-induced DIC pts; 46 healthy controls | E-XDP, p-XDP; PAI-1, D-dimer, PAP | E-XDP higher in DIC compared to controls; E-XDP not correlated with PAI-1, PAP | e-XDP <3 U/mL correlated with increased 28-day mortality |
Massignon 1994 [74] | 34 pts (10 PO, 12 sepsis, 12 septic shock); 21 controls | PAI-1 Ag and activity, t-PA activity, FDP, D-dimer, a2- antiplasmin | tPA activity decreased, PAI-1 activity and PAI-1 Ag increased in septic shock patients compared to the other groups | PAI-1 levels correlated with TNF, IL-6 levels and OD |
Mauri 2010 [75] | 90 ICU pts (sepsis/septic shock) | PTX3, PAI-1 | PTX3 higher in septic shock patients compared to sepsis and correlated with PAI-1 and F1+2, indicating coagulation/fibrinolysis dysfunction. | Persisting high PTX3 predicted mortality |
Mavrommatis 2001 [76] | 82 septic pts (including 17 pts with septic shock), 14 healthy controls | PAP, tPAIC, plasminogen, tPA, PAI-1, D-dimer, FDP, a2- antiplasmin | Compared to sepsis, in septic shock pts plasminogen and tPA were lower, and PAI-1 increased; compared to controls PAI-1, D-dimer, FDP were higher in sepsis | Impaired fibrinolysis correlated with increased sepsis severity |
Mei 2019 [77] | 74 pts with sepsis (32 overt-DIC and pre-DIC, 42 non-overt DIC); 137 healthy controls | PAP, tPAIC | tPAIC higher in patients with overt and pre-DIC compared to non-overt DIC; no differences in PAP | Higher complexes tPA/PAI-1 levels correlated with higher 28-day mortality |
Müller 2019 [78] | 23 critically ill pts (13 DIC, 10 non-DIC) | ROTEM (EXTEM, INTEM ML, PAP, D-dimer | No significant differences in ML, PAP, D-dimer between DIC and non-DIC pts | NA |
Panigada 2015 [37] | 40 sepsis pts (sepsis/septic shock); 40 healthy controls | Kaolin-TEG modified with urokinase (Ly30), PAI-1, TAFI, D-dimer | Fibrinolytic resistance (decreased urokinase-TEG Ly30) in 45% of pts, associated with increased PAI-1 and cellular damage | Low urokinase-TEG Ly30 predicted mortality and higher SOFA scores. |
Panigada 2016 [36] | 40 severe sepsis/septic shock pts; 50 healthy controls | ROTEM EXTEM from PPP modified with added tPA: LT; D-dimer, PAI-1, plasminogen | prolonged LT, higher D-dimer, PAI-1, lower plasminogen in septic pts vs. controls | No direct survival difference after multiple comparisons correction. |
Park 1999 [79] | 32 sepsis pts, 20 controls | PAP | Increased TAT and PAP in sepsis compared to controls | Higher TAT/PAP ratio in non-survivors than in survivors |
Park 2010 [80] | 25 sepsis pts; 18 healthy controls | TAFIa, TAFIai, D-dimer, FDP | increased TAFIa/ai in sepsis, no difference in total TAFI compared to controls | NA |
Prakash 2015 [81] | 77 ICU pts; 20 healthy controls | ROTEM NATEM ML, aPAI-1, D-dimer | aPAI-1 levels higher in sepsis than controls Hypofibrinolysis (low ML) correlated with higher SOFA scores | Lower ML and higher aPAI-1 predicted OD and mortality. Early increase in fibrinolysis correlated with organ recovery. |
Sanches 2014 [82] | 41 septic shock (21 hyperglycemic, 20 normoglycemic); non-diabetic pts | PAI-1, tPA, plasminogen, α2-antiplasmin, D-dimer | Hyperglycemic pts after glycemic control: decreased PAI-1 and tPA, increased plasminogen. Normoglycemic pts: no significant changes in fibrinolysis markers. | Glycemic control associated with improved coagulation/fibrinolysis parameters vs. baseline and vs. normoglycemic patients. |
Savioli 2009 [83] | 90 ICU pts with sepsis/septic shock (45 tight vs. 45 conventional glycemic control) | PAI-1 activity/concentration, tPA, PAP, D-dimer | 34/90 patients had fibrinolysis inhibition (increased PAI-1) at baseline. Tight glycemic control decreased PAI-1 and higher PAP complexes. | Fibrinolysis inhibition linked to increased 90-day mortality |
Scarlatescu 2018 [84] | 76 septic pts (20 survivors, 56 nonsurvivors); 26 healthy controls | ROTEM EXTEM: LI30, LI45, LI60, ML, t-AUCi | LI30,45,60 higher in sepsis than controls; t-AUCi correlated with clot lysis | t-AUCi predicted ICU mortality, differentiated nonsurvivors vs. survivors even with similar lysis indices |
Scarlatescu 2020 [85] | 97 septic pts (44 overt DIC, 53 no DIC) | ROTEM EXTEM ML, D-dimer, FDP | FDP and D-dimer higher in DIC than in non-DIC; ML not different between groups | NA |
Scarlatescu 2024 [7] | 30 septic pts, 30 healthy controls | ROTEM EXTEM, NATEM modified with added tPA, PAI-1, PAP, plasminogen, t-AUCi | Higher PAI-1, PAP, t-AUCi, LI30, 45, 60 and lower plasminogen levels in sepsis compared to controls; t-AUCi >1962 s predicted fibrinolysis resistance. | NA |
Schmitt 2019 [86] | 90 pts (30 septic shock, 30 surgical controls, 30 healthy volunteers) | ROTEM: LI45, LI60; PAI-1, tPA (total and free) | tPA, PAI-1 increased in surgical controls and septic pts compared to healthy controls; increased LI45/LI60 in sepsis compared to surgical and healthy controls | Increased LI60 predicted mortality |
Semeraro 2017 [87] | 280 sepsis pts (group 1: baseline thrombocytopenia ≤50 × 109/L group 2: developing thrombocytopenia, group 3: without thrombocytopenia ≥100 × 109/L) | PAI-1, TAFI zymogen, TAFIa/ai, PAP, D-dimer, F1+2, CFDNA, plasma clot lysis time | Fibrinolysis shutdown preceded thrombocytopenia development. Groups 1&2 (thrombocytopenic) vs. Group 3: higher PAI-1 and TAFIa/ai, lower TAFI zymogen, prolonged plasma clot lysis time | TAFI, D-dimer, and PAP were independent predictors of 90-day mortality. Low platelets + low fibrinolysis (low TAFI or PAP) associated with worse outcomes. |
Semeraro 2018 [88] | 271 sepsis pts grouped by D-dimer levels: no increase (<500 ng/mL, n = 7), moderate increase (500–4000 ng/mL, n = 122), marked increase (>4000 ng/mL, n = 142) | D-dimer, PAI-1, PAP, TAFIa/ai levels | Patients with ‘normal’ D-dimer (<500 ng/mL) had strong fibrinolysis inhibition: lower PAP and higher PAI-1 compared to moderate/marked increase D-dimer groups. | Normal D-dimer group had highest mortality |
Semeraro 2020 [89] | 269 sepsis pts | DDcorr: Formula DD×PAP/F1+2; D-dimer, PAP | Low DDcorr correlated with low fibrinolytic activity. | Low DDcorr (insufficient fibrinolysis) and high DDcorr (excessive fibrinolysis) associated with higher mortality. |
Shaw 2011 [90] | 775 sepsis pts stratified by PC deficiency (≤40% vs. >40% activity) | plasminogen, PAI-1, D-dimer | Severe PC deficiency was associated with elevated PAI-1, lower plasminogen, higher D-dimer | Severe PC deficiency and impaired fibrinolysis predicted OD. |
Sivula 2009 [91] | 28 pts with sepsis (12 with overt DIC), 10 healthy controls | ROTEM EXTEM LI60, D-dimer | LI60 and D-dimer higher in sepsis than controls; Overt DIC pts higher LI60 and D-dimer compared to controls and non-DIC pts | Impaired fibrinolysis associated with overt DIC, higher SOFA and 28-day mortality |
Zeerleder 2006 [42] | 40 pts (32 sepsis, 8 septic shock); 151 healthy controls | TAFI antigen, PAI-1, PAP, D-dimer; | TAFI antigen was significantly decreased, PAI-1 increased in sepsis vs. controls; PAI-1, PAP higher in septic shock and overt DIC. | High PAI-1 (but not TAFI) and increased TAT/PAP ratio were associated with OD, and mortality. |
Wiersinga 2008 [92] | 34 pts with culture-proven septic melioidosis; 32 healthy controls | tPA, PAI-1, PAP, D-dimer | Pts had strong activation of coagulation (increased TAT, F1+2), downregulation of anticoagulants (decreased PC, S, AT), and evidence of both activation and inhibition of fibrinolysis (increased tPA, PAI-1, PAP, D-dimer). TAT/PAP ratio higher in pts than controls (prothrombotic state). | Higher tPA, PAP on admission were associated with mortality. High TAT/PAP ratio (procoagulant > fibrinolytic activity) predicted poor outcome. |
Fibrinolysis Assessment Method | Advantages | Disadvantages |
---|---|---|
Measurement of plasma biomarkers reflecting fibrinolysis |
|
|
Euglobulin clot lysis time (ECLT) |
|
|
Plasma-based fibrin clot formation and lysis |
|
|
Plasma-based plasmin generation assay |
|
|
VET |
|
|
Modified VET (added fibrinolysis activators) |
|
|
Fractal dimension (whole-blood rheometry) |
|
|
Biomarker | Test Method | Current Status in Practice |
---|---|---|
PAI-1 antigen and activity | ELISA | Reference and research settings, limited clinical use |
tPA-PAI-1 complex | ELISA | Reference and research settings, limited clinical use |
D-dimer and Fibrin degradation Products | ELISA | Routinely used for DIC/coagulopathy in clinical labs |
PAP | ELISA | Reference/research settings, limited clinical use |
α2 antiplasmin antigen and functional levels | ELISA (for antigen) Chromogenic methods (for functional levels) | Reference/research settings, not routinely used |
TAFI antigen and activity | ELISA | Reference/research settings, limited clinical use Lacks standardization |
t-PA antigen and activity | ELISA (for antigen) tPA-specific chromogenic/fluorogenic substrate (for activity) | Reference/research settings, limited clinical use |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scarlatescu, F.; Scarlatescu, E.; Thachil, J.; Tomescu, D.R.; Bartos, D. The Fibrinolytic System in Bacterial Sepsis: A Comprehensive Review of Current Assessment Methods. J. Clin. Med. 2025, 14, 6055. https://doi.org/10.3390/jcm14176055
Scarlatescu F, Scarlatescu E, Thachil J, Tomescu DR, Bartos D. The Fibrinolytic System in Bacterial Sepsis: A Comprehensive Review of Current Assessment Methods. Journal of Clinical Medicine. 2025; 14(17):6055. https://doi.org/10.3390/jcm14176055
Chicago/Turabian StyleScarlatescu, Florin, Ecaterina Scarlatescu, Jecko Thachil, Dana R. Tomescu, and Daniela Bartos. 2025. "The Fibrinolytic System in Bacterial Sepsis: A Comprehensive Review of Current Assessment Methods" Journal of Clinical Medicine 14, no. 17: 6055. https://doi.org/10.3390/jcm14176055
APA StyleScarlatescu, F., Scarlatescu, E., Thachil, J., Tomescu, D. R., & Bartos, D. (2025). The Fibrinolytic System in Bacterial Sepsis: A Comprehensive Review of Current Assessment Methods. Journal of Clinical Medicine, 14(17), 6055. https://doi.org/10.3390/jcm14176055