Advances in Endoscopic Diagnosis and Management of Cholangiocarcinoma
Abstract
1. Introduction
1.1. Epidemiology
1.2. Risk Factors
1.3. Diagnosis
2. Endoscopic Methods for Diagnosis
2.1. Endoscopic Retrograde Cholangiopancreatography (ERCP)
2.2. Endoscopic Ultrasound (EUS)
2.3. Intraductal Ultrasonography (IDUS)
2.4. Probe-Based Confocal Laser Endomicroscopy (pCLE)
3. Endoscopic Methods for Management
3.1. Biliary Drainage
3.2. Photodynamic Therapy (PDT)
3.3. Radiofrequency Ablation (RFA)
3.4. Intraluminal Brachytherapy (ILBT)
4. Applications in Artificial Intelligence (AI)
5. Limitations
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
CCA | Cholangiocarcinoma |
iCCA | Intrahepatic Cholangiocarcinoma |
pCCA | Perihilar Cholangiocarcinoma |
dCCA | Distal Cholangiocarcinoma |
PSC | Primary Sclerosing Cholangitis |
CT | Computed Tomography |
MRI | Magnetic Resonance Imaging |
MRCP | Magnetic Resonance Cholangiopancreatography |
EUS | Endoscopic Ultrasound |
ERCP | Endoscopic Retrograde Cholangiopancreatography |
EUS-FNA | Endoscopic Ultrasound–Fine Needle Aspiration |
IDUS | Intraductal Ultrasound |
pCLE | Probe-based Confocal Laser Endomicroscopy |
PDT | Photodynamic Therapy |
RFA | Radiofrequency Ablation |
ILBT | Intraluminal Brachytherapy |
EUS-BD | Endoscopic Ultrasound–Biliary Drainage |
SEMS | Self-expandable Metal Stent |
AI | Artificial Intelligence |
ML | Machine Learning |
CNN | Convolutional Neural Network |
References
- Banales, J.M.; Cardinale, V.; Carpino, G.; Marzioni, M.; Andersen, J.B.; Invernizzi, P.; Lind, G.E.; Folseraas, T.; Forbes, S.J.; Fouassier, L.; et al. Expert Consensus Document: Cholangiocarcinoma: Current Knowledge and Future Perspectives Consensus Statement from the European Network for the Study of Cholangiocarcinoma (ENS-CCA). Nat. Rev. Gastroenterol. Hepatol. 2016, 13, 261–280. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.A.; Tavolari, S.; Brandi, G. Cholangiocarcinoma: Epidemiology and Risk Factors. Liver Int. 2019, 39, 19–31. [Google Scholar] [CrossRef]
- Ilyas, S.I.; Gores, G.J. Pathogenesis, Diagnosis, and Management of Cholangiocarcinoma. Gastroenterology 2013, 145, 1215–1229. [Google Scholar] [CrossRef]
- National Comprehensive Cancer Network. NCCN Clinical Practice Guidelines in Oncology. Biliary Tract Cancers. 2025. Available online: https://www.nccn.org/professionals/physician_gls/pdf/btc.pdf (accessed on 19 August 2025).
- Mukkamalla, S.K.R.; Naseri, H.M.; Kim, B.M.; Katz, S.C.; Armenio, V.A. Trends in Incidence and Factors Affecting Survival of Patients with Cholangiocarcinoma in the United States. J. Natl. Compr. Cancer Netw. 2018, 16, 370–376. [Google Scholar] [CrossRef]
- Saha, S.K.; Zhu, A.X.; Fuchs, C.S.; Brooks, G.A. Forty-Year Trends in Cholangiocarcinoma Incidence in the U.S.: Intrahepatic Disease on the Rise. Oncologist 2016, 21, 594–599. [Google Scholar] [CrossRef]
- Caragut, R.-L.; Ilie, M.; Cabel, T.; Günșahin, D.; Panaitescu, A.; Pavel, C.; Plotogea, O.M.; Rînja, E.M.; Constantinescu, G.; Sandru, V. Updates in Diagnosis and Endoscopic Management of Cholangiocarcinoma. Diagnostics 2024, 14, 490. [Google Scholar] [CrossRef]
- Welzel, T.M.; Graubard, B.I.; El–Serag, H.B.; Shaib, Y.H.; Hsing, A.W.; Davila, J.A.; McGlynn, K.A. Risk Factors for Intrahepatic and Extrahepatic Cholangiocarcinoma in the United States: A Population-Based Case-Control Study. Clin. Gastroenterol. Hepatol. 2007, 5, 1221–1228. [Google Scholar] [CrossRef]
- Clements, O.; Eliahoo, J.; Kim, J.U.; Taylor-Robinson, S.D.; Khan, S.A. Risk Factors for Intrahepatic and Extrahepatic Cholangiocarcinoma: A Systematic Review and Meta-Analysis. J. Hepatol. 2020, 72, 95–103. [Google Scholar] [CrossRef] [PubMed]
- Bragazzi, M.C.; Cardinale, V.; Carpino, G.; Venere, R.; Semeraro, R.; Gentile, R.; Gaudio, E.; Alvaro, D. Cholangiocarcinoma: Epidemiology and Risk Factors. Transl. Gastrointest. Cancer 2012, 1, 212–232. [Google Scholar]
- Sripa, B.; Brindley, P.J.; Mulvenna, J.; Laha, T.; Smout, M.J.; Mairiang, E.; Bethony, J.M.; Loukas, A. The Tumorigenic Liver Fluke Opisthorchis Viverrini—Multiple Pathways to Cancer. Trends Parasitol. 2012, 28, 395–407. [Google Scholar] [CrossRef] [PubMed]
- Sripa, B.; Kaewkes, S.; Sithithaworn, P.; Mairiang, E.; Laha, T.; Smout, M.; Pairojkul, C.; Bhudhisawasdi, V.; Tesana, S.; Thinkamrop, B.; et al. Liver Fluke Induces Cholangiocarcinoma. PLoS Med. 2007, 4, e201. [Google Scholar] [CrossRef] [PubMed]
- Zheng, S.; Zhu, Y.; Zhao, Z.; Wu, Z.; Okanurak, K.; Lv, Z. Liver Fluke Infection and Cholangiocarcinoma: A Review. Parasitol. Res. 2017, 116, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Boonstra, K.; Weersma, R.K.; van Erpecum, K.J.; Rauws, E.A.; Spanier, B.W.M.; Poen, A.C.; van Nieuwkerk, K.M.; Drenth, J.P.; Witteman, B.J.; Tuynman, H.A.; et al. Population-Based Epidemiology, Malignancy Risk, and Outcome of Primary Sclerosing Cholangitis. Hepatology 2013, 58, 2045–2055. [Google Scholar] [CrossRef] [PubMed]
- Bergquist, A.; Ekbom, A.; Olsson, R.; Kornfeldt, D.; Lööf, L.; Danielsson, Å.; Hultcrantz, R.; Lindgren, S.; Prytz, H.; Sandberg-Gertzén, H.; et al. Hepatic and Extrahepatic Malignancies in Primary Sclerosing Cholangitis. J. Hepatol. 2002, 36, 321–327. [Google Scholar] [CrossRef]
- Burak, K.; Angulo, P.; Pasha, T.M.; Egan, K.; Petz, J.; Lindor, K.D. Incidence and Risk Factors for Cholangiocarcinoma in Primary Sclerosing Cholangitis. Am. J. Gastroenterol. 2004, 99, 523. [Google Scholar] [CrossRef]
- Boberg, K.M.; Bergquist, A.; Mitchell, S.; Pares, A.; Rosina, F.; Broomé, U.; Chapman, R.; Fausa, O.; Egeland, T.; Rocca, G.; et al. Cholangiocarcinoma in Primary Sclerosing Cholangitis: Risk Factors and Clinical Presentation. Scand. J. Gastroenterol. 2002, 37, 1205–1211. [Google Scholar] [CrossRef]
- Bowlus, C.L.; Arrivé, L.; Bergquist, A.; Deneau, M.; Forman, L.; Ilyas, S.I.; Lunsford, K.E.; Martinez, M.; Sapisochin, G.; Shroff, R.; et al. AASLD Practice Guidance on Primary Sclerosing Cholangitis and Cholangiocarcinoma. Hepatology 2023, 77, 659. [Google Scholar] [CrossRef]
- Bhayana, D.; Kim, T.K.; Jang, H.-J.; Burns, P.N.; Wilson, S.R. Hypervascular Liver Masses on Contrast-Enhanced Ultrasound: The Importance of Washout. Am. J. Roentgenol. 2010, 194, 977–983. [Google Scholar] [CrossRef]
- Forner, A.; Vidili, G.; Rengo, M.; Bujanda, L.; Ponz-Sarvisé, M.; Lamarca, A. Clinical Presentation, Diagnosis and Staging of Cholangiocarcinoma. Liver Int. 2019, 39, 98–107. [Google Scholar] [CrossRef]
- Rushbrook, S.M.; Kendall, T.J.; Zen, Y.; Albazaz, R.; Manoharan, P.; Pereira, S.P.; Sturgess, R.; Davidson, B.R.; Malik, H.Z.; Manas, D.; et al. British Society of Gastroenterology Guidelines for the Diagnosis and Management of Cholangiocarcinoma. Gut 2024, 73, 16–46. [Google Scholar] [CrossRef]
- Olnes, M.J.; Erlich, R. A Review and Update on Cholangiocarcinoma. Oncology 2004, 66, 167–179. [Google Scholar] [CrossRef]
- Weber, A.; Schmid, R.M.; Prinz, C. Diagnostic Approaches for Cholangiocarcinoma. World J. Gastroenterol. 2008, 14, 4131–4136. [Google Scholar] [CrossRef]
- Yoon, S.B.; Moon, S.-H.; Ko, S.W.; Lim, H.; Kang, H.S.; Kim, J.H. Brush Cytology, Forceps Biopsy, or Endoscopic Ultrasound-Guided Sampling for Diagnosis of Bile Duct Cancer: A Meta-Analysis. Dig. Dis. Sci. 2022, 67, 3284–3297. [Google Scholar] [CrossRef] [PubMed]
- Navaneethan, U.; Njei, B.; Lourdusamy, V.; Konjeti, R.; Vargo, J.J.; Parsi, M.A. Comparative Effectiveness of Biliary Brush Cytology and Intraductal Biopsy for Detection of Malignant Biliary Strictures: A Systematic Review and Meta-Analysis. Gastrointest. Endosc. 2015, 81, 168–176. [Google Scholar] [CrossRef] [PubMed]
- Jailwala, J.; Fogel, E.L.; Sherman, S.; Gottlieb, K.; Flueckiger, J.; Bucksot, L.G.; Lehman, G.A. Triple-Tissue Sampling at ERCP in Malignant Biliary Obstruction. Gastrointest. Endosc. 2000, 51, 383–390. [Google Scholar] [CrossRef] [PubMed]
- Macken, E.; Drijkoningen, M.; Van Aken, E.; Van Steenbergen, W. Brush Cytology of Ductal Strictures during ERCP. Acta Gastro-Enterol. Belg. 2000, 63, 254–259. [Google Scholar]
- Ponchon, T.; Gagnon, P.; Berger, F.; Labadie, M.; Liaras, A.; Chavaillon, A.; Bory, R. Value of Endobiliary Brush Cytology and Biopsies for the Diagnosis of Malignant Bile Duct Stenosis: Results of a Prospective Study. Gastrointest. Endosc. 1995, 42, 565–572. [Google Scholar] [CrossRef]
- Pugliese, V.; Conio, M.; Nicolò, G.; Saccomanno, S.; Gatteschi, B. Endoscopic Retrograde Forceps Biopsy and Brush Cytology of Biliary Strictures: A Prospective Study. Gastrointest. Endosc. 1995, 42, 520–526. [Google Scholar] [CrossRef]
- Weber, A.; von Weyhern, C.; Fend, F.; Schneider, J.; Neu, B.; Meining, A.; Weidenbach, H.; Schmid, R.M.; Prinz, C. Endoscopic Transpapillary Brush Cytology and Forceps Biopsy in Patients with Hilar Cholangiocarcinoma. World J. Gastroenterol. 2008, 14, 1097–1101. [Google Scholar] [CrossRef]
- Kushnir, V.M.; Mullady, D.K.; Das, K.; Lang, G.; Hollander, T.G.; Murad, F.M.; Jackson, S.A.; Toney, N.A.; Finkelstein, S.D.; Edmundowicz, S.A. The Diagnostic Yield of Malignancy Comparing Cytology, FISH, and Molecular Analysis of Cell Free Cytology Brush Supernatant in Patients with Biliary Strictures Undergoing Endoscopic Retrograde Cholangiography (ERC): A Prospective Study. J. Clin. Gastroenterol. 2019, 53, 686. [Google Scholar] [CrossRef]
- Eloubeidi, M.A.; Chen, V.K.; Jhala, N.C.; Eltoum, I.E.; Jhala, D.; Chhieng, D.C.; Syed, S.A.; Vickers, S.M.; Mel Wilcox, C. Endoscopic Ultrasound-Guided Fine Needle Aspiration Biopsy of Suspected Cholangiocarcinoma. Clin. Gastroenterol. Hepatol. 2004, 2, 209–213. [Google Scholar] [CrossRef] [PubMed]
- Orzan, R.I.; Pojoga, C.; Agoston, R.; Seicean, R.; Seicean, A. Endoscopic Ultrasound in the Diagnosis of Extrahepatic Cholangiocarcinoma: What Do We Know in 2023? Diagnostics 2023, 13, 1023. [Google Scholar] [CrossRef] [PubMed]
- Moura, D.T.H.; de Moura, E.G.H.; Matuguma, S.E.; dos Santos, M.E.; Moura, E.T.H.; Baracat, F.I.; Artifon, E.L.; Cheng, S.; Bernardo, W.M.; Chacon, D.; et al. EUS-FNA versus ERCP for Tissue Diagnosis of Suspect Malignant Biliary Strictures: A Prospective Comparative Study. Endosc. Int. Open 2018, 6, E769–E777. [Google Scholar] [CrossRef] [PubMed]
- Mathew, P.; Kanni, P.; Gowda, M.; Devarapu, C.; Ansari, J.; Garg, A. A Comparative Study of Endoscopic Ultrasound Fine-Needle Aspiration (EUS-FNA) and Endoscopic Retrograde Cholangiopancreatography (ERCP)-Based Brush Cytology for Tissue Diagnosis in Malignant Biliary Obstruction. Cureus 2022, 14, e30291. [Google Scholar] [CrossRef]
- Sobhrakhshankhah, E.; Sohrabi, M.; Norouzi, H.R.; Zamani, F.; Ajdarkosh, H.; Nikkhah, M.; Khoonsari, M.R.; Faraji, A.H. Tissue Sampling through Endoscopic Ultrasound-Guided Fine Needle Aspiration versus Endoscopic Retrograde Cholangiopancreatographic Brushing Cytology Technique in Suspicious Malignant Biliary Stricture. Middle East J. Dig. Dis. 2021, 13, 294–301. [Google Scholar] [CrossRef]
- Onoyama, T.; Matsumoto, K.; Takeda, Y.; Kawata, S.; Kurumi, H.; Koda, H.; Yamashita, T.; Takata, T.; Isomoto, H. Endoscopic Ultrasonography-Guided Fine Needle Aspiration for Extrahepatic Cholangiocarcinoma: A Safe Tissue Sampling Modality. J. Clin. Med. 2019, 8, 417. [Google Scholar] [CrossRef]
- Sun, X.; Zhou, Z.; Tian, J.; Wang, Z.; Huang, Q.; Fan, K.; Mao, Y.; Sun, G.; Yang, Y. Is Single-Operator Peroral Cholangioscopy a Useful Tool for the Diagnosis of Indeterminate Biliary Lesion? A Systematic Review and Meta-Analysis. Gastrointest. Endosc. 2015, 82, 79–87. [Google Scholar] [CrossRef]
- Badshah, M.B.; Vanar, V.; Kandula, M.; Kalva, N.; Badshah, M.B.; Revenur, V.; Bechtold, M.L.; Forcione, D.G.; Donthireddy, K.; Puli, S.R. Peroral Cholangioscopy with Cholangioscopy-Directed Biopsies in the Diagnosis of Biliary Malignancies: A Systemic Review and Meta-Analysis. Eur. J. Gastroenterol. Hepatol. 2019, 31, 935. [Google Scholar] [CrossRef]
- Navaneethan, U.; Hasan, M.K.; Lourdusamy, V.; Njei, B.; Varadarajulu, S.; Hawes, R.H. Single-Operator Cholangioscopy and Targeted Biopsies in the Diagnosis of Indeterminate Biliary Strictures: A Systematic Review. Gastrointest. Endosc. 2015, 82, 608–614.e2. [Google Scholar] [CrossRef]
- Behary, J.; Keegan, M.; Craig, P.I. The Interobserver Agreement of Optical Features Used to Differentiate Benign from Neoplastic Biliary Lesions Assessed at Balloon-Assisted Cholangioscopy. J. Gastroenterol. Hepatol. 2019, 34, 595–602. [Google Scholar] [CrossRef]
- Burnett, A.S.; Calvert, T.J.; Chokshi, R.J. Sensitivity of Endoscopic Retrograde Cholangiopancreatography Standard Cytology: 10-y Review of the Literature. J. Surg. Res. 2013, 184, 304–311. [Google Scholar] [CrossRef]
- Korc, P.; Sherman, S. ERCP Tissue Sampling. Gastrointest. Endosc. 2016, 84, 557–571. [Google Scholar] [CrossRef]
- Kaura, K.; Sawas, T.; Bazerbachi, F.; Storm, A.C.; Martin, J.A.; Gores, G.J.; Abu Dayyeh, B.K.; Topazian, M.D.; Levy, M.J.; Petersen, B.T.; et al. Cholangioscopy Biopsies Improve Detection of Cholangiocarcinoma When Combined with Cytology and FISH, but Not in Patients with PSC. Dig. Dis. Sci. 2020, 65, 1471–1478. [Google Scholar] [CrossRef]
- Eaton, J.E.; Fritcher, E.G.B.; Gores, G.J.; Atkinson, E.J.; Tabibian, J.H.; Topazian, M.D.; Gossard, A.A.; Halling, K.C.; Kipp, B.R.; Lazaridis, K.N. Biliary Multifocal Chromosomal Polysomy and Cholangiocarcinoma in Primary Sclerosing Cholangitis. Am. J. Gastroenterol. 2015, 110, 299. [Google Scholar] [CrossRef] [PubMed]
- Fritcher, E.B.G.; Kipp, B.R.; Voss, J.S.; Clayton, A.C.; Lindor, K.D.; Halling, K.C.; Gores, G.J. Primary Sclerosing Cholangitis Patients with Serial Polysomy FluorescenceIn SituHybridization Results Are at Increased Risk of Cholangiocarcinoma. Am. J. Gastroenterol. 2011, 106, 2023. [Google Scholar] [CrossRef]
- Singhi, A.D.; Nikiforova, M.N.; Chennat, J.; Papachristou, G.I.; Khalid, A.; Rabinovitz, M.; Das, R.; Sarkaria, S.; Ayasso, M.S.; Wald, A.I.; et al. Integrating Next-Generation Sequencing to Endoscopic Retrograde Cholangiopancreatography (ERCP)-Obtained Biliary Specimens Improves the Detection and Management of Patients with Malignant Bile Duct Strictures. Gut 2020, 69, 52–61. [Google Scholar] [CrossRef]
- Arechederra, M.; Rullán, M.; Amat, I.; Oyon, D.; Zabalza, L.; Elizalde, M.; Latasa, M.U.; Mercado, M.R.; Ruiz-Clavijo, D.; Saldaña, C.; et al. Next-Generation Sequencing of Bile Cell-Free DNA for the Early Detection of Patients with Malignant Biliary Strictures. Gut 2022, 71, 1141–1151. [Google Scholar] [CrossRef]
- Stenzinger, A.; Vogel, A.; Lehmann, U.; Lamarca, A.; Hofman, P.; Terracciano, L.; Normanno, N. Molecular Profiling in Cholangiocarcinoma: A Practical Guide to next-Generation Sequencing. Cancer Treat. Rev. 2024, 122, 102649. [Google Scholar] [CrossRef]
- Fabris, L.; Perugorria, M.J.; Mertens, J.; Björkström, N.K.; Cramer, T.; Lleo, A.; Solinas, A.; Sänger, H.; Lukacs-Kornek, V.; Moncsek, A.; et al. The Tumour Microenvironment and Immune Milieu of Cholangiocarcinoma. Liver Int. 2019, 39, 63–78. [Google Scholar] [CrossRef]
- Chuaysri, C.; Thuwajit, P.; Paupairoj, A.; Chau-In, S.; Suthiphongchai, T.; Thuwajit, C. Alpha-Smooth Muscle Actin-Positive Fibroblasts Promote Biliary Cell Proliferation and Correlate with Poor Survival in Cholangiocarcinoma. Oncol. Rep. 2009, 21, 957–969. [Google Scholar] [CrossRef]
- Montori, M.; Scorzoni, C.; Argenziano, M.E.; Balducci, D.; De Blasio, F.; Martini, F.; Buono, T.; Benedetti, A.; Marzioni, M.; Maroni, L. Cancer-Associated Fibroblasts in Cholangiocarcinoma: Current Knowledge and Possible Implications for Therapy. J. Clin. Med. 2022, 11, 6498. [Google Scholar] [CrossRef]
- Fabris, L.; Sato, K.; Alpini, G.; Strazzabosco, M. The Tumor Microenvironment in Cholangiocarcinoma Progression. Hepatology 2021, 73, 75–85. [Google Scholar] [CrossRef]
- Sha, M.; Jeong, S.; Qiu, B.; Tong, Y.; Xia, L.; Xu, N.; Zhang, J.; Xia, Q. Isolation of Cancer-Associated Fibroblasts and Its Promotion to the Progression of Intrahepatic Cholangiocarcinoma. Cancer Med. 2018, 7, 4665–4677. [Google Scholar] [CrossRef] [PubMed]
- Zaheer, A.; Anwar, M.M.; Donohoe, C.; O’Keeffe, S.; Mushtaq, H.; Kelleher, B.; Clarke, E.; Kirca, M.; McKiernan, S.; Mahmud, N.; et al. The Diagnostic Accuracy of Endoscopic Ultrasound in Suspected Biliary Obstruction and Its Impact on Endoscopic Retrograde Cholangiopancreatography Burden in Real Clinical Practice: A Consecutive Analysis. Eur. J. Gastroenterol. Hepatol. 2013, 25, 850. [Google Scholar] [CrossRef]
- Mohamadnejad, M.; DeWitt, J.M.; Sherman, S.; LeBlanc, J.K.; Pitt, H.A.; House, M.G.; Jones, K.J.; Fogel, E.L.; McHenry, L.; Watkins, J.L.; et al. Role of EUS for Preoperative Evaluation of Cholangiocarcinoma: A Large Single-Center Experience. Gastrointest. Endosc. 2011, 73, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Fujii-Lau, L.L.; Thosani, N.C.; Al-Haddad, M.; Acoba, J.; Wray, C.J.; Zvavanjanja, R.; Amateau, S.K.; Buxbaum, J.L.; Calderwood, A.H.; Chalhoub, J.M.; et al. American Society for Gastrointestinal Endoscopy Guideline on the Role of Endoscopy in the Diagnosis of Malignancy in Biliary Strictures of Undetermined Etiology: Summary and Recommendations. Gastrointest. Endosc. 2023, 98, 685–693. [Google Scholar] [CrossRef] [PubMed]
- Malikowski, T.; Levy, M.J.; Gleeson, F.C.; Storm, A.C.; Vargas, E.J.; Topazian, M.D.; Abu Dayyeh, B.K.; Iyer, P.G.; Rajan, E.; Gores, G.J.; et al. Endoscopic Ultrasound/Fine Needle Aspiration Is Effective for Lymph Node Staging in Patients with Cholangiocarcinoma. Hepatology 2020, 72, 940–948. [Google Scholar] [CrossRef]
- Heimbach, J.K.; Sanchez, W.; Rosen, C.B.; Gores, G.J. Trans-Peritoneal Fine Needle Aspiration Biopsy of Hilar Cholangiocarcinoma Is Associated with Disease Dissemination. HPB 2011, 13, 356–360. [Google Scholar] [CrossRef]
- Chafic, A.H.E.; Dewitt, J.; LeBlanc, J.K.; Hajj, I.I.E.; Cote, G.; House, M.G.; Sherman, S.; McHenry, L.; Pitt, H.A.; Johnson, C.; et al. Impact of Preoperative Endoscopic Ultrasound-Guided Fine Needle Aspiration on Postoperative Recurrence and Survival in Cholangiocarcinoma Patients. Endoscopy 2013, 45, 883–889. [Google Scholar] [CrossRef]
- Facciorusso, A.; Crinò, S.F.; Gkolfakis, P.; Ramai, D.; Mangiavillano, B.; Londoño Castillo, J.; Chandan, S.; Mohan, B.P.; D’Errico, F.; Decembrino, F.; et al. Needle Tract Seeding after Endoscopic Ultrasound Tissue Acquisition of Pancreatic Lesions: A Systematic Review and Meta-Analysis. Diagnostics 2022, 12, 2113. [Google Scholar] [CrossRef]
- Kang, H.; Kim, S.J.; Do, M.Y.; Kim, E.J.; Kim, Y.S.; Jang, S.I.; Bang, S.; Cho, J.H. EUS-Guided FNA and Biopsy for Cytohistologic Diagnosis of Gallbladder Cancer: A Multicenter Retrospective Study. Gastrointest. Endosc. 2024, 100, 231–239.e2. [Google Scholar] [CrossRef]
- Farrell, R.J.; Agarwal, B.; Brandwein, S.L.; Underhill, J.; Chuttani, R.; Pleskow, D.K. Intraductal US Is a Useful Adjunct to ERCP for Distinguishing Malignant from Benign Biliary Strictures. Gastrointest. Endosc. 2002, 56, 681–687. [Google Scholar] [CrossRef] [PubMed]
- Vazquez-Sequeiros, E.; Baron, T.H.; Clain, J.E.; Gostout, C.J.; Norton, I.D.; Petersen, B.T.; Levy, M.J.; Jondal, M.L.; Wiersema, M.J. Evaluation of Indeterminate Bile Duct Strictures by Intraductal US. Gastrointest. Endosc. 2002, 56, 372–379. [Google Scholar] [CrossRef]
- Inui, K.; Miyoshi, H. Cholangiocarcinoma and Intraductal Sonography. Gastrointest. Endosc. Clin. 2005, 15, 143–155. [Google Scholar] [CrossRef] [PubMed]
- Meining, A.; Frimberger, E.; Becker, V.; Delius, S.V.; Weyhern, C.H.V.; Schmid, R.M.; Prinz, C. Detection of Cholangiocarcinoma In Vivo Using Miniprobe-Based Confocal Fluorescence Microscopy. Clin. Gastroenterol. Hepatol. 2008, 6, 1057–1060. [Google Scholar] [CrossRef] [PubMed]
- Wallace, M.; Lauwers, G.Y.; Chen, Y.; Dekker, E.; Fockens, P.; Sharma, P.; Meining, A. Miami classification for probe-based confocal laser endomicroscopy. Endoscopy 2011, 43, 882–891. [Google Scholar] [CrossRef]
- Caillol, F.; Filoche, B.; Gaidhane, M.; Kahaleh, M. Refined Probe-Based Confocal Laser Endomicroscopy Classification for Biliary Strictures: The Paris Classification. Dig. Dis. Sci. 2013, 58, 1784–1789. [Google Scholar] [CrossRef]
- Dubow, M.; Tatman, P.D.; Shah, R.J. Individual Probe Based Confocal Laser Endomicroscopy Criteria in the Analysis of Indeterminate Biliary Strictures. Scand. J. Gastroenterol. 2018, 53, 1358–1363. [Google Scholar] [CrossRef]
- Liu, Y.; Lu, Y.; Sun, B.; Zhang, W.; Zhang, Z.; He, Y.; Yang, X. Probe-Based Confocal Laser Endomicroscopy for the Diagnosis of Undetermined Biliary Stenoses: A Meta-Analysis. Clin. Res. Hepatol. Gastroenterol. 2016, 40, 666–673. [Google Scholar] [CrossRef]
- Fugazza, A.; Gaiani, F.; Carra, M.C.; Brunetti, F.; Lévy, M.; Sobhani, I.; Azoulay, D.; Catena, F.; de’Angelis, G.L.; de’Angelis, N. Confocal Laser Endomicroscopy in Gastrointestinal and Pancreatobiliary Diseases: A Systematic Review and Meta-Analysis. BioMed Res. Int. 2016, 2016, 4638683. [Google Scholar] [CrossRef]
- Slivka, A.; Gan, I.; Jamidar, P.; Costamagna, G.; Cesaro, P.; Giovannini, M.; Caillol, F.; Kahaleh, M. Validation of the Diagnostic Accuracy of Probe-Based Confocal Laser Endomicroscopy for the Characterization of Indeterminate Biliary Strictures: Results of a Prospective Multicenter International Study. Gastrointest. Endosc. 2015, 81, 282–290. [Google Scholar] [CrossRef]
- Pavlidis, E.T.; Pavlidis, T.E. Pathophysiological Consequences of Obstructive Jaundice and Perioperative Management. Hepatobiliary Pancreat. Dis. Int. 2018, 17, 17–21. [Google Scholar] [CrossRef]
- Prijic, R.; Ladic, A.; Markos, P. Strategy for ERCP Stenting in Cholangiocarcinoma. Hepatoma Res. 2023, 9, 42. [Google Scholar] [CrossRef]
- Ilyas, S.I.; Khan, S.A.; Hallemeier, C.L.; Kelley, R.K.; Gores, G.J. Cholangiocarcinoma—Evolving Concepts and Therapeutic Strategies. Nat. Rev. Clin. Oncol. 2018, 15, 95–111. [Google Scholar] [CrossRef]
- Kurahara, H.; Maemura, K.; Mataki, Y.; Sakoda, M.; Iino, S.; Kawasaki, Y.; Arigami, T.; Uenosono, Y.; Kijima, Y.; Shinchi, H.; et al. Preoperative Biliary Drainage-Related Inflammation Is Associated with Shorter Survival in Biliary Tract Cancer Patients. Int. J. Clin. Oncol. 2016, 21, 934–939. [Google Scholar] [CrossRef]
- Barbosa, E.C.; Santo, P.A.d.E.; Baraldo, S.; Nau, A.L.; Meine, G.C. EUS- versus ERCP-Guided Biliary Drainage for Malignant Biliary Obstruction: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Gastrointest. Endosc. 2024, 100, 395–405.e8. [Google Scholar] [CrossRef]
- Dhindsa, B.S.; Mashiana, H.S.; Dhaliwal, A.; Mohan, B.P.; Jayaraj, M.; Sayles, H.; Singh, S.; Ohning, G.; Bhat, I.; Adler, D.G. EUS-Guided Biliary Drainage: A Systematic Review and Meta-Analysis. Endosc. Ultrasound 2020, 9, 101. [Google Scholar] [CrossRef]
- Bang, J.Y.; Agha, M.F.; Hawes, R.; Varadarajulu, S. Rate of Suitable Cases for Primary EUS-Guided Biliary Drainage in Distal Malignant Biliary Obstruction. Gut 2025. [Google Scholar] [CrossRef]
- Sangchan, A.; Kongkasame, W.; Pugkhem, A.; Jenwitheesuk, K.; Mairiang, P. Efficacy of Metal and Plastic Stents in Unresectable Complex Hilar Cholangiocarcinoma: A Randomized Controlled Trial. Gastrointest. Endosc. 2012, 76, 93–99. [Google Scholar] [CrossRef]
- Sawas, T.; Al Halabi, S.; Parsi, M.A.; Vargo, J.J. Self-Expandable Metal Stents versus Plastic Stents for Malignant Biliary Obstruction: A Meta-Analysis. Gastrointest. Endosc. 2015, 82, 256–267.e7. [Google Scholar] [CrossRef]
- De Palma, G.D.; Galloro, G.; Siciliano, S.; Iovino, P.; Catanzano, C. Unilateral versus Bilateral Endoscopic Hepatic Duct Drainage in Patients with Malignant Hilar Biliary Obstruction: Results of a Prospective, Randomized, and Controlled Study. Gastrointest. Endosc. 2001, 53, 547–553. [Google Scholar] [CrossRef]
- Naitoh, I.; Ohara, H.; Nakazawa, T.; Ando, T.; Hayashi, K.; Okumura, F.; Okayama, Y.; Sano, H.; Kitajima, Y.; Hirai, M.; et al. Unilateral versus Bilateral Endoscopic Metal Stenting for Malignant Hilar Biliary Obstruction. J. Gastroenterol. Hepatol. 2009, 24, 552–557. [Google Scholar] [CrossRef]
- Chang, W.-H.; Kortan, P.; Haber, G.B. Outcome in Patients with Bifurcation Tumors Who Undergo Unilateral versus Bilateral Hepatic Duct Drainage. Gastrointest. Endosc. 1998, 47, 354–362. [Google Scholar] [CrossRef] [PubMed]
- Chahal, P.; Baron, T.H. Expandable Metal Stents for Endoscopic Bilateral Stent-within-Stent Placement for Malignant Hilar Biliary Obstruction. Gastrointest. Endosc. 2010, 71, 195–199. [Google Scholar] [CrossRef]
- Dumas, R.; Demuth, N.; Buckley, M.; Peten, E.P.; Manos, T.; Demarquay, J.-F.; Hastier, P.; Caroli-Bosc, F.-X.; Rampal, P.; Delmont, J.-P. Endoscopic Bilateral Metal Stent Placement for Malignant Hilar Stenoses: Identification of Optimal Technique. Gastrointest. Endosc. 2000, 51, 334–338. [Google Scholar] [CrossRef] [PubMed]
- Chennat, J.; Waxman, I. Initial Performance Profile of a New 6F Self-Expanding Metal Stent for Palliation of Malignant Hilar Biliary Obstruction. Gastrointest. Endosc. 2010, 72, 632–636. [Google Scholar] [CrossRef] [PubMed]
- Park, D.H.; Lee, S.S.; Moon, J.H.; Choi, H.J.; Cha, S.-W.; Kim, J.H.; Seo, D.-W.; Lee, S.-K.; Park, S.-H.; Lee, M.-S.; et al. Newly Designed Stent for Endoscopic Bilateral Stent-in-Stent Placement of Metallic Stents in Patients with Malignant Hilar Biliary Strictures: Multicenter Prospective Feasibility Study (with Videos). Gastrointest. Endosc. 2009, 69, 1357–1360. [Google Scholar] [CrossRef]
- Kim, J.Y.; Kang, D.H.; Kim, H.W.; Choi, C.W.; Kim, I.D.; Hwang, J.H.; Kim, D.U.; Eum, J.S.; Bae, Y.M. Usefulness of Slimmer and Open-Cell-Design Stents for Endoscopic Bilateral Stenting and Endoscopic Revision in Patients with Hilar Cholangiocarcinoma (with Video). Gastrointest. Endosc. 2009, 70, 1109–1115. [Google Scholar] [CrossRef]
- Lee, J.H.; Kang, D.H.; Kim, J.Y.; Lee, S.M.; Kim, D.H.; Park, C.W.; Cho, H.S.; Kim, G.H.; Kim, T.O.; Heo, J.; et al. Endoscopic Bilateral Metal Stent Placement for Advanced Hilar Cholangiocarcinoma: A Pilot Study of a Newly Designed Y Stent. Gastrointest. Endosc. 2007, 66, 364–369. [Google Scholar] [CrossRef]
- Liberato, M.J.A.; Canena, J.M.T. Endoscopic Stenting for Hilar Cholangiocarcinoma: Efficacy of Unilateral and Bilateral Placement of Plastic and Metal Stents in a Retrospective Review of 480 Patients. BMC Gastroenterol. 2012, 12, 103. [Google Scholar] [CrossRef]
- Kanno, Y.; Ito, K.; Nakahara, K.; Kawaguchi, S.; Masaki, Y.; Okuzono, T.; Kato, H.; Kuwatani, M.; Ishii, S.; Murabayashi, T.; et al. Suprapapillary Placement of Plastic versus Metal Stents for Malignant Biliary Hilar Obstructions: A Multicenter, Randomized Trial. Gastrointest. Endosc. 2023, 98, 211–221.e3. [Google Scholar] [CrossRef] [PubMed]
- Nimura, Y. Preoperative Biliary Drainage before Resection for Cholangiocarcinoma (Pro). HPB 2008, 10, 130–133. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, T.J.; Yopp, A.; Qin, Y.; Zhao, B.; Guo, P.; Liu, F.; Schwartz, L.H.; Allen, P.; D’Angelica, M.; Fong, Y.; et al. Role of Preoperative Biliary Drainage of Liver Remnant Prior to Extended Liver Resection for Hilar Cholangiocarcinoma. HPB 2009, 11, 445–451. [Google Scholar] [CrossRef] [PubMed]
- Kawakami, H.; Kondo, S.; Kuwatani, M.; Yamato, H.; Ehira, N.; Kudo, T.; Eto, K.; Haba, S.; Matsumoto, J.; Kato, K.; et al. Preoperative Biliary Drainage for Hilar Cholangiocarcinoma: Which Stent Should Be Selected? J. Hepato Biliary Pancreat. Sci. 2011, 18, 630–635. [Google Scholar] [CrossRef]
- Chen, X.; Wei, X.; Yue, L.; Xiao, Y. Efficacy and Safety of Preoperative Biliary Drainage in Patients with Hilar Cholangiocarcinoma: A Systematic Review and Meta-Analysis. Int. J. Surg. Lond. Engl. 2025, 111, 3543–3560. [Google Scholar] [CrossRef]
- Nimura, Y.; Kamiya, J.; Kondo, S.; Nagino, M.; Uesaka, K.; Oda, K.; Sano, T.; Yamamoto, H.; Hayakawa, N. Aggressive Preoperative Management and Extended Surgery for Hilar Cholangiocarcinoma: Nagoya Experience. J. Hepatobiliary. Pancreat. Surg. 2000, 7, 155–162. [Google Scholar] [CrossRef]
- Nagino, M.; Takada, T.; Miyazaki, M.; Miyakawa, S.; Tsukada, K.; Kondo, S.; Furuse, J.; Saito, H.; Tsuyuguchi, T.; Yoshikawa, T.; et al. Preoperative Biliary Drainage for Biliary Tract and Ampullary Carcinomas. J. Hepatobiliary. Pancreat. Surg. 2008, 15, 25–30. [Google Scholar] [CrossRef]
- Maguchi, H.; Takahashi, K.; Katanuma, A.; Osanai, M.; Nakahara, K.; Matuzaki, S.; Urata, T.; Iwano, H. Preoperative Biliary Drainage for Hilar Cholangiocarcinoma. J. Hepatobiliary. Pancreat. Surg. 2007, 14, 441–446. [Google Scholar] [CrossRef]
- Komaya, K.; Ebata, T.; Yokoyama, Y.; Igami, T.; Sugawara, G.; Mizuno, T.; Yamaguchi, J.; Nagino, M. Verification of the Oncologic Inferiority of Percutaneous Biliary Drainage to Endoscopic Drainage: A Propensity Score Matching Analysis of Resectable Perihilar Cholangiocarcinoma. Surgery 2017, 161, 394–404. [Google Scholar] [CrossRef]
- Zhao, X.; Dong, J.; Jiang, K.; Huang, X.; Zhang, W. Comparison of Percutaneous Transhepatic Biliary Drainage and Endoscopic Biliary Drainage in the Management of Malignant Biliary Tract Obstruction: A Meta-Analysis. Dig. Endosc. 2015, 27, 137–145. [Google Scholar] [CrossRef]
- Elmunzer, B.J.; Smith, Z.L.; Tarnasky, P.; Wang, A.Y.; Yachimski, P.; Banovac, F.; Buscaglia, J.M.; Buxbaum, J.; Chak, A.; Chong, B.; et al. An Unsuccessful Randomized Trial of Percutaneous vs Endoscopic Drainage of Suspected Malignant Hilar Obstruction. Clin. Gastroenterol. Hepatol. 2021, 19, 1282–1284. [Google Scholar] [CrossRef]
- McCaughan, J.S., Jr.; Mertens, B.F.; Cho, C.; Barabash, R.D.; Payton, H.W. Photodynamic Therapy to Treat Tumors of the Extrahepatic Biliary Ducts: A Case Report. Arch. Surg. 1991, 126, 111–113. [Google Scholar] [CrossRef]
- Chen, H.; Li, H.; Li, H.; Zhang, Z. Umbrella Review of Adjuvant Photodynamic Therapy for Cholangiocarcinoma Palliative Treatment. Photodiagnosis Photodyn. Ther. 2025, 51, 104472. [Google Scholar] [CrossRef] [PubMed]
- Zoepf, T.; Jakobs, R.; Arnold, J.C.; Apel, D.; Riemann, J.F. Palliation of Nonresectable Bile Duct Cancer: Improved Survival After Photodynamic Therapy. Am. J. Gastroenterol. 2005, 100, 2426. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, Y.; Song, Y.; Liu, S. Advances in Research and Application of Photodynamic Therapy in Cholangiocarcinoma. Oncol. Rep. 2024, 51, 53. [Google Scholar] [CrossRef]
- Li, Z.; Jiang, X.; Xiao, H.; Chen, S.; Zhu, W.; Lu, H.; Cao, L.; Xue, P.; Li, H.; Zhang, D. Long-Term Results of ERCP- or PTCS-Directed Photodynamic Therapy for Unresectable Hilar Cholangiocarcinoma. Surg. Endosc. 2021, 35, 5655–5664. [Google Scholar] [CrossRef]
- Witzigmann, H.; Berr, F.; Ringel, U.; Caca, K.; Uhlmann, D.; Schoppmeyer, K.; Tannapfel, A.; Wittekind, C.; Mossner, J.; Hauss, J.; et al. Surgical and Palliative Management and Outcome in 184 Patients with Hilar Cholangiocarcinoma: Palliative Photodynamic Therapy Plus Stenting Is Comparable to R1/R2 Resection. Ann. Surg. 2006, 244, 230. [Google Scholar] [CrossRef]
- Cheon, Y.K.; Lee, T.Y.; Lee, S.M.; Yoon, J.Y.; Shim, C.S. Longterm Outcome of Photodynamic Therapy Compared with Biliary Stenting Alone in Patients with Advanced Hilar Cholangiocarcinoma. HPB 2012, 14, 185–193. [Google Scholar] [CrossRef]
- Chen, P.; Yang, T.; Shi, P.; Shen, J.; Feng, Q.; Su, J. Benefits and Safety of Photodynamic Therapy in Patients with Hilar Cholangiocarcinoma: A Meta-Analysis. Photodiagnosis Photodyn. Ther. 2022, 37, 102712. [Google Scholar] [CrossRef]
- Lee, T.Y.; Cheon, Y.K.; Shim, C.S.; Cho, Y.D. Photodynamic Therapy Prolongs Metal Stent Patency in Patients with Unresectable Hilar Cholangiocarcinoma. World J. Gastroenterol. 2012, 18, 5589–5594. [Google Scholar] [CrossRef]
- Mukai, T.; Yasuda, I.; Nakashima, M.; Doi, S.; Iwashita, T.; Iwata, K.; Kato, T.; Tomita, E.; Moriwaki, H. Metallic Stents Are More Efficacious than Plastic Stents in Unresectable Malignant Hilar Biliary Strictures: A Randomized Controlled Trial. J. Hepato-Biliary-Pancreat. Sci. 2013, 20, 214–222. [Google Scholar] [CrossRef] [PubMed]
- Nanashima, A.; Yamaguchi, H.; Shibasaki, S.; Ide, N.; Sawai, T.; Tsuji, T.; Hidaka, S.; Sumida, Y.; Nakagoe, T.; Nagayasu, T. Adjuvant Photodynamic Therapy for Bile Duct Carcinoma after Surgery: A Preliminary Study. J. Gastroenterol. 2004, 39, 1095–1101. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Jiang, X.; Xue, P.; Chen, S.; Li, S.; Li, Z.; Pan, W.; Zhang, D. Long-Term Efficacy of Percutaneous Transhepatic Cholangioscopy-Guided Photodynamic Therapy for Postoperative Recurrent Extrahepatic Cholangiocarcinoma. Photodiagnosis Photodyn. Ther. 2022, 40, 103122. [Google Scholar] [CrossRef] [PubMed]
- Wiedmann, M.; Caca, K.; Berr, F.; Schiefke, I.; Tannapfel, A.; Wittekind, C.; Mössner, J.; Hauss, J.; Witzigmann, H. Neoadjuvant Photodynamic Therapy as a New Approach to Treating Hilar Cholangiocarcinoma. Cancer 2003, 97, 2783–2790. [Google Scholar] [CrossRef]
- Wagner, A.; Wiedmann, M.; Tannapfel, A.; Mayr, C.; Kiesslich, T.; Wolkersdörfer, G.W.; Berr, F.; Hauss, J.; Witzigmann, H. Neoadjuvant Down-Sizing of Hilar Cholangiocarcinoma with Photodynamic Therapy—Long-Term Outcome of a Phase II Pilot Study. Int. J. Mol. Sci. 2015, 16, 26619–26628. [Google Scholar] [CrossRef]
- Cosgrove, N.D.; Al-Osaimi, A.M.; Sanoff, H.K.; Morris, M.M.; Read, P.W.; Cox, D.G.; Mann, J.A.; Argo, C.K.; Berg, C.L.; Pelletier, S.J.; et al. Photodynamic Therapy Provides Local Control of Cholangiocarcinoma in Patients Awaiting Liver Transplantation. Am. J. Transplant. 2014, 14, 466–471. [Google Scholar] [CrossRef]
- Hong, M.J.; Cheon, Y.K.; Lee, E.J.; Lee, T.Y.; Shim, C.S. Long-Term Outcome of Photodynamic Therapy with Systemic Chemotherapy Compared to Photodynamic Therapy Alone in Patients with Advanced Hilar Cholangiocarcinoma. Gut Liver 2014, 8, 318–323. [Google Scholar] [CrossRef]
- Gonzalez-Carmona, M.A.; Bolch, M.; Jansen, C.; Vogt, A.; Sampels, M.; Mohr, R.U.; van Beekum, K.; Mahn, R.; Praktiknjo, M.; Nattermann, J.; et al. Combined Photodynamic Therapy with Systemic Chemotherapy for Unresectable Cholangiocarcinoma. Aliment. Pharmacol. Ther. 2019, 49, 437–447. [Google Scholar] [CrossRef]
- Yu, Y.; Wang, N.; Wang, Y.; Shi, Q.; Yu, R.; Gu, B.; Maswikiti, E.P.; Chen, H. Photodynamic Therapy Combined with Systemic Chemotherapy for Unresectable Extrahepatic Cholangiocarcinoma: A Systematic Review and Meta-Analysis. Photodiagnosis Photodyn. Ther. 2023, 41, 103318. [Google Scholar] [CrossRef]
- Agnihotri, A.; Loren, D.E. Intraductal Therapies for Cholangiocarcinoma. Tech. Innov. Gastrointest. Endosc. 2022, 24, 200–210. [Google Scholar] [CrossRef]
- Cha, B.H.; Jang, M.-J.; Lee, S.H. Survival Benefit of Intraductal Radiofrequency Ablation for Malignant Biliary Obstruction: A Systematic Review with Meta-Analysis. Clin. Endosc. 2021, 54, 100–106. [Google Scholar] [CrossRef]
- Gonzalez-Carmona, M.A.; Möhring, C.; Mahn, R.; Zhou, T.; Bartels, A.; Sadeghlar, F.; Bolch, M.; Vogt, A.; Kaczmarek, D.J.; Heling, D.J.; et al. Impact of Regular Additional Endobiliary Radiofrequency Ablation on Survival of Patients with Advanced Extrahepatic Cholangiocarcinoma under Systemic Chemotherapy. Sci. Rep. 2022, 12, 1011. [Google Scholar] [CrossRef]
- Möhring, C.; Khan, O.; Zhou, T.; Sadeghlar, F.; Mahn, R.; Kaczmarek, D.J.; Dold, L.; Toma, M.; Marinova, M.; Glowka, T.R.; et al. Comparison between Regular Additional Endobiliary Radiofrequency Ablation and Photodynamic Therapy in Patients with Advanced Extrahepatic Cholangiocarcinoma under Systemic Chemotherapy. Front. Oncol. 2023, 13, 1227036. [Google Scholar] [CrossRef] [PubMed]
- Strand, D.S.; Cosgrove, N.D.; Patrie, J.T.; Cox, D.G.; Bauer, T.W.; Adams, R.B.; Mann, J.A.; Sauer, B.G.; Shami, V.M.; Wang, A.Y. ERCP-Directed Radiofrequency Ablation and Photodynamic Therapy Are Associated with Comparable Survival in the Treatment of Unresectable Cholangiocarcinoma. Gastrointest. Endosc. 2014, 80, 794–804. [Google Scholar] [CrossRef] [PubMed]
- Mohan, B.P.; Chandan, S.; Khan, S.R.; Kassab, L.L.; Ponnada, S.; Artifon, E.L.A.; Otoch, J.P.; McDonough, S.; Adler, D.G. Photodynamic Therapy (PDT), Radiofrequency Ablation (RFA) With Biliary Stents in Palliative Treatment of Unresectable Extrahepatic Cholangiocarcinoma: A Systematic Review and Meta-Analysis. J. Clin. Gastroenterol. 2022, 56, e153. [Google Scholar] [CrossRef] [PubMed]
- Mohammad, T.; Kahaleh, M. Comparing Palliative Treatment Options for Cholangiocarcinoma: Photodynamic Therapy vs. Radiofrequency Ablation. Clin. Endosc. 2022, 55, 347–354. [Google Scholar] [CrossRef]
- Benjamin, I.S.; Mcpherson, G.A.D.; Blumgart, L.H. Iridium-192 Wire for Hilar Cholangiocarcinoma. Lancet 1981, 318, 582–583. [Google Scholar] [CrossRef]
- Taggar, A.S.; Mann, P.; Folkert, M.R.; Aliakbari, S.; Myrehaug, S.D.; Dawson, L.A. A Systematic Review of Intraluminal High Dose Rate Brachytherapy in the Management of Malignant Biliary Tract Obstruction and Cholangiocarcinoma. Radiother. Oncol. 2021, 165, 60–74. [Google Scholar] [CrossRef]
- Válek, V.; Kysela, P.; Kala, Z.; Kiss, I.; Tomášek, J.; Petera, J. Brachytherapy and Percutaneous Stenting in the Treatment of Cholangiocarcinoma: A Prospective Randomised Study. Eur. J. Radiol. 2007, 62, 175–179. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, X.-L.; Yan, Z.-P.; Cheng, J.-M.; Wang, J.-H.; Gong, G.-Q.; Qian, S.; Luo, J.-J.; Liu, Q.-X. HDR-192Ir Intraluminal Brachytherapy in Treatment of Malignant Obstructive Jaundice. World J. Gastroenterol. 2004, 10, 3506–3510. [Google Scholar] [CrossRef]
- Shinohara, E.T.; Guo, M.; Mitra, N.; Metz, J.M. Brachytherapy in the Treatment of Cholangiocarcinoma. Int. J. Radiat. Oncol. 2010, 78, 722–728. [Google Scholar] [CrossRef]
- Mukewar, S.; Gupta, A.; Baron, T.H.; Gores, G.; Furutani, K.; Haddock, M.G.; Hallemeier, C.L. Endoscopically Inserted Nasobiliary Catheters for High Dose-Rate Brachytherapy as Part of Neoadjuvant Therapy for Perihilar Cholangiocarcinoma. Endoscopy 2015, 47, 878–883. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Li, J.; Wu, J.; Zhu, R.; Ji, W. A Systematic Review and Meta-Analysis of Intraluminal Brachytherapy Versus Stent Alone in the Treatment of Malignant Obstructive Jaundice. Cardiovasc. Intervent. Radiol. 2018, 41, 206–217. [Google Scholar] [CrossRef]
- Wang, Y.; Man, Z.; Hu, X.; Zhou, L.; Jin, H.; Liu, H.; Pang, Q. Percutaneous Biliary Stent with Intraluminal Brachytherapy versus Palliative Surgery in the Management of Extrahepatic Cholangiocarcinoma. Int. J. Clin. Oncol. 2021, 26, 933–940. [Google Scholar] [CrossRef] [PubMed]
- Hu, R.; Li, H.; Horng, H.; Thomasian, N.M.; Jiao, Z.; Zhu, C.; Zou, B.; Bai, H.X. Automated Machine Learning for Differentiation of Hepatocellular Carcinoma from Intrahepatic Cholangiocarcinoma on Multiphasic MRI. Sci. Rep. 2022, 12, 7924. [Google Scholar] [CrossRef] [PubMed]
- Njei, B.; Kanmounye, U.S.; Seto, N.; McCarty, T.R.; Mohan, B.P.; Fozo, L.; Navaneethan, U. Artificial Intelligence in Medical Imaging for Cholangiocarcinoma Diagnosis: A Systematic Review with Scientometric Analysis. J. Gastroenterol. Hepatol. 2023, 38, 874–882. [Google Scholar] [CrossRef]
- Yang, C.M.; Shu, J. Cholangiocarcinoma Evaluation via Imaging and Artificial Intelligence. Oncology 2020, 99, 72–83. [Google Scholar] [CrossRef]
- Chakrabarti, S.; Rao, U.S. Lightweight Neural Network for Smart Diagnosis of Cholangiocarcinoma Using Histopathological Images. Sci. Rep. 2023, 13, 18854. [Google Scholar] [CrossRef]
- Yang, C.; Zhou, Q.; Li, M.; Xu, L.; Zeng, Y.; Liu, J.; Wei, Y.; Shi, F.; Chen, J.; Li, P.; et al. MRI-Based Automatic Identification and Segmentation of Extrahepatic Cholangiocarcinoma Using Deep Learning Network. BMC Cancer 2023, 23, 1089. [Google Scholar] [CrossRef]
- Jang, H.-J.; Go, J.-H.; Kim, Y.; Lee, S.H. Deep Learning for the Pathologic Diagnosis of Hepatocellular Carcinoma, Cholangiocarcinoma, and Metastatic Colorectal Cancer. Cancers 2023, 15, 5389. [Google Scholar] [CrossRef]
- Li, Z.; Yuan, L.; Zhang, C.; Sun, J.; Wang, Z.; Wang, Y.; Hao, X.; Gao, F.; Jiang, X. A Novel Prognostic Scoring System of Intrahepatic Cholangiocarcinoma with Machine Learning Basing on Real-World Data. Front. Oncol. 2021, 10, 576901. [Google Scholar] [CrossRef]
- Tang, Y.; Zhang, T.; Zhou, X.; Zhao, Y.; Xu, H.; Liu, Y.; Wang, H.; Chen, Z.; Ma, X. The Preoperative Prognostic Value of the Radiomics Nomogram Based on CT Combined with Machine Learning in Patients with Intrahepatic Cholangiocarcinoma. World J. Surg. Oncol. 2021, 19, 45. [Google Scholar] [CrossRef]
- Saraiva, M.M.; Ribeiro, T.; Ferreira, J.P.S.; Boas, F.V.; Afonso, J.; Santos, A.L.; Parente, M.P.L.; Jorge, R.N.; Pereira, P.; Macedo, G. Artificial Intelligence for Automatic Diagnosis of Biliary Stricture Malignancy Status in Single-Operator Cholangioscopy: A Pilot Study. Gastrointest. Endosc. 2022, 95, 339–348. [Google Scholar] [CrossRef]
- Marya, N.B.; Powers, P.D.; Petersen, B.T.; Law, R.; Storm, A.; Abusaleh, R.R.; Rau, P.; Stead, C.; Levy, M.J.; Martin, J.; et al. Identification of Patients with Malignant Biliary Strictures Using a Cholangioscopy-Based Deep Learning Artificial Intelligence (with Video). Gastrointest. Endosc. 2023, 97, 268–278.e1. [Google Scholar] [CrossRef] [PubMed]
- Xiao, H.; Wang, J.; Weng, Z.; Lin, X.; Shu, M.; Shen, J.; Sun, P.; Cai, M.; Xiang, X.; Li, B.; et al. A Histopathology-Based Artificial Intelligence System Assisting the Screening of Genetic Alteration in Intrahepatic Cholangiocarcinoma. Br. J. Cancer 2025, 132, 195–202. [Google Scholar] [CrossRef]
- Sun, L.; Zhou, M.; Li, Q.; Hu, M.; Wen, Y.; Zhang, J.; Lu, Y.; Chu, J. Diagnosis of Cholangiocarcinoma from Microscopic Hyperspectral Pathological Dataset by Deep Convolution Neural Networks. Methods 2022, 202, 22–30. [Google Scholar] [CrossRef]
Modality | Sensitivity (%) | Specificity (%) | Key References |
---|---|---|---|
ERCP-guided brush cytology | 26–57 | 97–100 | [24,25,26,27,28,29,30,31] |
ERCP-guided forceps biopsy | 43–67 | 90–100 | [24,25,26,28,29,30] |
EUS-guided fine needle aspiration (FNA) | 73–94 | 88–100 | [24,32,33,34,35,36,37] |
Peroral cholangioscopy (POC) biopsy | 60–90 | 87–99 | [38,39,40] |
Photodynamic Therapy (PDT) | Radiofrequency Ablation (RFA) | Intraluminal Brachytherapy (ILBT) | |
---|---|---|---|
Mechanism | Photosensitizer + light → singlet oxygen → tumor necrosis | High-frequency alternating current → thermal coagulation | High-dose localized radiation delivered via catheter |
Delivery Method | ERCP or cholangioscopy | ERCP | ERCP-guided nasobiliary catheter placement |
Tumor Types Treated | Mainly pCCA, but also used for dCCA | Both pCCA and dCCA | Mostly pCCA |
Survival Benefit | Improves overall survival (HR ~0.52 vs. stent alone) | Improves survival (HR ~0.47 vs. stent alone) | Improves survival vs. stent alone |
Adverse Events | Light sensitivity, cholangitis, photosensitivity skin reactions | Cholangitis, hemobilia, pancreatitis | Radiation exposure risks, catheter dislodgement |
Limitations | Requires light activation; limited in complex strictures | Limited in tight or angulated strictures | Access and radiation safety; limited availability |
Neoadjuvant Use | Shown to increase R0 resection rate in small studies | Limited data | Limited data |
Combination with Chemotherapy | Synergistic effect with chemotherapy (e.g., gemcitabine/cisplatin | Shown to improve survival vs. chemotherapy alone in some studies | Studied in combination with EBRT and systemic therapy |
Availability | Limited to specialized centers | Increasingly available | Limited to specialized centers |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chaudhary, U.; Shah, S.L. Advances in Endoscopic Diagnosis and Management of Cholangiocarcinoma. J. Clin. Med. 2025, 14, 6028. https://doi.org/10.3390/jcm14176028
Chaudhary U, Shah SL. Advances in Endoscopic Diagnosis and Management of Cholangiocarcinoma. Journal of Clinical Medicine. 2025; 14(17):6028. https://doi.org/10.3390/jcm14176028
Chicago/Turabian StyleChaudhary, Usamah, and Shawn L. Shah. 2025. "Advances in Endoscopic Diagnosis and Management of Cholangiocarcinoma" Journal of Clinical Medicine 14, no. 17: 6028. https://doi.org/10.3390/jcm14176028
APA StyleChaudhary, U., & Shah, S. L. (2025). Advances in Endoscopic Diagnosis and Management of Cholangiocarcinoma. Journal of Clinical Medicine, 14(17), 6028. https://doi.org/10.3390/jcm14176028