Promising Molecular Therapeutic Targets for Drug Development in Rheumatoid Arthritis
Abstract
1. Introduction
2. Novel Molecular Targets (Table 1)
2.1. Bruton’s Tyrosine Kinase (BTK) Inhibitors
2.2. Mitochondrial Complex I Inhibitor
2.3. NOD-, LRR-, and Pyrin Domain-Containing Protein 3 (NLRP3) Inflammasome Inhibitors
2.4. Regulatory T Cells (Tregs) and Immune Checkpoints
2.5. Targeted B and T Cell Therapies
2.6. Spleen Tyrosine Kinase (SyK) Inhibitors
2.7. Anti-Granulocyte–Monocyte Colony-Stimulating Factor (GM-CSF) Antibodies
2.8. Nuclear Factor-Kappa B (NF-κB) Inhibitor
3. Future Perspectives
4. Conclusions
Funding
Conflicts of Interest
References
- Deane, K.D.; El-Gabalawy, H. Pathogenesis and prevention of rheumatic disease: Focus on preclinical RA and SLE. Nat. Rev. Rheumatol. 2014, 10, 212–228. [Google Scholar] [CrossRef]
- Smolen, J.S.; Landewé, R.B.M.; Bergstra, S.A.; Kerschbaumer, A.; Sepriano, A.; Aletaha, D.; Caporali, R.; Edwards, C.J.; Hyrich, K.L.; E Pope, J.; et al. EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2022 update. Ann. Rheum. Dis. 2023, 82, 3–18. [Google Scholar] [CrossRef]
- Miyazaki, Y.; Nakayamada, S.; Tanaka, H.; Hanami, K.; Fukuyo, S.; Kubo, S.; Yamaguchi, A.; Miyagawa, I.; Satoh-Kanda, Y.; Todoroki, Y.; et al. Switching to biological DMARDs versus cycling among JAK inhibitors in patients with rheumatoid arthritis and with inadequate response to JAK inhibitors: From FIRST registry. RMD Open 2025, 11, e004987. [Google Scholar] [CrossRef]
- Cohen, S.; Tuckwell, K.; Katsumoto, T.R.; Zhao, R.; Galanter, J.; Lee, C.; Rae, J.; Toth, B.; Ramamoorthi, N.; Hackney, J.A.; et al. Fenebrutinib versus placebo or Adalimumab in rheumatoid arthritis: A randomized, Double-Blind, phase II trial. Arthritis Rheumatol. 2020, 72, 1435–1446. [Google Scholar] [CrossRef] [PubMed]
- Arneson, L.C.; Carroll, K.J.; Ruderman, E.M. Bruton’s tyrosine kinase inhibition for the treatment of rheumatoid arthritis. ImmunoTargets Ther. 2021, 10, 333–342. [Google Scholar] [CrossRef] [PubMed]
- Patel, L.; Skillern, L.; Foster, M.; Gray, A.; Leff, R.; Williams, S. OP0234 MBS2320, a novel selective modulator of immune metabolism, in patients with severe rheumatoid arthritis: Safety, tolerability and efficacy results of a phase 2 study. Ann. Rheum. Dis. 2020, 79, 148–149. [Google Scholar] [CrossRef]
- Unterberger, S.; Davies, K.A.; Rambhatla, S.B.; Sacre, S. Contribution of Toll-like receptors and the NLRP3 inflammasome in rheumatoid arthritis pathophysiology. ImmunoTargets Ther. 2021, 10, 285–298. [Google Scholar] [CrossRef]
- Guo, C.; Fu, R.; Wang, S.; Huang, Y.; Li, X.; Zhou, M.; Zhao, J.; Yang, N. NLRP3 inflammasome activation contributes to the pathogenesis of rheumatoid arthritis. Clin. Exp. Immunol. 2018, 194, 231–243. [Google Scholar] [CrossRef]
- Tuttle, J.; Drescher, E.; Simón-Campos, J.A.; Emery, P.; Greenwald, M.; Kivitz, A.; Rha, H.; Yachi, P.; Kiley, C.; Nirula, A. A phase 2 trial of peresolimab for adults with rheumatoid arthritis. N. Engl. J. Med. 2023, 388, 1853–1862. [Google Scholar] [CrossRef]
- Zeng, L.; Yang, K.; Wu, Y.; Yu, G.; Yan, Y.; Hao, M.; Song, T.; Li, Y.; Chen, J.; Sun, L. Telitacicept: A novel horizon in targeting autoimmunity and rheumatic diseases. J. Autoimmun. 2024, 148, 103291. [Google Scholar] [CrossRef]
- Wong, K.L.; Li, Z.; Ma, F.; Wang, D.; Song, N.; Chong, C.H.; Luk, K.K.; O Leung, S. SM03, an anti-CD22 antibody, converts cis-to-trans ligand binding of CD22 against α2, 6-linked sialic acid glycans and immunomodulates systemic autoimmune diseases. J. Immunol. 2022, 208, 2726–2737. [Google Scholar] [CrossRef]
- Li, J.; Li, M.; Wu, D.; Zhou, J.; Leung S-o Zhang, F. SM03, an anti-human CD22 monoclonal antibody, for active rheumatoid arthritis: A phase II, randomized, double-blind, placebo-controlled study. Rheumatology 2022, 61, 1841–1848. [Google Scholar] [CrossRef]
- MacDonald, K.; Nishioka, Y.; Lipsky, P.E.; Thomas, R. Functional CD40 ligand is expressed by T cells in rheumatoid arthritis. J. Clin. Investig. 1997, 100, 2404–2414. [Google Scholar] [CrossRef] [PubMed]
- Harigai, M.; Hara, M.; Nakazawa, S.; Fukasawa, C.; Ohta, S.; Sugiura, T.; Inoue, K.; Kashiwazaki, S. Ligation of CD40 induced tumor necrosis factor-alpha in rheumatoid arthritis: A novel mechanism of activation of synoviocytes. J. Rheumatol. 1999, 26, 1035–1043. [Google Scholar] [PubMed]
- van Kooten, C. Immune regulation by CD40-CD40-l interactions-2; Y2K update. Front. Biosci. 2000, 5, D880–D693. [Google Scholar] [CrossRef] [PubMed]
- Boumpas, D.T.; Furie, R.; Manzi, S.; Illei, G.G.; Wallace, D.J.; Balow, J.E.; Vaishnaw, A.; on behalf of the BG9588 Lupus Nephritis Trial Group. A short course of BG9588 (anti–CD40 ligand antibody) improves serologic activity and decreases hematuria in patients with proliferative lupus glomerulonephritis. Arthritis Rheum. 2003, 48, 719–727. [Google Scholar] [CrossRef]
- Karnell, J.L.; Albulescu, M.; Drabic, S.; Wang, L.; Moate, R.; Baca, M.; Oganesyan, V.; Gunsior, M.; Thisted, T.; Yan, L.; et al. A CD40L-targeting protein reduces autoantibodies and improves disease activity in patients with autoimmunity. Sci. Transl. Med. 2019, 11, eaar6584. [Google Scholar] [CrossRef]
- Kawai, T.; Andrews, D.; Colvin, R.B.; Sachs, D.H.; Cosimi, A.B. Thromboembolic complications after treatment with monoclonal antibody against CD40 ligand. Nat. Med. 2000, 6, 114. [Google Scholar] [CrossRef]
- Robles-Carrillo, L.; Meyer, T.; Hatfield, M.; Desai, H.; Dávila, M.; Langer, F.; Amaya, M.; Garber, E.; Francis, J.L.; Hsu, Y.-M.; et al. Anti-CD40L immune complexes potently activate platelets in vitro and cause thrombosis in FCGR2A transgenic mice. J. Immunol. 2010, 185, 1577–1583. [Google Scholar] [CrossRef]
- Amirkhosravi, A.; Meyer, T.; Siddiqui, F.A.; Ahmad, S.; Walker, J.M.; Amaya, M.; Desai, H.; Francis, J.L.; Langer, F.; Ingersoll, S.B. The role of CD40 in CD40L-and antibody-mediated platelet activation. Thromb. Haemost. 2005, 93, 1137–1146. [Google Scholar] [CrossRef]
- Jenkins, E.; Louw, I.; Balog, A.; Van Duuren, E.; Horowitz, D.L.; Jaworski, J.; Kivitz, A.; Ujfalussy, I.; Pirello, J.; Tessari, E.; et al. Op0036 efficacy, safety, and pharmacokinetics of anti-cd40 antibody abiprubart (Kpl-404) in patients with rheumatoid arthritis: A phase 2, randomized, placebo-controlled 12-week-treatment proof-of-concept study. Ann. Rheum. Dis. 2024, 83, 81–82. [Google Scholar] [CrossRef]
- Webb, G.J.; Hirschfield, G.M.; Lane, P.J. OX40, OX40L and autoimmunity: A comprehensive review. Clin. Rev. Allergy Immunol. 2016, 50, 312–332. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Liu, C.; Liu, M.; Shen, Y.; Hu, X.; Wang, Q.; Wu, J.; Wu, M.; Fang, Q.; Zhang, X. OX40 signaling is involved in the autoactivation of CD4+ CD28− T cells and contributes to the pathogenesis of autoimmune arthritis. Arthritis Res. Ther. 2017, 19, 67. [Google Scholar] [CrossRef] [PubMed]
- Cai, X.; Zhang, M.; Ren, F.; Fei, W.; Zhang, X.; Zhao, Y.; Yao, Y.; Lin, N. Synovial macrophages expression of OX40L is required for follicular helper T cells differentiation in the joint microenvironment. Cells 2022, 11, 3326. [Google Scholar] [CrossRef] [PubMed]
- Nakae, S.; Saijo, S.; Horai, R.; Sudo, K.; Mori, S.; Iwakura, Y. IL-17 production from activated T cells is required for the spontaneous development of destructive arthritis in mice deficient in IL-1 receptor antagonist. Proc. Natl. Acad. Sci. USA 2003, 100, 5986–5990. [Google Scholar] [CrossRef]
- Devjani, S.; Engel, P.V.; Javadi, S.S.; Smith, B.; Wu, J.J. Efficacy of rocatinlimab for moderate-to-severe atopic dermatitis. Lancet 2023, 402, 1833–1834. [Google Scholar] [CrossRef]
- Guttman-Yassky, E.; Simpson, E.L.; Reich, K.; Kabashima, K.; Igawa, K.; Suzuki, T.; Mano, H.; Matsui, T.; Esfandiari, E.; Furue, M. An anti-OX40 antibody to treat moderate-to-severe atopic dermatitis: A multicentre, double-blind, placebo-controlled phase 2b study. Lancet 2023, 401, 204–214. [Google Scholar] [CrossRef]
- Weidinger, S.; Bieber, T.; Cork, M.J.; Reich, A.; Wilson, R.; Quaratino, S.; Stebegg, M.; Brennan, N.; Gilbert, S.; O’Malley, J.T.; et al. Safety and efficacy of amlitelimab, a fully human nondepleting, noncytotoxic anti-OX40 ligand monoclonal antibody, in atopic dermatitis: Results of a phase IIa randomized placebo-controlled trial. Br. J. Dermatol. 2023, 189, 531–539. [Google Scholar] [CrossRef]
- Rewerska, B.; Sher, L.D.; Alpizar, S.; Pauser, S.; Pulka, G.; Mozaffarian, N.; Salhi, Y.; Martinet, C.; Jabert, W.; Gudi, G.; et al. Phase 2b randomized trial of OX40 inhibitor telazorlimab for moderate-to-severe atopic dermatitis. J. Allergy Clin. Immunol. Glob. 2024, 3, 100195. [Google Scholar] [CrossRef]
- Weinblatt, M.E.; Kavanaugh, A.; Burgos-Vargas, R.; Dikranian, A.H.; Medrano-Ramirez, G.; Morales-Torres, J.L.; Murphy, F.T.; Musser, T.K.; Straniero, N.; Vicente-Gonzales, A.V.; et al. Treatment of rheumatoid arthritis with a Syk kinase inhibitor: A twelve-week, randomized, placebo-controlled trial. Arthritis Rheum. Off. J. Am. Coll. Rheumatol. 2008, 58, 3309–3318. [Google Scholar] [CrossRef]
- Genovese, M.C.; Kavanaugh, A.; Weinblatt, M.E.; Peterfy, C.; DiCarlo, J.; White, M.L.; O’BRien, M.; Grossbard, E.B.; Magilavy, D.B. An oral Syk kinase inhibitor in the treatment of rheumatoid arthritis: A three-month randomized, placebo-controlled, phase II study in patients with active rheumatoid arthritis that did not respond to biologic agents. Arthritis Rheum. 2011, 63, 337–345. [Google Scholar] [CrossRef]
- Tanaka, Y.; Millson, D.; Iwata, S.; Nakayamada, S. Safety and efficacy of fostamatinib in rheumatoid arthritis patients with an inadequate response to methotrexate in phase II OSKIRA-ASIA-1 and OSKIRA-ASIA-1X study. Rheumatology 2021, 60, 2884–2895. [Google Scholar] [CrossRef] [PubMed]
- Shamseldin, L.S.; Shawqi, M.M.; Al Hashem, N.A.; Alhyari, M.A.H.; Elazeem, H.A.S.A.; Elghazaly, S.M.; Hamdallah, A.; Ragab, K.M.; Nourelden, A.Z. Safety and efficacy of mavrilimumab for rheumatoid arthritis: A systematic review and meta-analysis. Curr. Rheumatol. Rev. 2021, 17, 184–192. [Google Scholar] [CrossRef] [PubMed]
- For the NEXUS Study Group; Taylor, P.C.; Saurigny, D.; Vencovsky, J.; Takeuchi, T.; Nakamura, T.; Matsievskaia, G.; Hunt, B.; Wagner, T.; Souberbielle, B. Efficacy and safety of namilumab, a human monoclonal antibody against granulocyte-macrophage colony-stimulating factor (GM-CSF) ligand in patients with rheumatoid arthritis (RA) with either an inadequate response to background methotrexate therapy or an inadequate response or intolerance to an anti-TNF (tumour necrosis factor) biologic therapy: A randomized, controlled trial. Arthritis Res. Ther. 2019, 21, 101. [Google Scholar] [PubMed]
- Fleischmann, R.M.; van der Heijde, D.; Strand, V.; Atsumi, T.; McInnes, I.B.; Takeuchi, T.; Taylor, P.C.; Bracher, M.; Brooks, D.; Davies, J.; et al. Anti-GM-CSF otilimab versus tofacitinib or placebo in patients with active rheumatoid arthritis and an inadequate response to conventional or biologic DMARDs: Two phase 3 randomised trials (contRAst 1 and contRAst 2). Ann. Rheum. Dis. 2023, 82, 1516–1526. [Google Scholar] [CrossRef]
- Gan, K.; Yang, L.; Xu, L.; Feng, X.; Zhang, Q.; Wang, F.; Tan, W.; Zhang, M. Iguratimod (T-614) suppresses RANKL-induced osteoclast differentiation and migration in RAW264. 7 cells via NF-κB and MAPK pathways. Int. Immunopharmacol. 2016, 35, 294–300. [Google Scholar] [CrossRef]
- Du, F.; Dai, Q.; Teng, J.; Lu, L.; Ye, S.; Ye, P.; Lin, Z.; Ding, H.; Dai, M.; Bao, C.; et al. The SMILE study: Study of long-term methotrexate and iguratimod combination therapy in early rheumatoid arthritis. Chin. Med. J. 2024, 10, 1097. [Google Scholar] [CrossRef]
- Lasica, M.; Tam, C.S. Bruton tyrosine kinase inhibitors in chronic lymphocytic leukemia: Beyond ibrutinib. Hematol. Oncol. Clin. 2021, 35, 761–773. [Google Scholar] [CrossRef]
- Patel, L.; Marcus, P.; Bush, J.; Gray, A.; Fitzgerald, R.; Abraham, S.; Foster, M.; Huatan, H.; Skillern, L.; Daroszewska, A.; et al. THU0186 Safety, tolerability and pharmacokinetics of MBS2320, a selective modulator of immune metabolism, in healthy volunteers and patients with rheumatoid arthritis. Ann. Rheum. Dis. 2019, 78, 368–369. [Google Scholar] [CrossRef]
- Broz, P.; Dixit, V.M. Inflammasomes: Mechanism of assembly, regulation and signalling. Nat. Rev. Immunol. 2016, 16, 407–420. [Google Scholar] [CrossRef]
- Shin, J.I.; Lee, K.H.; Joo, Y.H.; Lee, J.M.; Jeon, J.; Jung, H.J.; Shin, M.; Cho, S.; Kim, T.H.; Park, S.; et al. Inflammasomes and autoimmune and rheumatic diseases: A comprehensive review. J. Autoimmun. 2019, 103, 102299. [Google Scholar] [CrossRef]
- Klück, V.; A Jansen, T.L.T.; Janssen, M.; Comarniceanu, A.; Efdé, M.; Tengesdal, I.W.; Schraa, K.; Cleophas, M.C.P.; Scribner, C.L.; Skouras, D.B.; et al. Dapansutrile, an oral selective NLRP3 inflammasome inhibitor, for treatment of gout flares: An open-label, dose-adaptive, proof-of-concept, phase 2a trial. Lancet Rheumatol. 2020, 2, E270–E280. [Google Scholar] [CrossRef]
- McAllister, M.; Chemaly, M.; Eakin, A.J.; Gibson, D.S.; McGilligan, V.E. NLRP3 as a potentially novel biomarker for the management of osteoarthritis. Osteoarthr. Cartil. 2018, 26, 612–619. [Google Scholar] [CrossRef]
- Dinarello, C.A. Immunological and inflammatory functions of the interleukin-1 family. Annu. Rev. Immunol. 2009, 27, 519–550. [Google Scholar] [CrossRef] [PubMed]
- Ruscitti, P.; Cipriani, P.; Carubbi, F.; Liakouli, V.; Zazzeroni, F.; Di Benedetto, P.; Berardicurti, O.; Alesse, E.; Giacomelli, R. The role of IL-1β in the bone loss during rheumatic diseases. Mediat. Inflamm. 2015, 2015, 782382. [Google Scholar] [CrossRef] [PubMed]
- Dominguez-Villar, M.; Hafler, D.A. Regulatory T cells in autoimmune disease. Nat. Immunol. 2018, 19, 665–673. [Google Scholar] [CrossRef]
- Luo, Q.; Ye, J.; Zeng, L.; Luo, Z.; Deng, Z.; Li, X.; Guo, Y.; Huang, Z.; Li, J. Elevated expression of PD-1 on T cells correlates with disease activity in rheumatoid arthritis. Mol. Med. Rep. 2018, 17, 3297–3305. [Google Scholar] [CrossRef]
- Shabgah, A.G.; Shariati-Sarabi, Z.; Tavakkol-Afshari, J.; Mohammadi, M. The role of BAFF and APRIL in rheumatoid arthritis. J. Cell Physiol. 2019, 234, 17050–17063. [Google Scholar] [CrossRef]
- Dhillon, S. Telitacicept: First approval. Drugs 2021, 81, 1671–1675. [Google Scholar] [CrossRef]
- Zhao, Q.; Chen, X.; Jiang, J.; Li, J.; Zhong, W.; Han, H.; Li, Z.; Leung, S.O.; Zhang, F.; Hu, P. An open-label, multiple-dose study to assess the preliminary pharmacokinetics, pharmacodynamics, clinical activity, and safety of human mouse chimeric anti-CD22 monoclonal antibody (SM03) in patients with rheumatoid arthritis. Int. J. Clin. Pharmacol. Ther. 2021, 59, 691. [Google Scholar] [CrossRef]
- Croft, M. Control of immunity by the TNFR-related molecule OX40 (CD134). Annu. Rev. Immunol. 2010, 28, 57–78. [Google Scholar] [CrossRef]
- Rogers, P.R.; Song, J.; Gramaglia, I.; Killeen, N.; Croft, M. OX40 promotes Bcl-xL and Bcl-2 expression and is essential for long-term survival of CD4 T cells. Immunity 2001, 15, 445–455. [Google Scholar] [CrossRef]
- Yoshioka, T.; Nakajima, A.; Akiba, H.; Ishiwata, T.; Asano, G.; Yoshino, S.I. Contribution of OX40/OX40 ligand interaction to the pathogenesis of rheumatoid arthritis. Eur. J. Immunol. 2000, 30, 2815–2823. [Google Scholar] [CrossRef] [PubMed]
- Jacquemin, C.; Schmitt, N.; Contin-Bordes, C.; Liu, Y.; Narayanan, P.; Seneschal, J. OX40 ligand contributes to human lupus pathogenesis by promoting T follicular helper response. Immunity 2015, 42, 1159–1170. [Google Scholar] [CrossRef] [PubMed]
- Croft, M.; So, T.; Duan, W.; Soroosh, P. The significance of OX40 and OX40L to T-cell biology and immune disease. Immunol. Rev. 2009, 229, 173–191. [Google Scholar] [CrossRef]
- Provan, D.; Newland, A.C. Investigational drugs for immune thrombocytopenia. Expert Opin. Investig. Drugs. 2022, 31, 715–727. [Google Scholar] [CrossRef]
- Coffey, G.; DeGuzman, F.; Inagaki, M.; Pak, Y.; Delaney, S.M.; Ives, D.; Betz, A.; Jia, Z.J.; Pandey, A.; Baker, D.; et al. Specific inhibition of spleen tyrosine kinase suppresses leukocyte immune function and inflammation in animal models of rheumatoid arthritis. J. Pharmacol. Exp. Ther. 2012, 340, 350–359. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, H.; Tian, Y.; Luo, Z.; Yin, G.; Xie, Q. Neoplasm risk in patients with rheumatoid arthritis treated with fostamatinib: A systematic review and meta-analysis. Front. Pharmacol. 2022, 13, 768980. [Google Scholar] [CrossRef]
- Hu, C.-J.; Zhang, L.; Zhou, S.; Jiang, N.; Zhao, J.-L.; Wang, Q.; Tian, X.-P.; Zeng, X.-F. Effectiveness of iguratimod as monotherapy or combined therapy in patients with rheumatoid arthritis: A systematic review and meta-analysis of RCTs. J. Orthop. Surg. Res. 2021, 16, 457. [Google Scholar] [CrossRef]
- Nozaki, Y. Iguratimod: Novel Molecular Insights and a New csDMARD for Rheumatoid Arthritis, from Japan to the World. Life 2021, 11, 457. [Google Scholar] [CrossRef]
Target | Drug(s) | Mechanism | Clinical Status | References |
---|---|---|---|---|
Bruton’s Tyrosine Kinase (BTK) | Fenebrutinib, Evobrutinib | B cell receptor signaling inhibition, reducing autoantibody production | Phase II trials showed the efficacy Fenebrutinib to be similar to that of Adalimumab; Evobrutinib showed safety but lacked efficacy. | [4,5] |
Mitochondrial Complex I | MBS2320 (Leramistat) | Selective osteoclast inhibition and anti-inflammatory action | Phase II trial demonstrated significant ACR20 and DAS28-CRP improvement. | [6] |
NLRP3 Inflammasome | Dapansutrile | Suppresses IL-1β and IL-18 production via inflammasome inhibition | Upregulation in RA confirmed; early-stage therapeutic potential | [7,8] |
PD-1 Immune Checkpoint | Peresolimab | Restores T cell tolerance and suppresses autoimmune inflammation | Phase II trial showed DAS28-CRP and ACR20 improvement in the high-dose group. | [9] |
B/T Cell Co-stimulation | Telitacicept | Blocks TACI-mediated B cell maturation and immunoglobulin production | Phase III trial showed significant ACR and DAS28-ESR improvements. | [10] |
B Cell CD22 | SM03 | Modulates SHP-1 and inhibits BCR/NF-κB signaling | Phase I/II trials demonstrated safety and clinical efficacy. | [11,12] |
CD40/CD40L | KLP-404, VIB4920 | Inhibits B and T cell co-stimulatory signaling to reduce inflammation | Modified Fc structure reduces thromboembolic risks; early trials positive | [13,14,15,16,17,18,19,20,21] |
OX40/OX40L | Rocatinlimab, Amlitelimab, Telazorlimab | Suppresses effector T cell activation and enhances Treg stability | Trials ongoing in dermatitis; preclinical studies support RA application. | [22,23,24,25,26,27,28,29] |
Spleen Tyrosine Kinase (SyK) | Fostamatinib | Blocks immune activation via B cell receptor and Fc receptor pathways | Phase II trials (OSKIRA) confirmed efficacy; manageable safety profile | [30,31,32] |
GM-CSF | Mavrilimumab, Namilumab, Otilimab | Neutralizes granulocyte/monocyte stimulation in inflamed joints | Mixed outcomes: early agents promising; Otilimab underperforms in Phase III. | [33,34,35] |
NF-κB | Iguratimod | Blocks nuclear translocation of NF-κB, dampening inflammation | Widely used in Asia; effective as monotherapy or with MTX; superior to MTX alone | [36,37] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chung, S.W. Promising Molecular Therapeutic Targets for Drug Development in Rheumatoid Arthritis. J. Clin. Med. 2025, 14, 5827. https://doi.org/10.3390/jcm14165827
Chung SW. Promising Molecular Therapeutic Targets for Drug Development in Rheumatoid Arthritis. Journal of Clinical Medicine. 2025; 14(16):5827. https://doi.org/10.3390/jcm14165827
Chicago/Turabian StyleChung, Sang Wan. 2025. "Promising Molecular Therapeutic Targets for Drug Development in Rheumatoid Arthritis" Journal of Clinical Medicine 14, no. 16: 5827. https://doi.org/10.3390/jcm14165827
APA StyleChung, S. W. (2025). Promising Molecular Therapeutic Targets for Drug Development in Rheumatoid Arthritis. Journal of Clinical Medicine, 14(16), 5827. https://doi.org/10.3390/jcm14165827