Preprocedural Substrate Visualization and Image Integration Based on Late Enhancement Computed Tomography for Ventricular Tachycardia Ablation in Non-Ischemic Cardiomyopathy
Abstract
1. Introduction
2. Materials and Methods
2.1. Conventional Mapping
2.2. inHEART Imaging and Image Integration
2.3. VT Ablation
2.4. Periprocedural Acute Kidney Injury
2.5. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Procedural Characteristics
3.3. Acute Outcome and Discharge
3.4. Procedural Complications
3.5. Outcome and Mortality
4. Discussion
- Preprocedural contrast-enhanced CT was safely performed without increasing the risk of periprocedural acute kidney injury.
- The LIE-CT group had shorter mapping times (p < 0.001) and reduced fluoroscopy duration (p = 0.02) and dose (p < 0.001), allowing for longer RF application times (p = 0.008).
- Substrate visualization was linked to more complex procedures, with higher rates of epicardial access (52% vs. 22%, p = 0.03) and bipolar ablation (22% vs. 0%, p = 0.02).
- In this cohort, in which nearly half of the patients had a history of electrical storm, additional substrate imaging did not result in improved clinical outcomes—highlighting the ongoing challenges in managing VT in non-ischemic cardiomyopathy.
4.1. Safety
4.2. Procedural Aspects
4.3. Outcome
4.4. Cost-Effectiveness
4.5. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
VT | Ventricular tachycardia |
NIDCM | Non-ischemic dilated cardiomyopathy |
LIE-CT | Late iodine enhancement computed tomography |
CM | Conventional mapping |
EAM | Electroanatomic mapping |
AKI | Acute kidney injury |
KDIGO | Kidney Disease: Improving Global Outcomes |
CKD | Chronic kidney disease |
BMI | Body mass index |
LVEF | Left ventricular ejection fraction |
GFR | Glomerular filtration rate |
ICD | Implantable cardioverter defibrillator |
CRT-D | Cardiac resynchronization therapy–defibrillator |
S-ICD | Subcutaneous implantable cardioverter defibrillator |
RF | Radiofrequency current |
References
- Dinov, B.; Arya, A.; Schratter, A.; Schirripa, V.; Fiedler, L.; Sommer, P.; Bollmann, A.; Rolf, S.; Piorkowski, C.; Hindricks, G. Catheter Ablation of Ventricular Tachycardia and Mortality in Patients with Nonischemic Dilated Cardiomyopathy: Can Noninducibility after Ablation Be a Predictor for Reduced Mortality? Circ. Arrhythmia Electrophysiol. 2015, 8, 598–605. [Google Scholar] [CrossRef] [PubMed]
- Glashan, C.A.; Androulakis, A.F.A.; Tao, Q.; Glashan, R.N.; Wisse, L.J.; Ebert, M.; de Ruiter, M.C.; van Meer, B.J.; Brouwer, C.; Dekkers, O.M.; et al. Whole human heart histology to validate electroanatomical voltage mapping in patients with non-ischaemic cardiomyopathy and ventricular tachycardia. Eur. Heart J. 2018, 39, 2867–2875. [Google Scholar] [CrossRef]
- Muser, D.; Liang, J.J.; Castro, S.A.; Hayashi, T.; Enriquez, A.; Troutman, G.S.; McNaughton, N.W.; Supple, G.; Birati, E.Y.; Schaller, R.; et al. Outcomes with prophylactic use of percutaneous left ventricular assist devices in high-risk patients undergoing catheter ablation of scar-related ventricular tachycardia: A propensity-score matched analysis. Heart Rhythm. 2018, 15, 1500–1506. [Google Scholar] [CrossRef]
- Zeppenfeld, K. Ventricular Tachycardia Ablation in Nonischemic Cardiomyopathy. JACC Clin. Electrophysiol. 2018, 4, 1123–1140. [Google Scholar] [CrossRef]
- Deneke, T.; Kutyifa, V.; Hindricks, G.; Sommer, P.; Zeppenfeld, K.; Carbuccichio, C.; Pürerfellner, H.; Heinzel, F.R.; Traykov, V.B.; De Riva, M.; et al. Pre- and post-procedural cardiac imaging (computed tomography and magnetic resonance imaging) in electrophysiology: A clinical consensus statement of the European Heart Rhythm Association and European Association of Cardiovascular Imaging of the European Society of Cardiology. Europace 2024, 26, euae108. [Google Scholar] [PubMed]
- Ohta, Y.; Kitao, S.; Yunaga, H.; Fujii, S.; Mukai, N.; Yamamoto, K.; Ogawa, T. Myocardial delayed enhancement CT for the evaluation of heart failure: Comparison to MRI. Radiology 2018, 288, 682–691. [Google Scholar] [CrossRef]
- Esposito, A.; Palmisano, A.; Antunes, S.; Maccabelli, G.; Colantoni, C.; Rancoita, P.M.V.; Baratto, F.; Serio, C.D.; Rizzo, G.; De Cobelli, F.; et al. Cardiac CT With Delayed Enhancement in the Characterization of Ventricular Tachycardia Structural Substrate: Relationship Between CT-Segmented Scar and Electro-Anatomic Mapping. JACC Cardiovasc. Imaging 2016, 9, 822–832. [Google Scholar] [CrossRef]
- Nayyar, S.; Wilson, L.; Ganesan, A.N.; Sullivan, T.; Kuklik, P.; Chapman, D.; Brooks, A.G.; Mahajan, R.; Baumert, M.; Young, G.D.; et al. High-Density Mapping of Ventricular Scar. Circ. Arrhythmia Electrophysiol. 2014, 7, 90–98. [Google Scholar] [CrossRef] [PubMed]
- Ene, E.; Halbfaß, P.; Nentwich, K.; Sonne, K.; Berkovitz, A.; Cochet, H.; Jais, P.; Lehmkuhl, L.; Foldyna, B.; Deneke, T. Optimal cut-off value for endocardial bipolar voltage mapping using a multipoint mapping catheter to characterize the scar regions described in cardio—CT with myocardial thinning. J. Cardiovasc. Electrophysiol. 2022, 33, 2174–2180. [Google Scholar] [CrossRef] [PubMed]
- Cronin, E.M.; Bogun, F.M.; Maury, P.; Peichl, P.; Chen, M.; Namboodiri, N.; Aguinaga, L.; Leite, L.R.; Al-Khatib, S.M.; Anter, E.; et al. 2019 HRS/EHRA/APHRS/LAHRS expert consensus statement on catheter ablation of ventricular arrhythmias. Europace 2019, 21, 1143–1144. [Google Scholar] [CrossRef] [PubMed]
- John, L.A.; Tomashitis, B.; Gowani, Z.; Levin, D.; Vo, C.; John, I.; Winterfield, J.R. inHEART Models software–novel 3D cardiac modeling solution. Expert Rev. Med. Devices 2023, 20, 797–803. [Google Scholar] [CrossRef]
- Englert, F.; Bahlke, F.; Erhard, N.; Krafft, H.; Popa, M.A.; Risse, E.; Lennerz, C.; Lengauer, S.; Telishevska, M.; Reents, T.; et al. VT ablation based on CT imaging substrate visualization: Results from a large cohort of ischemic and non-ischemic cardiomyopathy patients. Clin. Res. Cardiol. 2024, 113, 1478–1484. [Google Scholar] [CrossRef] [PubMed]
- Merle, M.; Collot, F.; Castelneau, J.; Migerditichan, P.; Juhoor, M.; Ly, B.; Ozenne, V.; Quesson, B.; Zemzemi, N.; Coudière, Y.; et al. MUSIC: Cardiac Imaging, Modelling and Visualisation Software for Diagnosis and Therapy. Appl. Sci. 2022, 12, 6145. [Google Scholar] [CrossRef]
- Dukkipati, S.R.; Koruth, J.S.; Choudry, S.; Miller, M.A.; Whang, W.; Reddy, V.Y. Catheter Ablation of Ventricular Tachycardia in Structural Heart Disease: Indications, Strategies, and Outcomes—Part II. J. Am. Coll. Cardiol. 2017, 70, 2924–2941. [Google Scholar] [CrossRef]
- Moore, P.K.; Hsu, R.K.; Liu, K.D. Management of Acute Kidney Injury: Core Curriculum 2018. Am. J. Kidney Dis. 2018, 72, 136–148. [Google Scholar] [CrossRef]
- Levey, A.S.; Eckardt, K.U.; Tsukamoto, Y.; Levin, A.; Coresh, J.; Rossert, J.; Zeeuw, D.D.; Hostetter, T.H.; Lameire, N.; Eknoyan, G. Definition and classification of chronic kidney disease: A position statement from Kidney Disease: Improving Global Outcomes (KDIGO). Kidney Int. 2005, 67, 2089–2100. [Google Scholar] [CrossRef] [PubMed]
- Sacristan, B.; Cochet, H.; Bouyer, B.; Tixier, R.; Duchateau, J.; Derval, N.; Pambrun, T.; Arnaud, M.; Charton, J.; Ditac, G.; et al. Imaging-Aided VT Ablation. Long-Term Results From a Pilot Study. J. Cardiovasc. Electrophysiol. 2025, 36, 1841–1848. [Google Scholar] [CrossRef]
- Kistler, P.M.; Rajappan, K.; Jahngir, M.; Earley, M.J.; Harris, S.; Abrams, D.; Gupta, D.; Liew, R.; Ellis, S.; Sporton, S.C.; et al. The impact of CT image integration into an electroanatomic mapping system on clinical outcomes of catheter ablation of atrial fibrillation. J. Cardiovasc. Electrophysiol. 2006, 17, 1093–1101. [Google Scholar] [CrossRef] [PubMed]
- Deyell, M.W.; Callans, D.J. How We Ablate Ventricular Tachycardia in Non-ischemic, left Ventricular Cardiomyopathy. J. Innov. Card. Rhythm. Manag. 2011, 2, 558–565. [Google Scholar]
- Futyma, P.; Sultan, A.; Zarębski, Ł.; Imnadze, G.; Maslova, V.; Bordignon, S.; Kousta, M.; Knecht, S.; Pavlović, N.; Peichl, P.; et al. Bipolar radiofrequency ablation of refractory ventricular arrhythmias: Results from a multicentre network. Europace 2024, 26, euae248. [Google Scholar] [CrossRef]
- Baldi, E.; Conte, G.; Zeppenfeld, K.; Lenarczyk, R.; Guerra, J.M.; Farkowski, M.M.; de Asmundis, C.; Boveda, S. Contemporary management of ventricular electrical storm in Europe: Results of a European Heart Rhythm Association Survey. Europace 2023, 25, 1277–1283. [Google Scholar] [CrossRef] [PubMed]
- John, L.A.; Divakaran, S.; Blankstein, R.; Batnyam, U.; Suranyi, P.; Gregoski, M.; Cochet, H.; Peyrat, J.; Cedlink, N.; Kabongo, L.; et al. Septal late enhancement by cardiac CT is associated with repeat ablation in nonischemic cardiomyopathy patients. J. Cardiovasc. Electrophysiol. 2024, 35, 1806–1816. [Google Scholar] [CrossRef] [PubMed]
- Van Den Bruck, J.-H.; Schipper, J.-H.; Seuthe, K.; Dittrich, S.; Pavel, F.; Sultan, A.; Ackmann, J.; Woermann, J.; Lueker, J.; Steven, D. Preprocedural substrate visualization and image integration based on late enhancement computed tomography for ventricular tachycardia ablation in non-ischemic cardiomyopathy. Europace 2025, 27 (Suppl. S1), euaf085.725. [Google Scholar] [CrossRef]
LIE-CT Group | CM Group | p-Value | |
---|---|---|---|
Sex (male) | 17 (74%) | 17 (74%) | 1.0 |
Age (years) | 60.1 ± 11.4 | 60.4 ± 11.6 | 0.9 |
BMI (kg/m2) | 28.9 ± 5.4 | 28.2 ± 5.2 | 0.7 |
LVEF (%) | 35.4 ± 9.2 | 34.7 ± 9.5 | 0.8 |
GFR (mL/min) | 60.9 ± 16.8 | 59.0 ± 24.0 | 0.8 |
Electrical storm | 11 (48%) | 11 (48%) | 1.0 |
Prior VT ablations | 1 (IQR 0–1) | 1 (IQR 0–1) | 0.9 |
No prior VT ablations | 11 (48%) | 11 (48) | 1.0 |
Cardiac implantable electronic devices | |||
Patients without defibrillator | 1 (4%) | 1 (4%) | 1.0 |
Single-chamber ICD | 8 (35%) | 8 (35%) | 1.0 |
Dual-chamber ICD | 2 (9%) | 3 (13%) | 0.6 |
CRT-D | 8 (35%) | 9 (39%) | 0.8 |
S-ICD | 4 (17%) | 2 (9%) | 0.4 |
Comorbidities | |||
Atrial fibrillation | 9 (39%) | 12 (52%) | 0.4 |
Diabetes | 5 (22%) | 6 (26%) | 0.7 |
Renal failure (GFR ≤ 60 mL/min) | 6 (26%) | 7 (30%) | 0.7 |
LIE-CT Group | CM Group | p-Value | |
---|---|---|---|
Mapping System | |||
EnsiteX | 15 (65%) | 14 (61%) | 0.8 |
CARTO | 8 (35%) | 9 (39%) | 0.8 |
Access | |||
Retrograde | 4 (17%) | 7 (30%) | 0.3 |
Transseptal | 10 (43%) | 4 (17%) | 0.06 |
Combined retrograde and transseptal | 9 (39%) | 12 (52%) | 0.4 |
Epicardial access | 12 (52%) | 5 (22%) | 0.03 |
VT induction | |||
Programmed RV stimulation | 23 (100%) | 23 (100%) | 1.0 |
VT inducible | 18 (78%) | 20 (87%) | 0.4 |
VT ablation approach | |||
Primarily substrate based (scar homogenization, LAVA) | 11 (48%) | 9 (39%) | 0.6 |
Primarily ablation during VT | 4 (17%) | 7 (30%) | 0.3 |
Combination of ablation during VT and substrate homogenization | 8 (35%) | 7 (30%) | 0.8 |
VTs targeted per patient | 1.8 ± 1.0 | 1.5 ± 0.8 | 0.3 |
Bipolar ablation | 5 (22%) | 0 | 0.02 |
Procedure characteristics | |||
Total RF time (min) | 42.4 ± 17.9 | 27.9 ± 14.2 | 0.008 |
Fluoroscopy dose (cGy·cm2) | 1278.9 ± 1224.4 | 4444.1 ± 2842.1 | <0.001 |
Fluoroscopy duration (min) | 14.7 ± 5.1 | 21.3 ± 10.6 | 0.02 |
Procedure duration (skin-to-skin; min) | 231.5 ± 74.2 | 220.2 ± 70.2 | 0.5 |
LIE-CT Group | CM Group | p-Value | |
---|---|---|---|
Acute Outcomes | |||
Non-inducibility of any VT | 14 (61%) | 12 (53%) | 0.6 |
Non-inducibility of clinical VT | 2 (9%) | 6 (26%) | 0.1 |
Substrate based due to prior non-inducibility | 5 (22%) | 4 (17%) | 0.7 |
Clinical VT still inducible | 2 (9%) | 1 (4%) | 0.6 |
Post-procedural monitoring | |||
Intensive care | 1 (4%) | 2 (9%) | 0.6 |
Intermediate care | 12 (52%) | 11 (48%) | 0.8 |
Normal ward | 10 (44%) | 10 (43%) | 1.0 |
Periprocedural kidney injury | |||
Acute kidney injury | 3 | 4 | 0.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
van den Bruck, J.-H.; Schipper, J.-H.; Seuthe, K.; Dittrich, S.; Maximidou, T.; Sultan, A.; Ackmann, J.; Wörmann, J.; Scheurlen, C.; Lüker, J.; et al. Preprocedural Substrate Visualization and Image Integration Based on Late Enhancement Computed Tomography for Ventricular Tachycardia Ablation in Non-Ischemic Cardiomyopathy. J. Clin. Med. 2025, 14, 5801. https://doi.org/10.3390/jcm14165801
van den Bruck J-H, Schipper J-H, Seuthe K, Dittrich S, Maximidou T, Sultan A, Ackmann J, Wörmann J, Scheurlen C, Lüker J, et al. Preprocedural Substrate Visualization and Image Integration Based on Late Enhancement Computed Tomography for Ventricular Tachycardia Ablation in Non-Ischemic Cardiomyopathy. Journal of Clinical Medicine. 2025; 14(16):5801. https://doi.org/10.3390/jcm14165801
Chicago/Turabian Stylevan den Bruck, Jan-Hendrik, Jan-Hendrik Schipper, Katharina Seuthe, Sebastian Dittrich, Theodoros Maximidou, Arian Sultan, Jana Ackmann, Jonas Wörmann, Cornelia Scheurlen, Jakob Lüker, and et al. 2025. "Preprocedural Substrate Visualization and Image Integration Based on Late Enhancement Computed Tomography for Ventricular Tachycardia Ablation in Non-Ischemic Cardiomyopathy" Journal of Clinical Medicine 14, no. 16: 5801. https://doi.org/10.3390/jcm14165801
APA Stylevan den Bruck, J.-H., Schipper, J.-H., Seuthe, K., Dittrich, S., Maximidou, T., Sultan, A., Ackmann, J., Wörmann, J., Scheurlen, C., Lüker, J., & Steven, D. (2025). Preprocedural Substrate Visualization and Image Integration Based on Late Enhancement Computed Tomography for Ventricular Tachycardia Ablation in Non-Ischemic Cardiomyopathy. Journal of Clinical Medicine, 14(16), 5801. https://doi.org/10.3390/jcm14165801