Validation of a Ready-to-Use Lyophilized Kit for Labeling IL2 with 68Ga: A New Avenue for Imaging Activated T-lymphocytes in Tumor Microenvironment
Abstract
1. Introduction
2. Materials and Methods
2.1. Assessment of Lyophilized Kit’s Shelf Life
2.1.1. Preparation of Lyophilized THP-IL2 Batches
2.1.2. QCs Before Radiolabeling
2.1.3. Radiolabeling and QCs
- MeOH/NH4OAc (1:1)
- A.
- Free 68Ga: Rf ≈ 0.1;
- B.
- Colloidal 68Ga: Rf ≈ 0.1;
- C.
- 68Ga-THP-IL2: Rf ≈ 0.8–0.9.
- 2.
- 5% NaCl/MeOH/25% NH3 (3:1:1)
- D.
- Free 68Ga: Rf ≈ 0.8–0.9;
- E.
- Colloidal 68Ga: Rf ≈ 0.1;
- F.
- 68Ga-THP-IL2: Rf ≈ 0.8–0.9.
2.1.4. Assessment of Sterility and Pyrogenicity of the Lyophilized Kit
2.2. In Vitro Binding on Activated T-lymphocyte Subsets
2.2.1. Lymphocyte Sampling and Activation
2.2.2. Competitive Binding
- A.
- Fresh hPBMCs + 50 µL (0.25 µg) of 68Ga-THP-desIL2 (35 µCi);
- B.
- No PHA-M hPBMCs + 50 µL (0.25 µg) of 68Ga-THP-desIL2 (35 µCi);
- C.
- PHA-M-activated hPBMCs + 50 µL (0.25 µg) of 68Ga-THP-desIL2 (35 µCi);
- D.
- PHA-M-activated hPBMCs + 50 µL (0.25 µg) of 68Ga-THP-desIL2 (35 µCi) + 100 × THP-desIL2 (cold).
2.2.3. Phenotypic Analysis of Lymphocyte Subsets by Flow Cytometry
- -
- B-lymphocytes were isolated from hPBMCs using the Pan B Cell Isolation Kit, human 130-101-638 for 109 total cells (Miltenyi Biotec, Bergisch Gladbach, Germany).
- -
- CD8+ T-lymphocytes were isolated using the CD8+ T Cell Isolation Kit, human 130-096-495 for 109 total cells (Miltenyi Biotec).
- -
- NK cells were isolated using the NK Cell Isolation Kit, human 130-092-657 for 109 total cells (Miltenyi Biotec).
- -
- Conventional (Tconv) and regulatory (Treg) CD4 T-cells were isolated using the CD4 + CD25+ Regulatory T Cell Isolation Kit, human 130-091-301 (Miltenyi Biotec).
2.2.4. Kinetic Cell Binding Assay
2.2.5. Immunoreactive Fraction (IRF) Assay
2.3. Statistical Analysis
3. Results
3.1. QCs Before Radiolabeling of the Lyophilized Kit
3.2. Radiolabeling and QCs
3.3. Assessment of Sterility and Pyrogenicity of the Lyophilized Kit
3.4. Competitive Binding
3.5. Flow Cytometric Analysis and In Vitro Binding on Different Activated T-lymphocyte Subsets
3.6. IRF Assay
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
IL2 | interleukin-2 |
IL2R | interleukin-2 receptor |
PET/CT | positron emission tomography/computed tomography |
LY | labeling yield |
RCP | radiochemical purity |
SA | specific activity |
hPBMCs | human peripheral blood mononuclear cells |
References
- Lauri, C.; Varani, M.; Bentivoglio, V.; Capriotti, G.; Signore, A. Present status and future trends in molecular imaging of lymphocytes. Semin. Nucl. Med. 2023, 53, 125–134. [Google Scholar] [CrossRef]
- McCarthy, C.E.; White, J.M.; Viola, N.T.; Gibson, H.M. In vivo Imaging Technologies to Monitor the Immune System. Front. Immunol. 2020, 11, 1067. [Google Scholar] [CrossRef]
- Schnell, A. Stem-like T cells in cancer and autoimmunity. Immunol. Rev. 2024, 325, 9–22. [Google Scholar] [CrossRef]
- Wang, X.; Shen, W.; Yao, L.; Li, C.; You, H.; Guo, D. Current status and future prospects of molecular imaging in targeting the tumor immune microenvironment. Front. Immunol. 2025, 16, 1518555. [Google Scholar] [CrossRef]
- Bernardi, C.; Garibotto, V.; Mobashwera, B.; Negrin, R.S.; Alam, I.S.; Simonetta, F. Molecular imaging of acute graft-versus-host disease. J. Nucl. Med. 2024, 65, 357–361. [Google Scholar] [CrossRef] [PubMed]
- van de Donk, P.P.; Oosting, S.F.; Knapen, D.G.; van der Wekken, A.J.; Brouwers, A.H.; Hooge, M.N.L.-D.; de Groot, D.-J.A.; de Vries, E.G.E. Molecular imaging to support cancer immunotherapy. J. Immunother. Cancer 2022, 10, e004949. [Google Scholar] [CrossRef] [PubMed]
- de Sousa, R.N.; Tascilar, K.; Corte, G.; Atzinger, A.; Minopoulou, I.; Ohrndorf, S.; Waldner, M.; Schmidkonz, C.; Kuwert, T.; Knieling, F.; et al. Metabolic and molecular imaging in inflammatory arthritis. RMD Open 2024, 10, e003880. [Google Scholar] [CrossRef]
- Heo, G.S.; Diekmann, J.; Thackeray, J.T.; Liu, Y. Nuclear methods for immune cell imaging: Bridging molecular imaging and individualized medicine. Circ. Cardiovasc. Imaging 2023, 16, e014067. [Google Scholar] [CrossRef]
- Galli, F.; Varani, M.; Lauri, C.; Silveri Gentiloni, G.; Onofrio, L.; Signore, A. Immune cell labelling and tracking: Implications for adoptive cell transfer therapies. EJNMMI Radiopharm. Chem. 2021, 6, 7. [Google Scholar] [CrossRef]
- Abbas, A.K. The surprising story of IL-2: From experimental models to clinical application. Am. J. Pathol. 2020, 190, 1776–1781. [Google Scholar] [CrossRef] [PubMed]
- Signore, A.; Chianelli, M.; Annovazzi, A.; Bonanno, E.; Spagnoli, L.G.; Pozzilli, P.; Pallone, F.; Biancone, L. 123I-interleukin-2 scintigraphy for in vivo assessment of intestinal mononuclear cell infiltration in Crohn’s disease. J. Nucl. Med. 2000, 41, 242–249. [Google Scholar]
- Signore, A.; Chianelli, M.; Annovazzi, A.; Rossi, M.; Maiuri, L.; Greco, M.; Ronga, G.; Britton, K.E.; Picarelli, A. Imaging active lymphocytic infiltration in coeliac disease with iodine-123-interleukin-2 and the response to diet. Eur. J. Nucl. Med. Mol. Imaging 2000, 27, 18–24. [Google Scholar] [CrossRef]
- Renard, V.; Staelens, L.; Signore, A.; Van Belle, S.; Dierckx, R.A.; Van De Wiele, C. Iodine-123-interleukin-2 scintigraphy in metastatic hypernephroma: A pilot study. Q. J. Nucl. Med. Mol. Imaging 2007, 51, 352–356. [Google Scholar]
- Loose, D.; Signore, A.; Staelens, L.; Bulcke, K.V.; Vermeersch, H.; Dierckx, R.A.; Bonanno, E.; Van de Wiele, C. (123)I-Interleukin-2 uptake in squamous cell carcinoma of the head and neck carcinoma. Eur. J. Nucl. Med. Mol. Imaging 2008, 35, 281–286. [Google Scholar] [CrossRef]
- Signore, A.; Capriotti, G.; Chianelli, M.; Bonanno, E.; Galli, F.; Catalano, C.; Quintero, A.M.; De Toma, G.; Manfrini, S.; Pozzilli, P.; et al. Detection of insulitis by pancreatic scintigraphy with 99mTc-labelled IL-2 and MRI in patients with LADA (Action LADA 10). Diabetes Care 2015, 38, 652–658. [Google Scholar] [CrossRef]
- Signore, A.; Annovazzi, A.; Barone, R.; Bonanno, E.; D’Alessandria, C.; Chianelli, M.; Mather, S.J.; Bottoni, U.; Panetta, C.; Innocenzi, D.; et al. 99mTc-interleukin-2 scintigraphy as a potential tool for evaluating tumor-infiltrating lymphocytes in melanoma lesions: A validation study. J. Nucl. Med. 2004, 45, 1647–1652. [Google Scholar]
- Markovic, S.N.; Galli, F.; Suman, V.J.; Nevala, W.K.; Paulsen, A.M.; Hung, J.C.; Gansen, D.N.; Erickson, L.A.; Marchetti, P.; Wiseman, G.A.; et al. Non-invasive visualization of tumor infiltrating lymphocytes in patients with metastatic melanoma undergoing immune checkpoint inhibitor therapy: A pilot study. Oncotarget 2018, 9, 30268–30278. [Google Scholar] [CrossRef]
- Di Gialleonardo, V.; Signore, A.; Glaudemans, A.W.; Dierckx, R.A.; De Vries, E.F. N-(4-18F-fluorobenzoyl)interleukin-2 for PET of human-activated T lymphocytes. J. Nucl. Med. 2012, 53, 679–686. [Google Scholar] [CrossRef]
- van der Veen, E.L.; Antunes, I.F.; Maarsingh, P.; Hessels-Scheper, J.; Zijlma, R.; Boersma, H.H.; Jorritsma-Smit, A.; Hospers, G.A.P.; de Vries, E.G.E.; Hooge, M.N.L.-D.; et al. Clinical-grade N-(4-[18F]fluorobenzoyl)-interleukin-2 for PET imaging of activated T-cells in humans. EJNMMI Radiopharm. Chem. 2019, 4, 15. [Google Scholar] [CrossRef]
- Hartimath, S.V.; Draghiciu, O.; van de Wall, S.; Manuelli, V.; Dierckx, R.A.J.O.; Nijman, H.W.; Daemen, T.; de Vries, E.F.J. Noninvasive monitoring of cancer therapy induced activated T cells using [18F]FB-IL-2 PET imaging. Oncoimmunology 2016, 6, e1248014. [Google Scholar] [CrossRef]
- van de Donk, P.P.; Wind, T.T.; Hooiveld-Noeken, J.S.; van der Veen, E.L.; Glaudemans, A.W.J.M.; Diepstra, A.; Jalving, M.; de Vries, E.G.E.; de Vries, E.F.J.; Geke, A.P. Hospers Interleukin-2 PET imaging in patients with metastatic melanoma before and during immune checkpoint inhibitor therapy. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 4369–4376. [Google Scholar] [CrossRef]
- van der Veen, E.L.; Suurs, F.V.; Cleeren, F.; Bormans, G.; Elsinga, P.H.; Hospers, G.A.P.; Hooge, M.N.L.-D.; de Vries, E.G.E.; de Vries, E.F.J.; Antunes, I.F. Development and evaluation of interleukin-2–derived radiotracers for PET imaging of T cells in mice. J. Nucl. Med. 2020, 61, 1355–1360. [Google Scholar] [CrossRef]
- Signore, A.; Galli, F.; Varani, M.; Campagna, G.; Bentivoglio, V.; Accardo, A.; Morelli, G.; Lauri, C. [68Ga]Ga-interleukin-2 for imaging activated T-lymphocytes: Biochemical characterization and phase I study in normal subjects. Eur. J. Nucl. Med. Mol. Imaging 2025, 1–13. [Google Scholar] [CrossRef]
- Kato, K.; Umezawa, K.; Funeriu, D.P.; Miyake, M.; Miyake, J.; Nagamune, T. Immobilized culture of nonadherent cells on an oleyl poly(ethylene glycol) ether-modified surface. Biotechniques 2003, 35, 1014–1018. [Google Scholar] [CrossRef]
- Allouche, M.; Sahraoui, Y.; Augery-Bourget, Y.; Perrakis, M.; Jasmin, C.; Georgoulias, V. Interleukin 2 receptors. Leuk. Res. 1990, 14, 699–703. [Google Scholar] [CrossRef] [PubMed]
- Signore, A.; Lauri, C.; Auletta, S.; Anzola, K.; Galli, F.; Casali, M.; Versari, A.; Glaudemans, A.W.J.M. Immuno-Imaging to predict treatment response in infection, inflammation and oncology. J. Clin. Med. 2019, 8, 681. [Google Scholar] [CrossRef]
- Campagna, G.; Anzola, L.K.; Varani, M.; Lauri, C.; Gentiloni Silveri, G.; Chiurchioni, L.; Spinelli, F.R.; Priori, R.; Conti, F.; Signore, A. Imaging Activated-T-Lymphocytes in the Salivary Glands of Patients with Sjögren’s Syndrome by 99mTc-Interleukin-2: Diagnostic and Therapeutic Implications. J. Clin. Med. 2022, 11, 4368. [Google Scholar] [CrossRef]
- O’Farrell, J.; Lapp, C.; Kuznia, H.; Afzal, M.Z. The Role of Immunotherapy and Immune Modulators in Hormone-Positive Breast Cancer: Implications for Localized and Metastatic Disease. J. Clin. Med. 2025, 14, 4322. [Google Scholar] [CrossRef]
- Xue, M.; Lin, H.; Lynch, T.; Chand, V.; Sinnathurai, P.; Thomas, R.; Keen, H.; Hill, C.; Lester, S.; Wechalekar, M.; et al. Th Cell Phenotypes and Their Correlations with Disease Activity in Patients with Rheumatoid Arthritis. J. Clin. Med. 2025, 1, 4220. [Google Scholar] [CrossRef]
Labeling Yield (%) | Radiochemical Purity (%) | Specific Activity (MBq/µg) | ||||
---|---|---|---|---|---|---|
4 °C Mean ± SD (95%CI) | −80 °C Mean ± SD (95%CI) | 4 °C Mean ± SD (95%CI) | −80 °C Mean ± SD (95%CI) | 4 °C Mean ± SD (95%CI) | −80 °C Mean ± SD (95%CI) | |
Time 0 (Fresh) | 59.13 ± 2.58 (52.73 to 65.54) | 97.91 ± 0.45 (96.8 to 99.01) | 6.29 ± 0.52 (5 to 7.58) | |||
One month | 46.55 ± 0.68 (44.86 to 48.23) | 58.18 ± 0.85 (56.08 to 60.29) | 96.46 ± 0.57 (95.04 to 97.87) | 97.43 ± 0.58 (96.00 to 98.86) | 5.03 ± 0.07 (4.85 to 5.21) | 6.28 ± 0.09 (6.06 to 6.51) |
Three months | 28.57 ± 0.79 (26.62 to 30.52) | 57.15 ± 1.57 (53.25 to 61.05) | 94.47 ± 1.09 (91.76 to 97.17) | 96.20 ± 1.11 (93.44 to 98.95) | 3.09 ± 0.08 (2.88 to 3.30) | 6.17 ± 0.17 (5.75 to 6.59) |
Six months | 28.49 ± 2.05 (23.39 to 33.59) | 51.80 ± 3.74 (42.52 to 61.08) | 94.55 ± 2.65 (87.98 to 101.12) | 96.48 ± 2.70 (89.78 to 103.19) | 3.08 ± 0.22 (2.53 to 3.63) | 5.59 ± 0.40 (4.59 to 6.60) |
Cells | CD25+ (%) | Positive Cells | Bound cpm | Bound Molecules | Molecules/Cell+ | Kd | |
---|---|---|---|---|---|---|---|
PHA-M stim | 1,200,000 | 55 | 660,000 | 169 | 14,475,499,122 | 21,933 | 7.10 × 10−10 |
400,000 | 43 | 172,000 | 97 | 3,055,904,961 | 17,767 | 4.43 × 10−10 | |
Treg | 3,000,000 | 86 | 2,592,000 | 122 | 75,551,668,782 | 29,148 | 5.33 × 10−9 |
5,000,000 | 84 | 4,190,000 | 140 | 94,946,572,644 | 22,660 | 3.03 × 10−9 | |
Tconv | 28,000,000 | 3 | 896,000 | 110 | 18,849,855,178 | 21,038 | 8.49 × 10−8 |
20,000,000 | 4 | 800,000 | 35 | 18,609,165,126 | 23,261 | 5.82 × 10−8 | |
CD8+ | 10,000,000 | 12 | 1,200,000 | 363 | 31,664,418,911 | 26,387 | 9.19 × 10−8 |
26,000,000 | 3 | 850,200 | 63 | 21,840,387,662 | 25,689 | 4.04 × 10−8 | |
NK | 4,800,000 | 5 | 240,000 | 87 | 6,444,763,338 | 26,853 | 1.81 × 10−9 |
4,800,000 | 8 | 384,000 | 104 | 9,222,669,407 | 24,017 | 2.37 × 10−9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lauri, C.; Bentivoglio, V.; Varani, M.; Cammarata, I.; Sartori, G.; Piconese, S.; Campagna, G.; Signore, A. Validation of a Ready-to-Use Lyophilized Kit for Labeling IL2 with 68Ga: A New Avenue for Imaging Activated T-lymphocytes in Tumor Microenvironment. J. Clin. Med. 2025, 14, 5658. https://doi.org/10.3390/jcm14165658
Lauri C, Bentivoglio V, Varani M, Cammarata I, Sartori G, Piconese S, Campagna G, Signore A. Validation of a Ready-to-Use Lyophilized Kit for Labeling IL2 with 68Ga: A New Avenue for Imaging Activated T-lymphocytes in Tumor Microenvironment. Journal of Clinical Medicine. 2025; 14(16):5658. https://doi.org/10.3390/jcm14165658
Chicago/Turabian StyleLauri, Chiara, Valeria Bentivoglio, Michela Varani, Ilenia Cammarata, Giorgia Sartori, Silvia Piconese, Giuseppe Campagna, and Alberto Signore. 2025. "Validation of a Ready-to-Use Lyophilized Kit for Labeling IL2 with 68Ga: A New Avenue for Imaging Activated T-lymphocytes in Tumor Microenvironment" Journal of Clinical Medicine 14, no. 16: 5658. https://doi.org/10.3390/jcm14165658
APA StyleLauri, C., Bentivoglio, V., Varani, M., Cammarata, I., Sartori, G., Piconese, S., Campagna, G., & Signore, A. (2025). Validation of a Ready-to-Use Lyophilized Kit for Labeling IL2 with 68Ga: A New Avenue for Imaging Activated T-lymphocytes in Tumor Microenvironment. Journal of Clinical Medicine, 14(16), 5658. https://doi.org/10.3390/jcm14165658