Improving the Patient Experience in Breast Reconstruction: ERAS and Beyond
Abstract
1. Introduction
Overview of Enhanced Recovery After Surgery (ERAS)
2. Methods
3. Results
3.1. Evidence Supporting ERAS in Breast Reconstruction
3.2. Evidence Supporting the Use of Patient-Reported Outcomes Measures
4. Discussion
Future Directions: ERAS and Beyond
- Prepare
- Protect
- Restore
- Empower
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef]
- Giaquinto, A.N.; Sung, H.; Newman, L.A.; Freedman, R.A.; Smith, R.A.; Star, J.; Jemal, A.; Siegel, R.L. Breast Cancer Statistics 2024. CA Cancer J. Clin. 2024, 74, 477–495. [Google Scholar] [CrossRef]
- Tomita, S.; Yoshitake, T.; Matsunaga, N.; de Kerckhove, M.; Fujii, M.; Terao, Y. Patient-Reported Outcomes and Quality of Life after Breast-Conserving Surgery, Mastectomy, and Breast Reconstruction Assessed Using the BREAST-Q Questionnaire. Breast Cancer Res. Treat. 2024, 207, 641–648. [Google Scholar] [CrossRef] [PubMed]
- Cronin, T.D.; Brauer, R.O. Augmentation Mammaplasty. Surg. Clin. N. Am. 1971, 51, 441–452. [Google Scholar] [CrossRef] [PubMed]
- Schneider, W.J.; Hill, H.L.; Brown, R.G. Latissimus Dorsi Myocutaneous Flap for Breast Reconstruction. Br. J. Plast. Surg. 1977, 30, 277–281. [Google Scholar] [CrossRef] [PubMed]
- Radovan, C. Breast Reconstruction after Mastectomy Using the Temporary Expander. Plast. Reconstr. Surg. 1982, 69, 195–206. [Google Scholar] [CrossRef]
- Momoh, A.O.; Griffith, K.A.; Hawley, S.T.; Morrow, M.; Ward, K.C.; Hamilton, A.S.; Shumway, D.; Katz, S.J.; Jagsi, R. Postmastectomy Breast Reconstruction: Exploring Plastic Surgeon Practice Patterns and Perspectives. Plast. Reconstr. Surg. 2020, 145, 865–876. [Google Scholar] [CrossRef]
- Bogdan, R.G.; Helgiu, A.; Cimpean, A.M.; Ichim, C.; Todor, S.B.; Iliescu-Glaja, M.; Bodea, I.C.; Crainiceanu, Z.P. Assessing Fat Grafting in Breast Surgery: A Narrative Review of Evaluation Techniques. J. Clin. Med. 2024, 13, 7209. [Google Scholar] [CrossRef]
- Sbitany, H.; Mukhatyar, V.; Hammer, J.; Hoonjan, A.; Leung, B.K.; Gardocki-Sandor, M. Biologic Response with and without Acellular Dermal Matrix in Breast Reconstruction. Plast. Reconstr. Surg. Glob. Open 2025, 13, e6671. [Google Scholar] [CrossRef]
- Minkhorst, K.; Castanov, V.; Ai Li, E.; Farrokhi, K.; Jaszkul, K.M.; AlGhanim, K.; DeLyzer, T.; Simpson, A.M. Alternatives to the Gold Standard: A Systematic Review of Profunda Artery Perforator and Lumbar Artery Perforator Flaps for Breast Reconstruction. Ann. Plast. Surg. 2024, 92, 703–710. [Google Scholar] [CrossRef]
- Rocco, N.; Catanuto, G.; Chiodini, P.; Rispoli, C.; Nava, M.B. Implants versus Autologous Tissue Flaps for Breast Reconstruction Following Mastectomy. Cochrane Database Syst. Rev. 2021, 2021, 13821. [Google Scholar] [CrossRef]
- Gassman, A.A.; Yoon, A.P.; Maxhimer, J.B.; Sanchez, I.; Sethi, H.; Cheng, K.W.; Tseng, C.Y.; Festekjian, J.H.; Da Lio, A.L.; Crisera, C.A. Comparison of Postoperative Pain Control in Autologous Abdominal Free Flap versus Implant-Based Breast Reconstructions. Plast. Reconstr. Surg. 2015, 135, 356–367. [Google Scholar] [CrossRef]
- Hwang, Y.J.; Lee, H.C.; Park, S.H.; Yoon, E.S. A Comparative Study of Breast Sensibility and Patient Satisfaction after Breast Reconstruction: Autologous, 2-Stage Implant-Based, and Prepectoral Direct-to-Implant Reconstruction. Ann. Plast. Surg. 2022, 88, 262–270. [Google Scholar] [CrossRef] [PubMed]
- Ticha, P.; Mestak, O.; Wu, M.; Bujda, M.; Sukop, A. Patient-Reported Outcomes of Three Different Types of Breast Reconstruction with Correlation to the Clinical Data 5 Years Postoperatively. Aesthetic Plast. Surg. 2020, 44, 2021–2029. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.E.; Kang, D. Navigating the Pandemic: Shifts in Breast Reconstruction Trends and Surgical Decision-Making in the United States. J. Clin. Med. 2024, 13, 4168. [Google Scholar] [CrossRef] [PubMed]
- Linder, S.; Walle, L.; Loucas, M.; Loucas, R.; Frerichs, O.; Fansa, H. Enhanced Recovery after Surgery (ERAS) in DIEP-Flap Breast Reconstructions—A Comparison of Two Reconstructive Centers with and without ERAS-Protocol. J. Pers. Med. 2022, 12, 347. [Google Scholar] [CrossRef]
- Kehlet, H. Multimodal Approach to Control Postoperative Pathophysiology and Rehabilitation. Br. J. Anaesth. 1997, 78, 606–617. [Google Scholar] [CrossRef]
- Temple-Oberle, C.; Shea-Budgell, M.A.; Tan, M.; Semple, J.L.; Schrag, C.; Barreto, M.; Blondeel, P.; Hamming, J.; Dayan, J.; Ljungqvist, O. Consensus Review of Optimal Perioperative Care in Breast Reconstruction: Enhanced Recovery after Surgery (ERAS) Society Recommendations. Plast. Reconstr. Surg. 2017, 139, 1056e. [Google Scholar] [CrossRef]
- Araya, S.; Webster, T.K.; Egleston, B.; Amadio, G.M.; Panichella, J.C.; Elmer, N.A.; Patel, S.A. Significant Reduction in Length of Stay in DIEP Flap Breast Reconstruction with Implementation of Multimodal ERAS Protocol. Ann. Plast. Surg. 2023, 91, 90. [Google Scholar] [CrossRef]
- Niu, E.F.; Frageau, J.C.; Rogoff, H.; Marquez, J.; Cannata, B.; Wang, K.E.; Munn, B.; Bakoulis, A.; Farrelly, P.; O’Hea, B.; et al. Enhanced Recovery After Surgery (ERAS) Protocol Allows Safe Same-Day Discharge in Expander Based and Oncoplastic Breast Reconstruction. Plast. Reconstr. Surg. Glob. Open 2023, 11, 14. [Google Scholar] [CrossRef]
- Taylor, J.M.; Moman, P.D.; Chevalier, J.M.; Tseng, C.Y.; Festekjian, J.H.; Delong, M.R. Enhanced Recovery after Surgery Protocol Decreases Length of Stay and Postoperative Narcotic Use in Tissue Expander-Based Breast Reconstruction. Plast. Reconstr. Surg. Glob. Open 2024, 12, 5879. [Google Scholar] [CrossRef]
- Kennedy, G.T.; Hill, C.M.; Huang, Y.; So, A.; Fosnot, J.; Wu, L.; Farrar, J.T.; Tchou, J. Enhanced Recovery after Surgery (ERAS) Protocol Reduces Perioperative Narcotic Requirement and Length of Stay in Patients Undergoing Mastectomy with Implant-Based Reconstruction. Am. J. Surg. 2020, 220, 147–152. [Google Scholar] [CrossRef] [PubMed]
- Hatchell, A.; Osman, M.; Bielesch, J.; Temple-Oberle, C. Acceptance of Outpatient Enhanced Recovery after Surgery (ERAS©) Protocols for Implant-Based Breast Reconstruction Nudged on by the COVID-19 Pandemic. Breast 2024, 74, 103689. [Google Scholar] [CrossRef] [PubMed]
- Gehring, M.B.; Wolfe, B.; Kalia, N.; Cohen, J.; Winocour, J.; Ahrendt, G.; Tevis, S.; Christian, N.; Mathes, D.; Kaoutzanis, C. A Randomized Controlled Trial in Patients Undergoing Immediate Implant-Based Breast Reconstruction Utilizing an Enhanced Recovery Pathway Comparing Outcomes and Patient Satisfaction Based on Time of Discharge; Anschutz Medical Campus: Aurora, CO, USA, 2024. [Google Scholar]
- Stahl, S.; Santos Stahl, A.; Feng, Y.S.; Estler, A.; Buiculescu, F.; Seabra Robalo Gomes Jorge, A.C. Enhanced Recovery After Surgery (ERAS) Pathways for Aesthetic Breast Surgery: A Prospective Cohort Study on Patient-Reported Outcomes. Aesthetic Plast. Surg. 2024, 48, 84–94. [Google Scholar] [CrossRef] [PubMed]
- Seren, J.M.; Cervantes, A.; Fontbona, M.; Cortinas, F.; Abrile, G.; Mayer, H.F. A Decalogue on Enhanced Recovery After Breast Augmentation Surgery (ERABAS). Aesthetic Plast. Surg. 2024, 49, 198–204. [Google Scholar] [CrossRef]
- Wong, S.; Lombana, N.F.; Falola, R.A.; Park, P.; Saint-Cyr, M.H. Decreasing Opioids in Outpatient Breast Surgery with an Enhanced Recovery after Surgery Program and Preoperative Education. Plast. Reconstr. Surg. 2023, 151, 941–947. [Google Scholar] [CrossRef]
- Offodile, A.C.; Gu, C.; Boukovalas, S.; Coroneos, C.J.; Chatterjee, A.; Largo, R.D.; Butler, C. Enhanced Recovery after Surgery (ERAS) Pathways in Breast Reconstruction: Systematic Review and Meta-Analysis of the Literature. Breast Cancer Res. Treat. 2019, 173, 65–77. [Google Scholar] [CrossRef]
- Astanehe, A.; Temple-Oberle, C.; Nielsen, M.; de Haas, W.; Lindsay, R.; Matthews, J.; McKenzie, D.C.; Yeung, J.; Schrag, C. An Enhanced Recovery after Surgery Pathway for Microvascular Breast Reconstruction Is Safe and Effective. Plast. Reconstr. Surg. Glob. Open 2018, 6, 1634. [Google Scholar] [CrossRef]
- Muetterties, C.E.; Taylor, J.M.; Kaeding, D.E.; Morales, R.R.; Nguyen, A.V.; Kwan, L.; Tseng, C.Y.; Delong, M.R.; Festekjian, J.H. Enhanced Recovery after Surgery Protocol Decreases Length of Stay and Postoperative Narcotic Use in Microvascular Breast Reconstruction. Plast. Reconstr. Surg. Glob. Open 2023, 11, E5444. [Google Scholar] [CrossRef]
- Haddock, N.T.; Cummins, S.; Lakatta, A.C.; Teotia, S.S.; Farr, D. Enhanced Recovery after Surgery (ERAS) with Exparel in Tissue Expander-Based Breast Reconstruction Following Mastectomy. Aesthet. Surg. J. 2024, 44, S15–S21. [Google Scholar] [CrossRef]
- Oh, C.; Moriarty, J.; Borah, B.J.; Mara, K.C.; Harmsen, W.S.; Saint-Cyr, M.; Lemaine, V. Cost Analysis of Enhanced Recovery after Surgery in Microvascular Breast Reconstruction. J. Plast. Reconstr. Aesthetic Surg. 2018, 71, 819–826. [Google Scholar] [CrossRef]
- Bajaj, A.; Sarkar, P.; Yau, A.; Lentskevich, M.A.; Huffman, K.N.; Williams, T.; Galiano, R.D.; Teven, C.M. The Cost-Effectiveness of Enhanced Recovery after Surgery Protocols in Abdominally Based Autologous Breast Reconstruction. Plast. Reconstr. Surg. Glob. Open 2024, 12, E5793. [Google Scholar] [CrossRef]
- Kaoutzanis, C.; Kumar, N.G.; O’Neill, D.; Wormer, B.; Winocour, J.; Layliev, J.; McEvoy, M.; King, A.; Braun, S.A.; Kye Higdon, K. Enhanced Recovery Pathway in Microvascular Autologous Tissue-Based Breast Reconstruction: Should It Become the Standard of Care? Plast. Reconstr. Surg. 2018, 141, 841–851. [Google Scholar] [CrossRef]
- Pusic, A.L.; Klassen, A.F.; Scott, A.M.; Klok, J.A.; Cordeiro, P.G.; Cano, S.J. Development of a New Patient-Reported Outcome Measure for Breast Surgery: The BREAST-Q. Plast. Reconstr. Surg. 2009, 124, 345–353. [Google Scholar] [CrossRef]
- Shiraishi, M.; Sowa, Y.; Tsuge, I.; Kodama, T.; Inafuku, N.; Morimoto, N. Long-Term Patient Satisfaction and Quality of Life Following Breast Reconstruction Using the BREAST-Q: A Prospective Cohort Study. Front. Oncol. 2022, 12, 815498. [Google Scholar] [CrossRef]
- Lee, M.K.; Hwang, J.W.; Park, J.W.; Woo, K.J. Serial Comparison of Patient-Reported Outcomes of Immediate Breast Reconstruction: Direct-to-Implant Versus Deep Inferior Epigastric Perforator Flap. Aesthetic Plast. Surg. 2024, 48, 1352–1361. [Google Scholar] [CrossRef]
- Wang, Y.; Li, G.; Yang, K.; Bi, Y.; Liu, Y.; Mu, D.; Liu, C.; Xin, M.; Liu, Y.; Mu, L. Analysis of Patient-Reported Outcomes After Breast Reconstruction: A Retrospective Study. Ann. Plast. Surg. 2023, 90, S120–S124. [Google Scholar] [CrossRef]
- Weick, L.; Brorson, F.; Jepsen, C.; Lidén, M.; Jensen, E.W.; Hansson, E. Giving Meaning to Patient Reported Outcomes in Breast Reconstruction after Mastectomy—A Systematic Review of Available Scores and Suggestions for Further Research. Breast 2022, 61, 91–97. [Google Scholar] [CrossRef]
- Park, B.C.; Drolet, B.C.; Perdikis, G. Vanderbilt Mini-PROM-Breast for Breast Reconstruction: A Short-Form, Patient-Reported Outcomes Measure. Plast. Reconstr. Surg. 2024, 153, 291E–302E. [Google Scholar] [CrossRef]
- Johnson, L.; White, P.; Jeevan, R.; Browne, J.; Gulliver-Clarke, C.; O’Donoghue, J.; Mohiuddin, S.; Hollingworth, W.; Fairbrother, P.; MacKenzie, M.; et al. Long-Term Patient-Reported Outcomes of Immediate Breast Reconstruction after Mastectomy for Breast Cancer: Population-Based Cohort Study. Br. J. Surg. 2023, 110, 1815–1823. [Google Scholar] [CrossRef]
- Jansen, B.A.M.; Bargon, C.A.; Bouman, M.A.; van der Molen, D.R.M.; Postma, E.L.; van der Leij, F.; Zonnevylle, E.; Ruhe, Q.; Bruekers, S.E.; Maarse, W.; et al. Patient-Reported Outcomes after Immediate and Delayed DIEP-Flap Breast Reconstruction in the Setting of Post-Mastectomy Radiation Therapy-Results of the Multicenter UMBRELLA Breast Cancer Cohort. Breast Cancer Res. Treat. 2025, 210, 759–769. [Google Scholar] [CrossRef]
- Stark, P.A.; Myles, P.S.; Burke, J.A. Development and Psychometric Evaluation of a Postoperative Quality of Recovery Score: The QoR-15. Anesthesiology 2013, 118, 1332–1340. [Google Scholar] [CrossRef]
- Hays, R.D.; Spritzer, K.L.; Schalet, B.D.; Cella, D. PROMIS®-29 v2.0 Profile Physical and Mental Health Summary Scores. Qual. Life Res. 2018, 27, 1885–1891. [Google Scholar] [CrossRef]
- Weszl, M.; Rencz, F.; Brodszky, V. Is the Trend of Increasing Use of Patient-Reported Outcome Measures in Medical Device Studies the Sign of Shift towards Value-Based Purchasing in Europe? Eur. J. Health Econ. 2019, 20, 133. [Google Scholar] [CrossRef]
- Pasqualini, I.; Piuzzi, N.S. New CMS Policy on the Mandatory Collection of Patient-Reported Outcome Measures for Total Hip and Knee Arthroplasty by 2027 What Orthopaedic Surgeons Should Know. J. Bone Jt. Surg. 2024, 106, 1233–1241. [Google Scholar] [CrossRef]
- Digital Health Trends 2021—IQVIA. Available online: https://www.iqvia.com/insights/the-iqvia-institute/reports-and-publications/reports/digital-health-trends-2021 (accessed on 14 May 2025).
- Tecce, M.G.; Hahn, L.; Welch, B.; Okawa, D.; Wendler, D.J.; Kalva, S.; Balachandran, M.; Delgado, M.K.; Snider, C.K.; Flynn, D.; et al. How Penn Medicine Reimagined Breast Reconstruction, Shifting the Balance of Postoperative Care from Clinic to Home. NEJM Catal. 2021, 2, 1–18. [Google Scholar] [CrossRef]
- Scott, A.R.; Alore, E.A.; Naik, A.D.; Berger, D.H.; Suliburk, J.W. Mixed-Methods Analysis of Factors Impacting Use of a Postoperative Mhealth App. JMIR mHealth uHealth 2017, 5, 6728. [Google Scholar] [CrossRef]
- Dahlberg, K.; Philipsson, A.; Hagberg, L.; Jaensson, M.; Hälleberg-Nyman, M.; Nilsson, U. Cost-Effectiveness of a Systematic e-Assessed Follow-up of Postoperative Recovery after Day Surgery: A Multicentre Randomized Trial. Br. J. Anaesth. 2017, 119, 1039–1046. [Google Scholar] [CrossRef]
- Armstrong, K.A.; Coyte, P.C.; Brown, M.; Beber, B.; Semple, J.L. Effect of Home Monitoring via Mobile App on the Number of In-Person Visits Following Ambulatory Surgery a Randomized Clinical Trial. JAMA Surg. 2017, 152, 622–627. [Google Scholar] [CrossRef]
- Beesoon, S.; Drobot, A.; Smokeyday, M.; Ali, A.B.; Collins, Z.; Reynolds, C.; Berzins, S.; Gibson, A.; Gregg, N. Patient and Provider Experiences with a Digital App to Improve Compliance with Enhanced Recovery After Surgery (ERAS) Protocols: Mixed Methods Evaluation of a Canadian Experience. JMIR Form. Res. 2023, 7, 49277. [Google Scholar] [CrossRef]
- Gopwani, S.; Bahrun, E.; Singh, T.; Popovsky, D.; Cramer, J.; Geng, X. Efficacy of Electronic Reminders in Increasing the Enhanced Recovery After Surgery Protocol Use During Major Breast Surgery: Prospective Cohort Study. JMIR Perioper Med. 2023, 6, 44139. [Google Scholar] [CrossRef]
- Chen, J.; Gabay, A.; Kim, M.; Amakiri, U.; Boe, L.A.; Stern, C.; Mehrara, B.J.; Gibbons, C.; Nelson, J.A. AI Risk Prediction Tools for Alloplastic Breast Reconstruction. Plast. Reconstr. Surg. 2025, 10-1097. [Google Scholar] [CrossRef]
- Prabhu, S.S.; Driscoll, C.R.; Davidson, A.L.; Peoples, A.E.; Katz, A.J. The Effects of Prolonged Intraoperative Hypothermia on Patient Outcomes in Immediate Implant-Based Breast Reconstruction. J. Plast. Reconstr. Aesthetic Surg. 2023, 77, 1–7. [Google Scholar] [CrossRef]
- Andersen, E.S.; Chishom, T.A.; Rankin, J.; Juan, H.Y.; Coots, L.; Mountziaris, P.M. Impact of Intraoperative Hypothermia on Incidence of Infection in Implant-Based Breast Reconstruction. Plast. Reconstr. Surg. 2024, 153, 35–44. [Google Scholar] [CrossRef]
- Haddock, N.T.; Culver, A.J.; Teotia, S.S. Abdominal Weakness, Bulge, or Hernia after DIEP Flaps: An Algorithm of Management, Prevention, and Surgical Repair with Classification. J. Plast. Reconstr. Aesthetic Surg. 2021, 74, 2194–2201. [Google Scholar] [CrossRef] [PubMed]
- Jakeman, M.; Barnes, J.; Taghizadeh, R. Prevention and Management of Post-Deep Inferior Epigastric Perforator Flap Abdominal Bulge: A 5-Year Single-Surgeon Series. J. Plast. Reconstr. Aesthetic Surg. 2022, 75, 3683–3689. [Google Scholar] [CrossRef]
- Chang, E.I.; Chang, E.I.; Soto-Miranda, M.A.; Zhang, H.; Nosrati, N.; Robb, G.L.; Chang, D.W. Comprehensive Analysis of Donor-Site Morbidity in Abdominally Based Free Flap Breast Reconstruction. Plast. Reconstr. Surg. 2013, 132, 1383–1391. [Google Scholar] [CrossRef] [PubMed]
- Nahabedian, M.Y.; Momen, B. Lower Abdominal Bulge after Deep Inferior Epigastric Perforator Flap (DIEP) Breast Reconstruction. Ann. Plast. Surg. 2005, 54, 124–129. [Google Scholar] [CrossRef] [PubMed]
- Hembd, A.; Teotia, S.S.; Zhu, H.; Haddock, N.T. Optimizing Perforator Selection: A Multivariable Analysis of Predictors for Fat Necrosis and Abdominal Morbidity in DIEP Flap Breast Reconstruction. Plast. Reconstr. Surg. 2018, 142, 583–592. [Google Scholar] [CrossRef]
- McCranie, A.S.; Blades, C.; Dawson, S.; Foppiani, J.A.; Allenby, T.; Winocour, J.; Cohen, J.; Mathes, D.; Kaoutzanis, C. Abdominal Wall Reinforcement Using OviTex after Deep Inferior Epigastric Perforator Flap. J. Reconstr. Microsurg. 2025. [Google Scholar] [CrossRef]
- Selber, J.C. The Robotic DIEP Flap. Plast. Reconstr. Surg. 2020, 145, 340–343. [Google Scholar] [CrossRef]
- Hivelin, M.; Soprani, A.; Schaffer, N.; Hans, S.; Lantieri, L. Minimally Invasive Laparoscopically Dissected Deep Inferior Epigastric Artery Perforator Flap: An Anatomical Feasibility Study and a First Clinical Case. Plast. Reconstr. Surg. 2018, 141, 33–39. [Google Scholar] [CrossRef]
- Shakir, S.; Spencer, A.B.; Kozak, G.M.; Nathan, S.L.; Soriano, I.S.; Kanchwala, S.K. Laparoscopically Assisted DIEP Flap Harvest Minimizes Fascial Incision in Autologous Breast Reconstruction. Plast. Reconstr. Surg. 2020, 146, 265E–275E. [Google Scholar] [CrossRef]
- Choi, J.H.; Song, S.Y.; Park, H.S.; Kim, C.H.; Kim, J.Y.; Lew, D.H.; Roh, T.S.; Lee, D.W. Robotic DIEP Flap Harvest through a Totally Extraperitoneal Approach Using a Single-Port Surgical Robotic System. Plast. Reconstr. Surg. 2021, 148, 304–307. [Google Scholar] [CrossRef]
- Morkuzu, S.; Bayezid, K.C.; Ozmen, B.B.; Eren, S.F.; Farhat, S.; McLennan, A.L.; James, A.J.; Nikkhah, D.; Azoury, S.C.; Djohan, R.S.; et al. Evolution and Adaptations of Robotic DIEP Flap Surgery: A Systematic Review. J. Craniofacial Surg. 2024, 36, 10790. [Google Scholar] [CrossRef]
- Shakir, S.; Spencer, A.B.; Piper, M.; Kozak, G.M.; Soriano, I.S.; Kanchwala, S.K. Laparoscopy Allows the Harvest of the DIEP Flap with Shorter Fascial Incisions as Compared to Endoscopic Harvest: A Single Surgeon Retrospective Cohort Study. J. Plast. Reconstr. Aesthetic Surg. 2021, 74, 1203–1212. [Google Scholar] [CrossRef]
- Lee, M.J.; Won, J.; Song, S.Y.; Park, H.S.; Kim, J.Y.; Shin, H.J.; Kwon, Y.I.; Lee, D.W.; Kim, N.Y. Clinical Outcomes Following Robotic versus Conventional DIEP Flap in Breast Reconstruction: A Retrospective Matched Study. Front. Oncol. 2022, 12, 989231. [Google Scholar] [CrossRef]
- Chi, D.; Chen, A.D.; Ha, A.Y.; Yaeger, L.H.; Lee, B.T. Comparative Effectiveness of Transversus Abdominis Plane Blocks in Abdominally Based Autologous Breast Reconstruction: A Systematic Review and Meta-Analysis. Ann. Plast. Surg. 2020, 85, e76–e83. [Google Scholar] [CrossRef]
- Clephas, P.R.; Orbach-Zinger, S.; Gosteli-Peter, M.A.; Hoshen, M.; Halpern, S.; Hilber, N.D.; Leo, C.; Heesen, M. Regional Analgesia Techniques for Postoperative Pain after Breast Cancer Surgery: A Network Meta-Analysis. Cochrane Database Syst. Rev. 2025, 6, CD014818. [Google Scholar] [CrossRef]
- Abdou, S.A.; Daar, D.A.; Wilson, S.C.; Thanik, V. Transversus Abdominis Plane Blocks in Microsurgical Breast Reconstruction: A Systematic Review and Meta-Analysis. J. Reconstr. Microsurg. 2020, 36, 353–361. [Google Scholar] [CrossRef]
- Salibian, A.A.; Frey, J.D.; Thanik, V.D.; Karp, N.S.; Choi, M. Transversus Abdominis Plane Blocks in Microsurgical Breast Reconstruction: Analysis of Pain, Narcotic Consumption, Length of Stay, and Cost. Plast. Reconstr. Surg. 2018, 142, 252E–263E. [Google Scholar] [CrossRef]
- Gatherwright, J.; Knackstedt, R.W.; Ghaznavi, A.M.; Bernard, S.; Schwarz, G.; Moreira, A.; Gurunluoglu, R.; Djohan, R. Prospective, Randomized, Controlled Comparison of Bupivacaine versus Liposomal Bupivacaine for Pain Management after Unilateral Delayed Deep Inferior Epigastric Perforator Free Flap Reconstruction. Plast. Reconstr. Surg. 2018, 141, 1327–1330. [Google Scholar] [CrossRef]
- Chattopadhyay, A.; Shah, J.K.; Yesantharao, P.; Ho, V.T.; Sheckter, C.C.; Nazerali, R. Transversus Abdominus Plane Blocks Do Not Reduce Rates of Postoperative Prolonged Opioid Use Following Abdominally Based Autologous Breast Reconstruction: A Nationwide Longitudinal Analysis. Eur. J. Plast. Surg. 2023, 46, 203–213. [Google Scholar] [CrossRef]
- Aryanpour, Z.; Wallace, A.; Winocour, J.; Cohen, J.; Mathes, D.; Kaoutzanis, C.; Egan, K. SP34. Abdominal Peripheral Nerve Blocks Do Not Impact Post-Operative Pain in Free Flap Breast Reconstruction: A Call to Revisit Eras Protocols. Plast. Reconstr. Surg. Glob. Open 2025, 13, 161. [Google Scholar] [CrossRef]
- Conti, D.; Valoriani, J.; Ballo, P.; Pazzi, M.; Gianesello, L.; Mengoni, V.; Criscenti, V.; Gemmi, E.; Stera, C.; Zoppi, F.; et al. The Clinical Impact of Pectoral Nerve Block in an ‘Enhanced Recovery after Surgery’ Program in Breast Surgery. Pain Manag. 2023, 13, 585–592. [Google Scholar] [CrossRef]
- Cylwik, J.; Celińska-Spodar, M.; Buda, N. Evaluation of the Efficacy of Pectoral Nerve-2 Block (PECS 2) in Breast Cancer Surgery. J. Pers. Med. 2023, 13, 1430. [Google Scholar] [CrossRef]
- Shamsunder, M.G.; Chu, J.J.; Taylor, E.; Polanco, T.O.; Allen, R.J.; Moo, T.A.; Disa, J.J.; Mehrara, B.J.; Tokita, H.K.; Nelson, J.A. Paravertebral Blocks in Tissue Expander Breast Reconstruction: Propensity-Matched Analysis of Opioid Consumption and Patient Outcomes. Plast. Reconstr. Surg. 2023, 151, 542E–551E. [Google Scholar] [CrossRef]
- Ayyala, H.S.; Assel, M.; Aloise, J.; Serafin, J.; Tan, K.S.; Mehta, M.; Puttanniah, V.; McCormick, P.; Malhotra, V.; Vickers, A.; et al. Paravertebral and Erector Spinae Plane Blocks Decrease Length of Stay Compared with Local Infiltration Analgesia in Autologous Breast Reconstruction. Reg. Anesth. Pain Med. 2024, 50, 105031. [Google Scholar] [CrossRef]
- Mendell, L.M. Constructing and Deconstructing the Gate Theory of Pain. Pain 2014, 155, 210–216. [Google Scholar] [CrossRef]
- Saito, T.; Den, S.; Cheema, S.P.S.; Tanuma, K.; Carney, E.; Carlsson, C.; Richardson, J. A Single-Injection, Multi-Segmental Paravertebral Block- Extension of Somatosensory and Sympathetic Block in Volunteers. Acta Anaesthesiol. Scand. 2001, 45, 30–33. [Google Scholar] [CrossRef]
- Bubberman, J.M.; Brandts, L.; van Kuijk, S.M.J.; van der Hulst, R.R.W.J.; Tuinder, S.M.H. The Efficacy of Sensory Nerve Coaptation in DIEP Flap Breast Reconstruction—Preliminary Results of a Double-Blind Randomized Controlled Trial. Breast 2024, 74, 103691. [Google Scholar] [CrossRef]
- Beugels, J.; Bijkerk, E.; Lataster, A.; Heuts, E.M.; Van Der Hulst, R.R.W.J.; Tuinder, S.M.H. Nerve Coaptation Improves the Sensory Recovery of the Breast in DIEP Flap Breast Reconstruction. Plast. Reconstr. Surg. 2021, 148, 273–284. [Google Scholar] [CrossRef]
- Prantl, L.; Moellhoff, N.; Von Fritschen, U.; Giunta, R.; Germann, G.; Kehrer, A.; Thiha, A.; Ehrl, D.; Zeman, F.; Broer, P.N.; et al. Effect of Radiation Therapy on Microsurgical Deep Inferior Epigastric Perforator Flap Breast Reconstructions: A Matched Cohort Analysis of 4577 Cases. Ann. Plast. Surg. 2021, 86, 627–631. [Google Scholar] [CrossRef]
- Bijkerk, E.; Beugels, J.; Van Kuijk, S.M.J.; Lataster, A.; Van Der Hulst, R.R.W.J.; Tuinder, S.M.H. Clinical Relevance of Sensory Nerve Coaptation in DIEP Flap Breast Reconstruction Evaluated Using the BREAST-Q. Plast. Reconstr. Surg. 2022, 150, 959E–969E. [Google Scholar] [CrossRef]
- Guido, G.; Peled, Z.M.; Peled, A.W. Degree and Timing of Sensory Return Following Nipple-Areolar Complex Neurotization During Nipple-Sparing Mastectomy. Ann. Plast. Surg. 2025, 94, S452–S456. [Google Scholar] [CrossRef]
- Tevlin, R.; Brazio, P.; Tran, N.; Nguyen, D. Immediate Targeted Nipple-Areolar Complex Re-Innervation: Improving Outcomes in Immediate Autologous Breast Reconstruction. J. Plast. Reconstr. Aesthetic Surg. 2021, 74, 1503–1507. [Google Scholar] [CrossRef]
- Canizares, O.; Mayo, J.; Soto, E.; Allen, R.J.; Sadeghi, A. Optimizing Efficiency in Deep Inferior Epigastric Perforator Flap Breast Reconstruction. Ann. Plast. Surg. 2015, 75, 186–192. [Google Scholar] [CrossRef]
- Shiah, E.; Laikhter, E.; Comer, C.D.; Manstein, S.M.; Bustos, V.P.; Bain, P.A.; Lee, B.T.; Lin, S.J. Neurotization in Innervated Breast Reconstruction: A Systematic Review of Techniques and Outcomes. J. Plast. Reconstr. Aesthetic Surg. 2022, 75, 2890–2913. [Google Scholar] [CrossRef]
- Uppal, R.S.; Casaer, B.; Van Landuyt, K.; Blondeel, P. The Efficacy of Preoperative Mapping of Perforators in Reducing Operative Times and Complications in Perforator Flap Breast Reconstruction. J. Plast. Reconstr. Aesthetic Surg. 2009, 62, 859–864. [Google Scholar] [CrossRef]
- Singh, D.; Chopra, K.; Sabino, J.; Brown, E. Practical Things You Should Know about Wound Healing and Vacuum-Assisted Closure Management. Plast. Reconstr. Surg. 2020, 145, 839E–854E. [Google Scholar] [CrossRef]
- Googe, B.; Davidson, J.C.; Arnold, P.B.; Medina, A. Closed Incisional Negative Pressure Wound Therapy Sponge Width and Tension Off-Loading: A Laboratory Model. Ann. Plast. Surg. 2020, 85, 295–298. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, A.R.; Dussa, K.R.; Pothare, N.; Kane, P.S. Analysis of treatment of wounds in patients with grade iiib compound fracture with vacuum-assisted wound management. J. Evid. Based Med. Healthc. 2017, 4, 761. [Google Scholar] [CrossRef] [PubMed]
- Gassman, A.; Mehta, A.; Bucholdz, E.; Abthani, A.; Guerra, O.; Maclin, M.M.; Esposito, T.; Thomas, C. Positive Outcomes with Negative Pressure Therapy over Primarily Closed Large Abdominal Wall Reconstruction Reduces Surgical Site Infection Rates. Hernia 2015, 19, 273–278. [Google Scholar] [CrossRef] [PubMed]
- Ge, D. The Safety of Negative-Pressure Wound Therapy on Surgical Wounds: An Updated Meta-Analysis of 17 Randomized Controlled Trials. Adv. Ski. Wound Care 2018, 31, 421–428. [Google Scholar] [CrossRef]
- Chen, S.Z.; Li, J.; Li, X.Y.; Xu, L.S. Effects of Vacuum-Assisted Closure on Wound Microcirculation: An Experimental Study. Asian J. Surg. 2005, 28, 211–217. [Google Scholar] [CrossRef]
- Mendonca, D.A.; Cosker, T.; Makwana, N.K. Vacuum-Assisted Closure to Aid Wound Healing in Foot and Ankle Surgery. Foot. Ankle. Int. 2005, 26, 761–766. [Google Scholar] [CrossRef]
- Waltzman, J.T.; Bell, D.E. Vacuum-Assisted Closure Device as a Split-Thickness Skin Graft Bolster in the Burn Population. J. Burn Care Res. 2014, 35, e338–e342. [Google Scholar] [CrossRef]
- Stoeckel, W.T.; David, L.; Levine, E.A.; Argenta, A.E.; Perrier, N.D. Vacuum-Assisted Closure for the Treatment of Complex Breast Wounds. Breast 2006, 15, 610–613. [Google Scholar] [CrossRef]
- Gabriel, A.; Sigalove, S.; Sigalove, N.; Storm-Dickerson, T.; Rice, J.; Maxwell, P.; Griffin, L. The Impact of Closed Incision Negative Pressure Therapy on Postoperative Breast Reconstruction Outcomes. Plast. Reconstr. Surg. Glob. Open 2018, 6, 1880. [Google Scholar] [CrossRef]
- Cagney, D.; Simmons, L.; O’Leary, D.P.; Corrigan, M.; Kelly, L.; O’Sullivan, M.J.; Liew, A.; Redmond, H.P. The Efficacy of Prophylactic Negative Pressure Wound Therapy for Closed Incisions in Breast Surgery: A Systematic Review and Meta-Analysis. World J. Surg. 2020, 44, 1526–1537. [Google Scholar] [CrossRef]
- Pieszko, K.; Pieszko, K.; Wichtowski, M.; Cieśla, S.; Ławnicka, A.; Jamont, R.; Boyd, J.B.; Murawa, D. A Randomized Study Comparing Closed-Incision Negative-Pressure Wound Therapy with Standard Care in Immediate Breast Reconstruction. Plast. Reconstr. Surg. 2023, 151, 1123–1133. [Google Scholar] [CrossRef]
- Chow, O.; Graham, S.; Ricciardello, D.; Davies, M.; Lajevardi, S.; Hussain, G.; Deva, A.K. Randomized Controlled Trial to Assess Negative Pressure Wound Therapy versus Standard-of-Care Dressings in Breast Surgery: A Pilot Study. Plast. Reconstr. Surg. Glob. Open 2024, 12, e5799. [Google Scholar] [CrossRef]
- Muller-Sloof, E.; de Laat, H.E.W.; Hummelink, S.L.M.; Peters, J.W.B.; Ulrich, D.J.O. The Effect of Postoperative Closed Incision Negative Pressure Therapy on the Incidence of Donor Site Wound Dehiscence in Breast Reconstruction Patients: DEhiscence PREvention Study (DEPRES), Pilot Randomized Controlled Trial. J. Tissue Viability 2018, 27, 262–266. [Google Scholar] [CrossRef] [PubMed]
- Muller-Sloof, E.; De Laat, E.; Kenç, O.; Kumaş, A.; Vermeulen, H.; Hummelink, S.; Ulrich, D.J.O. Closed-Incision Negative-Pressure Therapy Reduces Donor-Site Surgical Wound Dehiscence in DIEP Flap Breast Reconstructions: A Randomized Clinical Trial. Plast. Reconstr. Surg. 2022, 150, 38S–47S. [Google Scholar] [CrossRef] [PubMed]
- Siegwart, L.C.; Sieber, L.; Fischer, S.; Maraka, S.; Kneser, U.; Kotsougiani-Fischer, D. Influence of Closed Incision Negative-Pressure Therapy on Abdominal Donor-Site Morbidity in Microsurgical Breast Reconstruction. Microsurgery 2022, 42, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Chapman, Z.; Cole, E.; Koide, S.; Mah, E.; Overstall, S.; Trotter, D. Use of Closed Incision Negative Pressure Therapy (CiNPT) in Breast Reconstruction Abdominal Free Flap Donor Sites. J. Clin. Med. 2021, 10, 5176. [Google Scholar] [CrossRef]
- Haas, E.; Garoosi, K.; Kalia, N.; Tin, G.; Lee, A.; Orfahli, L.M.; Mathes, D.W.; Kaoutzanis, C.; Cohen, J.B. Complications Associated with Abdominal Incisional Wound Vacuum Assisted Closure Following Deep Inferior Epigastric Perforator Flap Harvest for Breast Reconstruction: A Single Institution Retrospective Study. J. Plast. Reconstr. Aesthetic Surg. 2025, 103, 345–350. [Google Scholar] [CrossRef]
- Murray, C.D.; Turner, A.; Rehan, C.; Kovacs, T. Satisfaction Following Immediate Breast Reconstruction: Experiences in the Early Post-Operative Stage. Br. J. Health Psychol. 2015, 20, 579–593. [Google Scholar] [CrossRef]
- Rowland, J.H.; Holland, J.C.; Chaglassian, T.; Kinne, D. Psychological Response to Breast Reconstruction: Expectations for and Impact on Postmastectomy Functioning. Psychosomatics 1993, 34, 241–250. [Google Scholar] [CrossRef]
- Crompvoets, S. Comfort, Control, or Conformity: Women Who Choose Breast Reconstruction Following Mastectomy. Health Care Women Int. 2006, 27, 75–93. [Google Scholar] [CrossRef]
- Carr, T.L.; Groot, G.; Cochran, D.; Vancoughnett, M.; Holtslander, L. Exploring Women’s Support Needs After Breast Reconstruction Surgery: A Qualitative Study. Cancer Nurs. 2019, 42, E1–E9. [Google Scholar] [CrossRef]
- Drageset, S.; Lindstrøm, T.C.; Giske, T.; Underlid, K. Women’s Experiences of Social Support during the First Year Following Primary Breast Cancer Surgery. Scand. J. Caring Sci. 2016, 30, 340–348. [Google Scholar] [CrossRef]
- Belete, N.G.; Bhakta, M.; Wilfong, T.; Shewangizaw, M.; Abebaw, E.; Tenaw, Y.; Shawel, M.; Seife, H.; Habtamu, B.; Wondwossen, N.; et al. Exploring the Impact of Breast Cancer Support Groups on Survivorship and Treatment Decision-Making in Eastern Ethiopia: A Qualitative Study. Support. Care Cancer 2025, 33, 419. [Google Scholar] [CrossRef]
- Ursavaş, F.E.; Karayurt, Ö. Experience with a Support Group Intervention Offered to Breast Cancer Women. J. Breast Health 2017, 13, 54. [Google Scholar] [CrossRef] [PubMed]
- Xue, E.Y.; Chu, C.K.; Winocour, S.; Cen, N.; Reece, E. Establishing a Telemedicine Program for Breast Reconstruction. Plast. Reconstr. Surg. Glob. Open 2020, 8, e2594. [Google Scholar] [CrossRef] [PubMed]
- Stafford, A.P.; Hoskin, T.L.; Hieken, T.J.; Sanders, S.; Pruthi, S.; Boughey, J.; Degnim, A. Lessons Learned from the COVID-19 Pandemic: Using Telemedicine for Pre-Operative Surgical Evaluation in Breast Disease. J. Telemed. Telecare 2023, 31, 454–459. [Google Scholar] [CrossRef] [PubMed]
- Telehealth Project—NCCS—National Coalition for Cancer Survivorship. Available online: https://canceradvocacy.org/resources/telehealth/ (accessed on 15 May 2025).
- Stearns, S.A.; Lee, D.; Bustos, V.P.; Haddad, A.; Hassell, N.; Kim, E.; Foppiani, J.A.; Lee, T.C.; Lin, S.J.; Lee, B.T. Enhancing Post-Mastectomy Care: Telehealth’s Impact on Breast Reconstruction Accessibility for Breast Cancer Patients. Cancers 2024, 16, 2555. [Google Scholar] [CrossRef]
- Yesantharao, P.; El Eter, L.; Aravind, P.; Abeles, E.B.; Aliu, O.; Manahan, M.A.; Cooney, D.S.; Cooney, C.M.; Rosson, G.D.; Broderick, K.P. Telemedicine for Breast Reconstruction: Exploring Patient Satisfaction Using the Breast-Q Tool. Plast. Reconstr. Surg. Glob. Open 2021, 9, 118–119. [Google Scholar] [CrossRef]
- Cadili, L.; DeGirolamo, K.; Ma, C.S.Y.; Chen, L.; McKevitt, E.; Pao, J.S.; Dingee, C.; Bazzarelli, A.; Warburton, R. The Breast Cancer Patient Experience of Telemedicine During COVID-19. Ann. Surg. Oncol. 2022, 29, 2244–2252. [Google Scholar] [CrossRef]
Period/Purpose | Item | Recommendation |
---|---|---|
Preoperative | Preadmission Counseling | Provide detailed preadmission counseling regarding expectations |
Preadmission Optimization | ≥1 month smoking and alcohol abstinence; BMI ≤ 30 kg/m2 | |
Perforator Flap Planning | CTA as required | |
Fasting | Minimize fasting; permit clear fluids up to 2 h before surgery | |
Carbohydrate Loading | Maltodextrin-based fluids administered 2 h before surgery | |
Prophylaxis | Venous Thromboembolism (VTE) | Assess risk; maintain low molecular weight/unfractionated heparin ± mechanical methods |
Infection | Chlorhexidine skin preparation; intravenous broad-spectrum antibiotics | |
Nausea/Vomiting | Antiemetic medications | |
Intraoperative | Pain Management | Multimodal analgesia |
Anesthesia | Total intravenous anesthesia (TIVA) | |
Preventing Hypothermia | Forced air; temperature monitoring for maintenance ≥ 36 °C | |
Fluid Management | Use of balanced crystalloid solutions and pressors | |
Postoperative | Pain Management | Opioid-sparing, multimodal analgesia |
Early Feeding | Oral food and fluids within 24 h | |
Flap Monitoring | Frequent monitoring during the first 72 h; implantable Doppler devices for buried flaps | |
Wound Management | Conventional sutures for incisional closure; debridement and negative pressure for complex wounds | |
Early Mobilization | Ambulation within 24 h | |
Post Discharge Support | Early physiotherapy, supportive care |
Authors | Procedure | Outcomes Associated with ERAS |
---|---|---|
Niu et al. (2023) [20] | IBR | No significant differences in complications in same-day discharge cohort vs. overnight cohort |
Taylor et al. (2024) [21] | IBR | ↓ LOS, postoperative pain, and postoperative opioid use |
Kennedy et al. (2020) [22] | IBR | ↓ LOS and postoperative opioid use |
Hatchell et al. (2024) [23] | IBR | ↓ Unplanned readmission |
Gehring et al. (2024) [24] | IBR | No significant differences in complications in same-day discharge cohort vs. overnight cohort |
Stahl et al. (2024) [25] | Implant-based elective augmentation | ↑ BREAST-Q scores |
Seren et al. (2024) [26] | Implant-based elective augmentation | Early discharge with rapid return to daily activities |
Wong et al. (2023) [27] | Implant-based elective augmentation | ↓ Postoperative opioid use |
Offodile et al. (2019) [28] | ABR | ↓ LOS and postoperative opioid use |
Astanehe et al. (2018) [29] | ABR | ↓ LOS, postoperative opioid and emetic use, postoperative pain, and time to resume regular diet and activity |
Linder et al. (2022) [16] | ABR | ↓ LOS and surgical time |
Muetterties et al. (2023) [30] | ABR | ↓ LOS and opioid use |
Haddock et al. (2024) [31] | ABR | ↓ LOS and opioid use |
Oh et al. (2018) [32] | ABR | ↓ Cost |
Bajaj et al. (2024) [33] | ABR | ↓ Cost |
Kaoutzanis et al. (2018) [34] | ABR | ↓ LOS, opioid use, and cost |
Pillar | Focus | Examples |
---|---|---|
Prepare | Predict risk and optimize baseline health | Web applications, AI/ML * risk scoring |
Protect | Minimize intraoperative morbidity | Robotic DIEP harvest, pectoral nerve block |
Restore | Enhance functional and sensory recovery | Neurotization, ciNPT † |
Empower | Support psychosocial and long-term recovery | PROM, Telehealth, survivor groups |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haas, E.J.; Hamzeh, B.F.; Aryanpour, Z.; Yu, J.W.; Mathes, D.W.; Kaoutzanis, C. Improving the Patient Experience in Breast Reconstruction: ERAS and Beyond. J. Clin. Med. 2025, 14, 5595. https://doi.org/10.3390/jcm14155595
Haas EJ, Hamzeh BF, Aryanpour Z, Yu JW, Mathes DW, Kaoutzanis C. Improving the Patient Experience in Breast Reconstruction: ERAS and Beyond. Journal of Clinical Medicine. 2025; 14(15):5595. https://doi.org/10.3390/jcm14155595
Chicago/Turabian StyleHaas, Evan J., Bilal F. Hamzeh, Zain Aryanpour, Jason W. Yu, David W. Mathes, and Christodoulos Kaoutzanis. 2025. "Improving the Patient Experience in Breast Reconstruction: ERAS and Beyond" Journal of Clinical Medicine 14, no. 15: 5595. https://doi.org/10.3390/jcm14155595
APA StyleHaas, E. J., Hamzeh, B. F., Aryanpour, Z., Yu, J. W., Mathes, D. W., & Kaoutzanis, C. (2025). Improving the Patient Experience in Breast Reconstruction: ERAS and Beyond. Journal of Clinical Medicine, 14(15), 5595. https://doi.org/10.3390/jcm14155595