Co-Occurrence of Aortic Stenosis and Coronary Artery Disease: Facing Challenges Before, During, and After Transcatheter Aortic Valve Replacement
Abstract
1. Introduction
2. Methods
3. Aortic Stenosis and Coronary Artery Disease
3.1. Impact of CAD in Patients with Aortic Stenosis
Pathophysiological Molecular Pathways in the CAD–AS Relationship
3.2. Challenges in Diagnostic Evaluation of Coronary Artery Disease in Patients with AS
3.2.1. Non-Invasive Assessment
3.2.2. Invasive Assessment
4. Coronary Revascularization Before, During, or After TAVR: Limits, Benefits, and Potential Solutions
4.1. The Timing Enigma of PCI Strategies in Patients Undergoing TAVR
4.1.1. Coronary Revascularization Before TAVR
4.1.2. Concomitant PCI and TAVR
4.1.3. Coronary Revascularization After TAVR
Timing of PCI | PROS | CONS |
---|---|---|
BEFORE-TAVR | SURTAVI TRIAL (TAVR and PCI vs. SAVR and CABG) [59]
| SURTAVI TRAIL (TAVR and PCI vs. SAVR and CABG)
|
ACTIVATION TRIAL (PCI prior to TAVR vs. no PCI prior to TAVR) [21]
| ACTIVATION TRIAL (PCI prior to TAVR vs. no PCI prior to TAVR)
| |
NOTION-3 (TAVR + PCI vs. conservative treatment) [22]
| NOTION-3 (TAVR + PCI vs. conservative treatment)
| |
REVASC-TAVI REGISTRY (PCI before (65.6%), PCI after (9.8%), or PCI concomitant (24.6%) with TAVR) [20]
| REVASC-TAVI REGISTRY (PCI before (65.6%), PCI after (9.8%), or PCI concomitant (24.6%) with TAVR)
| |
CONCOMITANT-TAVR | SURTAVI TRIAL (TAVR and PCI vs. SAVR and CABG) [59]
| REVASC-TAVI REGISTRY (PCI before (65.6%), PCI after (9.8%), or PCI concomitant with (24.6%) TAVR) [20]
|
REVASC-TAVI REGISTRY (PCI before (65.6%), PCI after (9.8%), or PCI concomitant (24.6%) with TAVR) [20]
| ||
EVERY-VALVE REGISTRY (77.6% no PCI, 10.1% stepwise PCI, 12.3% concomitant PCI) [60]
| EVERY-VALVE REGISTRY (77.6% no PCI, 10.1% stepwise PCI, 12.3% concomitant PCI)
| |
BARBANTI ET AL. [66]
| ||
AFTER-TAVR | REVASC-TAVI REGISTRY (PCI before (65.6%), PCI after (9.8%), or PCI concomitant (24.6%) with TAVR) [20]
| REVASC-TAVI REGISTRY (PCI before (65.6%), PCI after (9.8%), or PCI concomitant with (24.6%) to TAVR)
|
LUNARDI ET AL. [79]
|
4.2. The Importance of Commissural Alignment During TAVR Procedure
5. Management of Coronary Artery Disease After TAVR
5.1. Factors Influencing Coronary Re-Access After TAVR
5.2. Coronary Re-Access in Self-Expanding Valves (SEVs)
5.3. Coronary Re-Access in Balloon-Expandable Valves
5.4. Tips and Tricks for Coronary Ostia Cannulation
6. Special Settings to Consider When Facing Challenges in Patients with CAD Undergoing TAVR
6.1. Insight into Coronary Access in TAVR-in-SAVR and TAVR-in-TAVR
6.2. Future Directions
The Role of Sodium-Glucose Cotransporter-2 Inhibitors in TAVR Patients
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mascherbauer, J.; Rudolph, T.; Strauch, J.T.; Seiffert, M.; Bleiziffer, S.; Bartko, P.E.; Zielinski, M.; Vijayan, A.; Bramlage, P.; Hengstenberg, C. Preprocedural Assessment of Coronary Artery Disease in Patients Undergoing Transcatheter Aortic Valve Implantation: Rationale and Design of the EASE-IT CT Registry. Eur. J. Clin. Investig. 2024, 54, e14274. [Google Scholar] [CrossRef] [PubMed]
- Faroux, L.; Guimaraes, L.; Wintzer-Wehekind, J.; Junquera, L.; Ferreira-Neto, A.N.; Del Val, D.; Muntané-Carol, G.; Mohammadi, S.; Paradis, J.-M.; Rodés-Cabau, J. Coronary Artery Disease and Transcatheter Aortic Valve Replacement. J. Am. Coll. Cardiol. 2019, 74, 362–372. [Google Scholar] [CrossRef] [PubMed]
- Faroux, L.; Villecourt, A.; Metz, D. The Management of Coronary Artery Disease in TAVR Patients. J. Clin. Med. 2023, 12, 7126. [Google Scholar] [CrossRef]
- Walther, T.; Hamm, C.W.; Schuler, G.; Berkowitsch, A.; Kötting, J.; Mangner, N.; Mudra, H.; Beckmann, A.; Cremer, J.; Welz, A.; et al. Perioperative Results and Complications in 15,964 Transcatheter Aortic Valve Replacements. J. Am. Coll. Cardiol. 2015, 65, 2173–2180. [Google Scholar] [CrossRef]
- Holmes, D.R.; Nishimura, R.A.; Grover, F.L.; Brindis, R.G.; Carroll, J.D.; Edwards, F.H.; Peterson, E.D.; Rumsfeld, J.S.; Shahian, D.M.; Thourani, V.H.; et al. Annual Outcomes With Transcatheter Valve Therapy. Ann. Thorac. Surg. 2016, 101, 789–800. [Google Scholar] [CrossRef] [PubMed]
- Tarantini, G.; Tang, G.; Nai Fovino, L.; Blackman, D.; Van Mieghem, N.M.; Kim, W.-K.; Karam, N.; Carrilho-Ferreira, P.; Fournier, S.; Pręgowski, J.; et al. Management of Coronary Artery Disease in Patients Undergoing Transcatheter Aortic Valve Implantation. A Clinical Consensus Statement from the European Association of Percutaneous Cardiovascular Interventions in Collaboration with the ESC Working Group on Cardiovascular Surgery. EuroIntervention 2023, 19, 37–52. [Google Scholar] [CrossRef]
- Benseba, J.; Mercier, J.; Couture, T.; Faroux, L.; Bernatchez, L.; Côté, M.; Panagides, V.; Mesnier, J.; Mohammadi, S.; Dumont, É.; et al. Fractional Flow Reserve to Assess Coronary Artery Disease in Patients with Severe Aortic Stenosis Undergoing Transcatheter Aortic Valve Implantation: Long-Term Outcomes. Struct. Heart 2023, 7, 100179. [Google Scholar] [CrossRef]
- Scarsini, R.; Pesarini, G.; Zivelonghi, C.; Piccoli, A.; Ferrero, V.; Lunardi, M.; Gottin, L.; Zanetti, C.; Faggian, G.; Ribichini, F. Physiologic Evaluation of Coronary Lesions Using Instantaneous Wave-Free Ratio (iFR) in Patients with Severe Aortic Stenosis Undergoing Transcatheter Aortic Valve Implantation. EuroIntervention 2018, 13, 1512–1519. [Google Scholar] [CrossRef]
- Weferling, M.; Kim, W.-K. Invasive Functional Assessment of Coronary Artery Disease in Patients with Severe Aortic Stenosis in the TAVI Era. J. Clin. Med. 2023, 12, 5414. [Google Scholar] [CrossRef]
- Paradis, J.-M.; Fried, J.; Nazif, T.; Kirtane, A.; Harjai, K.; Khalique, O.; Grubb, K.; George, I.; Hahn, R.; Williams, M.; et al. Aortic Stenosis and Coronary Artery Disease: What Do We Know? What Don’t We Know? A Comprehensive Review of the Literature with Proposed Treatment Algorithms. Eur. Heart J. 2014, 35, 2069–2082. [Google Scholar] [CrossRef]
- Marin, F.; Scarsini, R.; Kotronias, R.; Terentes-Printzios, D.; Burrage, M.; Bray, J.; Ciofani, J.; Venturi, G.; Pighi, M.; De Maria, G.; et al. Aortic Valve Disease and Associated Complex CAD: The Interventional Approach. J. Clin. Med. 2021, 10, 946. [Google Scholar] [CrossRef] [PubMed]
- Franzone, A.; Stortecky, S.; Räber, L.; Heg, D.; Yamaji, K.; Piccolo, R.; Asami, M.; Lanz, J.; Praz, F.; Koskinas, K.; et al. Effects of Coronary Artery Disease in Patients Undergoing Transcatheter Aortic Valve Implantation: A Study of Age- and Gender-Matched Cohorts. Int. J. Cardiol. 2017, 243, 150–155. [Google Scholar] [CrossRef]
- Cao, D.; Chiarito, M.; Pagnotta, P.; Reimers, B.; Stefanini, G.G. Coronary Revascularisation in Transcatheter Aortic Valve Implantation Candidates: Why, Who, When? Interv. Cardiol. Rev. 2018, 13, 69–76. [Google Scholar] [CrossRef]
- Abdel-Wahab, M.; Zahn, R.; Horack, M.; Gerckens, U.; Schuler, G.; Sievert, H.; Naber, C.; Voehringer, M.; Schäfer, U.; Senges, J.; et al. Transcatheter Aortic Valve Implantation in Patients with and without Concomitant Coronary Artery Disease: Comparison of Characteristics and Early Outcome in the German Multicenter TAVI Registry. Clin. Res. Cardiol. 2012, 101, 973–981. [Google Scholar] [CrossRef] [PubMed]
- Costa, G.; Barbanti, M.; Rosato, S.; Seccareccia, F.; Tarantini, G.; Fineschi, M.; Salizzoni, S.; Valvo, R.; Tamburino, C.; Biancari, F.; et al. Real-World Multiple Comparison of Transcatheter Aortic Valves: Insights from the Multicenter OBSERVANT II Study. Circ Cardiovasc. Interv. 2022, 15, e012294. [Google Scholar] [CrossRef]
- Aurigemma, C.; Massussi, M.; Fraccaro, C.; Adamo, M.; D’Errigo, P.; Rosato, S.; Seccareccia, F.; Santoro, G.; Baiocchi, M.; Barbanti, M.; et al. Impact of Chronic Coronary Artery Disease and Revascularization Strategy in Patients with Severe Aortic Stenosis Who Underwent Transcatheter Aortic Valve Implantation. Am. J. Cardiol. 2023, 206, 14–22. [Google Scholar] [CrossRef] [PubMed]
- Vahanian, A.; Beyersdorf, F.; Praz, F.; Milojevic, M.; Baldus, S.; Bauersachs, J.; Capodanno, D.; Conradi, L.; De Bonis, M.; De Paulis, R.; et al. 2021 ESC/EACTS Guidelines for the Management of Valvular Heart Disease. Eur. Heart J. 2022, 43, 561–632. [Google Scholar] [CrossRef]
- Otto, C.M.; Nishimura, R.A.; Bonow, R.O.; Carabello, B.A.; Erwin, J.P.; Gentile, F.; Jneid, H.; Krieger, E.V.; Mack, M.; McLeod, C.; et al. 2020 ACC/AHA Guideline for the Management of Patients with Valvular Heart Disease: Executive Summary: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 2021, 143, e35–e71. [Google Scholar] [CrossRef]
- Witberg, G.; Regev, E.; Chen, S.; Assali, A.; Barbash, I.M.; Planer, D.; Vaknin-Assa, H.; Guetta, V.; Vukasinovic, V.; Orvin, K.; et al. The Prognostic Effects of Coronary Disease Severity and Completeness of Revascularization on Mortality in Patients Undergoing Transcatheter Aortic Valve Replacement. JACC Cardiovasc. Interv. 2017, 10, 1428–1435. [Google Scholar] [CrossRef]
- Rheude, T.; Costa, G.; Ribichini, F.L.; Pilgrim, T.; Amat Santos, I.J.; De Backer, O.; Kim, W.; Ribeiro, H.B.; Saia, F.; Bunc, M.; et al. Comparison of Different Percutaneous Revascularisation Timing Strategies in Patients Undergoing Transcatheter Aortic Valve Implantation. EuroIntervention 2023, 19, 589–599. [Google Scholar] [CrossRef]
- Patterson, T.; Clayton, T.; Dodd, M.; Khawaja, Z.; Morice, M.C.; Wilson, K.; Kim, W.-K.; Meneveau, N.; Hambrecht, R.; Byrne, J.; et al. ACTIVATION (PercutAneous Coronary inTervention prIor to Transcatheter Aortic VAlve implantaTION). JACC Cardiovasc. Interv. 2021, 14, 1965–1974. [Google Scholar] [CrossRef] [PubMed]
- Lønborg, J.; Jabbari, R.; Sabbah, M.; Veien, K.T.; Niemelä, M.; Freeman, P.; Linder, R.; Ioanes, D.; Terkelsen, C.J.; Kajander, O.A.; et al. PCI in Patients Undergoing Transcatheter Aortic-Valve Implantation. N. Engl. J. Med. 2024, 391, 2189–2200. [Google Scholar] [CrossRef]
- Hansson, G.K. Inflammation, Atherosclerosis, and Coronary Artery Disease. N. Engl. J. Med. 2005, 352, 1685–1695. [Google Scholar] [CrossRef]
- Olsson, M.; Thyberg, J.; Nilsson, J. Presence of Oxidized Low Density Lipoprotein in Nonrheumatic Stenotic Aortic Valves. Arterioscler. Thromb. Vasc. Biol. 1999, 19, 1218–1222. [Google Scholar] [CrossRef] [PubMed]
- Shao, J.-S.; Cheng, S.-L.; Sadhu, J.; Towler, D.A. Inflammation and the Osteogenic Regulation of Vascular Calcification: A Review and Perspective. Hypertension 2010, 55, 579–592. [Google Scholar] [CrossRef] [PubMed]
- Garg, V.; Muth, A.N.; Ransom, J.F.; Schluterman, M.K.; Barnes, R.; King, I.N.; Grossfeld, P.D.; Srivastava, D. Mutations in NOTCH1 Cause Aortic Valve Disease. Nature 2005, 437, 270–274. [Google Scholar] [CrossRef]
- Khan, K.; Yu, B.; Kiwan, C.; Shalal, Y.; Filimon, S.; Cipro, M.; Shum-Tim, D.; Cecere, R.; Schwertani, A. The Role of Wnt/β-Catenin Pathway Mediators in Aortic Valve Stenosis. Front. Cell Dev. Biol. 2020, 8, 862. [Google Scholar] [CrossRef]
- Liu, Y.; Neogi, A.; Mani, A. The Role of Wnt Signalling in Development of Coronary Artery Disease and Its Risk Factors. Open Biol. 2020, 10, 200128. [Google Scholar] [CrossRef]
- Capoulade, R.; Chan, K.L.; Yeang, C.; Mathieu, P.; Bossé, Y.; Dumesnil, J.G.; Tam, J.W.; Teo, K.K.; Mahmut, A.; Yang, X.; et al. Oxidized Phospholipids, Lipoprotein(a), and Progression of Calcific Aortic Valve Stenosis. J. Am. Coll. Cardiol. 2015, 66, 1236–1246. [Google Scholar] [CrossRef]
- Cho, L.; Nicholls, S.J.; Nordestgaard, B.G.; Landmesser, U.; Tsimikas, S.; Blaha, M.J.; Leitersdorf, E.; Lincoff, A.M.; Lesogor, A.; Manning, B.; et al. Design and Rationale of Lp(a)HORIZON Trial: Assessing the Effect of Lipoprotein(a) Lowering with Pelacarsen on Major Cardiovascular Events in Patients with CVD and Elevated Lp(a). Am. Heart J. 2025, 287, 1–9. [Google Scholar] [CrossRef]
- Dagan, M.; Cheung, K.; Quine, E.; Gard, E.; Johnston, R.; Barker, S.; Gartner, E.; Htun, N.M.; Stub, D.; Walton, A.S.; et al. Coronary Artery Disease Risk Prediction in Patients with Severe Aortic Stenosis: Development and Validation of the Aortic Stenosis-Coronary Artery Disease (AS-CAD) Score. Am. J. Cardiol. 2023, 205, 134–140. [Google Scholar] [CrossRef]
- Blanke, P.; Weir-McCall, J.R.; Achenbach, S.; Delgado, V.; Hausleiter, J.; Jilaihawi, H.; Marwan, M.; Nørgaard, B.L.; Piazza, N.; Schoenhagen, P.; et al. Computed Tomography Imaging in the Context of Transcatheter Aortic Valve Implantation (TAVI)/Transcatheter Aortic Valve Replacement (TAVR). JACC Cardiovasc. Imaging 2019, 12, 1–24. [Google Scholar] [CrossRef] [PubMed]
- Nusca, A.; Viscusi, M.M.; Circhetta, S.; Cammalleri, V.; Mangiacapra, F.; Ricottini, E.; Melfi, R.; Gallo, P.; Cocco, N.; Rinaldi, R.; et al. Impact of Burden and Distribution of Aortic Valve Calcification on the Hemodynamic Performance and Procedural Outcomes of a Self-Expanding, Intra-Annular Transcatheter Aortic Valve System. Int. J. Cardiovasc. Imaging 2024, 40, 2545–2558. [Google Scholar] [CrossRef] [PubMed]
- Rossi, A.; De Cecco, C.N.; Kennon, S.R.O.; Zou, L.; Meinel, F.G.; Toscano, W.; Segreto, S.; Achenbach, S.; Hausleiter, J.; Schoepf, U.J.; et al. CT Angiography to Evaluate Coronary Artery Disease and Revascularization Requirement before Trans-Catheter Aortic Valve Replacement. J. Cardiovasc. Comput. Tomogr. 2017, 11, 338–346. [Google Scholar] [CrossRef]
- Circhetta, S.; Nobile, E.; De Filippis, A.; Vicchio, L.; Nusca, A.; De Stefano, D.; Piccirillo, F.; Cammalleri, V.; Mangiacapra, F.; Ricottini, E.; et al. Designing the Optimal Procedure: Role of CT Scan in the Planning of Transcatheter Structural Heart Interventions. Appl. Sci. 2023, 13, 1589. [Google Scholar] [CrossRef]
- Van Den Boogert, T.P.W.; Vendrik, J.; Claessen, B.E.P.M.; Baan, J.; Beijk, M.A.; Limpens, J.; Boekholdt, S.A.M.; Hoek, R.; Planken, R.N.; Henriques, J.P. CTCA for Detection of Significant Coronary Artery Disease in Routine TAVI Work-up: A Systematic Review and Meta-Analysis. Neth. Heart J. 2018, 26, 591–599. [Google Scholar] [CrossRef]
- Cury, R.C.; Abbara, S.; Achenbach, S.; Agatston, A.; Berman, D.S.; Budoff, M.J.; Dill, K.E.; Jacobs, J.E.; Maroules, C.D.; Rubin, G.D.; et al. CAD-RADSTM Coronary Artery Disease—Reporting and Data System. An Expert Consensus Document of the Society of Cardiovascular Computed Tomography (SCCT), the American College of Radiology (ACR) and the North American Society for Cardiovascular Imaging (NASCI). Endorsed by the American College of Cardiology. J. Cardiovasc. Comput. Tomogr. 2016, 10, 269–281. [Google Scholar] [CrossRef]
- Chieffo, A.; Giustino, G.; Spagnolo, P.; Panoulas, V.F.; Montorfano, M.; Latib, A.; Figini, F.; Agricola, E.; Gerli, C.; Franco, A.; et al. Routine Screening of Coronary Artery Disease with Computed Tomographic Coronary Angiography in Place of Invasive Coronary Angiography in Patients Undergoing Transcatheter Aortic Valve Replacement. Circ. Cardiovasc. Interv. 2015, 8, e002025. [Google Scholar] [CrossRef]
- Min, J.K.; Taylor, C.A.; Achenbach, S.; Koo, B.K.; Leipsic, J.; Nørgaard, B.L.; Pijls, N.J.; De Bruyne, B. Noninvasive Fractional Flow Reserve Derived from Coronary CT Angiography. JACC Cardiovasc. Imaging 2015, 8, 1209–1222. [Google Scholar] [CrossRef]
- Tonino, P.A.L.; De Bruyne, B.; Pijls, N.H.J.; Siebert, U.; Ikeno, F.; van’t Veer, M.; Klauss, V.; Manoharan, G.; Engstrøm, T.; Oldroyd, K.G.; et al. Fractional Flow Reserve versus Angiography for Guiding Percutaneous Coronary Intervention. N. Engl. J. Med. 2009, 360, 213–224. [Google Scholar] [CrossRef]
- Khoo, J.K.; Sellers, S.; Fairbairn, T.; Polsani, V.; Liu, S.; Yong, G.; Shetty, S.; Corrigan, F.; Ko, B.; Vucic, E.; et al. Feasibility and Utility of Anatomical and Physiological Evaluation of Coronary Disease with Cardiac CT in Severe Aortic Stenosis (FUTURE-AS Registry): Rationale and Design. J. Soc. Cardiovasc. Angiogr. Interv. 2024, 3, 101293. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.D.; Kwong, R.Y. Cardiac Magnetic Resonance Imaging in Patients with Coronary Disease. Curr. Treat. Options Cardio Med. 2008, 10, 83–92. [Google Scholar] [CrossRef] [PubMed]
- Salatzki, J.; Ochs, A.; Kirchgäßner, N.; Heins, J.; Seitz, S.; Hund, H.; Mereles, D.; Friedrich, M.G.; Katus, H.A.; Frey, N.; et al. Safety of Stress Cardiac Magnetic Resonance in Patients with Moderate to Severe Aortic Valve Stenosis. J. Cardiovasc. Imaging 2023, 31, 26. [Google Scholar] [CrossRef]
- McHugh, S.; Allaham, H.; Chahal, D.; Gupta, A. Coronary Artery Revascularization in Patients Undergoing Transcatheter Aortic Valve Replacement. Cardiol. Clin. 2024, 42, 333–338. [Google Scholar] [CrossRef]
- Kedhi, E.; Hermanides, R.S.; Dambrink, J.-H.E.; Singh, S.K.; Ten Berg, J.M.; Van Ginkel, D.; Hudec, M.; Amoroso, G.; Amat-Santos, I.J.; Andreas, M.; et al. TransCatheter Aortic Valve Implantation and Fractional Flow Reserve-Guided Percutaneous Coronary Intervention versus Conventional Surgical Aortic Valve Replacement and Coronary Bypass Grafting for Treatment of Patients with Aortic Valve Stenosis and Complex or Multivessel Coronary Disease (TCW): An International, Multicentre, Prospective, Open-Label, Non-Inferiority, Randomised Controlled Trial. Lancet 2024, 404, 2593–2602. [Google Scholar] [CrossRef]
- Yamanaka, F.; Shishido, K.; Ochiai, T.; Moriyama, N.; Yamazaki, K.; Sugitani, A.; Tani, T.; Tobita, K.; Mizuno, S.; Tanaka, Y.; et al. Instantaneous Wave-Free Ratio for the Assessment of Intermediate Coronary Artery Stenosis in Patients with Severe Aortic Valve Stenosis. JACC Cardiovasc. Interv. 2018, 11, 2032–2040. [Google Scholar] [CrossRef]
- Pesarini, G.; Scarsini, R.; Zivelonghi, C.; Piccoli, A.; Gambaro, A.; Gottin, L.; Rossi, A.; Ferrero, V.; Vassanelli, C.; Ribichini, F. Functional Assessment of Coronary Artery Disease in Patients Undergoing Transcatheter Aortic Valve Implantation: Influence of Pressure Overload on the Evaluation of Lesions Severity. Circ. Cardiovasc. Interv. 2016, 9, e004088. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, Y.; Götberg, M.; Cook, C.; Howard, J.P.; Malik, I.; Mikhail, G.; Frame, A.; Petraco, R.; Rajkumar, C.; Demir, O.; et al. Coronary Hemodynamics in Patients with Severe Aortic Stenosis and Coronary Artery Disease Undergoing Transcatheter Aortic Valve Replacement. JACC Cardiovasc. Interv. 2018, 11, 2019–2031. [Google Scholar] [CrossRef]
- Benenati, S.; De Maria, G.L.; Scarsini, R.; Porto, I.; Banning, A.P. Invasive “in the Cath-Lab” Assessment of Myocardial Ischemia in Patients with Coronary Artery Disease: When Does the Gold Standard Not Apply? Cardiovasc. Revascularization Med. 2018, 19, 362–372. [Google Scholar] [CrossRef]
- Broyd, C.J.; Sen, S.; Mikhail, G.W.; Francis, D.P.; Mayet, J.; Davies, J.E. Myocardial Ischemia in Aortic Stenosis: Insights from Arterial Pulse-Wave Dynamics after Percutaneous Aortic Valve Replacement. Trends Cardiovasc. Med. 2013, 23, 185–191. [Google Scholar] [CrossRef]
- Rajappan, K.; Rimoldi, O.E.; Camici, P.G.; Bellenger, N.G.; Pennell, D.J.; Sheridan, D.J. Functional Changes in Coronary Microcirculation After Valve Replacement in Patients with Aortic Stenosis. Circulation 2003, 107, 3170–3175. [Google Scholar] [CrossRef] [PubMed]
- Vendrik, J.; Ahmad, Y.; Eftekhari, A.; Howard, J.P.; Wijntjens, G.W.M.; Stegehuis, V.E.; Cook, C.; Terkelsen, C.J.; Christiansen, E.H.; Koch, K.T.; et al. Long-Term Effects of Transcatheter Aortic Valve Implantation on Coronary Hemodynamics in Patients With Concomitant Coronary Artery Disease and Severe Aortic Stenosis. J. Am. Heart Assoc. 2020, 9, e015133. [Google Scholar] [CrossRef] [PubMed]
- Scarsini, R.; Lunardi, M.; Venturi, G.; Pighi, M.; Tavella, D.; Pesarini, G.; Ribichini, F. Long-Term Variations of FFR and iFR after Transcatheter Aortic Valve Implantation. Int. J. Cardiol. 2020, 317, 37–41. [Google Scholar] [CrossRef]
- Colaiori, I.; Paolucci, L.; Mangiacapra, F.; Barbato, E.; Ussia, G.P.; Grigioni, F.; Demola, P.; Vitolo, M.; Benatti, G.; Vignali, L.; et al. Natural History of Coronary Atherosclerosis in Patients with Aortic Stenosis Undergoing Transcatheter Aortic Valve Replacement: The Role of Quantitative Flow Ratio. Circ. Cardiovasc. Interv. 2024, 17, e013705. [Google Scholar] [CrossRef]
- Lunardi, M.; Scarsini, R.; Venturi, G.; Pesarini, G.; Pighi, M.; Gratta, A.; Gottin, L.; Barbierato, M.; Caprioglio, F.; Piccoli, A.; et al. Physiological Versus Angiographic Guidance for Myocardial Revascularization in Patients Undergoing Transcatheter Aortic Valve Implantation. J. Am. Heart Assoc. 2019, 8, e012618. [Google Scholar] [CrossRef] [PubMed]
- Otto, C.M.; Nishimura, R.A.; Bonow, R.O.; Carabello, B.A.; Erwin, J.P.; Gentile, F.; Jneid, H.; Krieger, E.V.; Mack, M.; McLeod, C.; et al. 2020 ACC/AHA Guideline for the Management of Patients with Valvular Heart Disease. J. Am. Coll. Cardiol. 2021, 77, e25–e197. [Google Scholar] [CrossRef]
- Généreux, P.; Schwartz, A.; Oldemeyer, J.B.; Pibarot, P.; Cohen, D.J.; Blanke, P.; Lindman, B.R.; Babaliaros, V.; Fearon, W.F.; Daniels, D.V.; et al. Transcatheter Aortic-Valve Replacement for Asymptomatic Severe Aortic Stenosis. N. Engl. J. Med. 2025, 392, 217–227. [Google Scholar] [CrossRef]
- Maron, D.J.; Hochman, J.S.; Reynolds, H.R.; Bangalore, S.; O’Brien, S.M.; Boden, W.E.; Chaitman, B.R.; Senior, R.; López-Sendón, J.; Alexander, K.P.; et al. Initial Invasive or Conservative Strategy for Stable Coronary Disease. N. Engl. J. Med. 2020, 382, 1395–1407. [Google Scholar] [CrossRef]
- Søndergaard, L.; Popma, J.J.; Reardon, M.J.; Van Mieghem, N.M.; Deeb, G.M.; Kodali, S.; George, I.; Williams, M.R.; Yakubov, S.J.; Kappetein, A.P.; et al. Comparison of a Complete Percutaneous Versus Surgical Approach to Aortic Valve Replacement and Revascularization in Patients at Intermediate Surgical Risk: Results from the Randomized SURTAVI Trial. Circulation 2019, 140, 1296–1305. [Google Scholar] [CrossRef]
- Fischer, J.; Steffen, J.; Arlart, T.; Haum, M.; Gschwendtner, S.; Doldi, P.M.; Rizas, K.; Theiss, H.; Braun, D.; Orban, M.; et al. Concomitant Percutaneous Coronary Intervention in Patients Undergoing Transcatheter Aortic Valve Implantation. Catheter. Cardiovasc. Interv. 2024, 103, 186–193. [Google Scholar] [CrossRef]
- Kotronias, R.A.; Kwok, C.S.; George, S.; Capodanno, D.; Ludman, P.F.; Townend, J.N.; Doshi, S.N.; Khogali, S.S.; Généreux, P.; Herrmann, H.C.; et al. Transcatheter Aortic Valve Implantation with or Without Percutaneous Coronary Artery Revascularization Strategy: A Systematic Review and Meta-Analysis. J. Am. Heart Assoc. 2017, 6, e005960. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Sammour, Y.; Reginauld, S.; Sato, K.; Agrawal, N.; Lee, J.M.; Meenakshisundaram, C.; Ramanan, T.; Kamioka, N.; Sawant, A.C.; et al. Adverse Clinical Outcomes in Patients Undergoing Both PCI and TAVR: Analysis from a Pooled multi-center Registry. Cathet Cardio Interv. 2021, 97, 529–539. [Google Scholar] [CrossRef]
- Ochiai, T.; Yoon, S.-H.; Flint, N.; Sharma, R.; Chakravarty, T.; Kaewkes, D.; Patel, V.; Nakamura, M.; Cheng, W.; Makkar, R. Timing and Outcomes of Percutaneous Coronary Intervention in Patients Who Underwent Transcatheter Aortic Valve Implantation. Am. J. Cardiol. 2020, 125, 1361–1368. [Google Scholar] [CrossRef] [PubMed]
- Ribichini, F.; Pesarini, G.; Fabris, T.; Lunardi, M.; Barbierato, M.; D’Amico, G.; Zanchettin, C.; Gregori, D.; Piva, T.; Nicolini, E.; et al. A Randomised Multicentre Study of Angiography- versus Physiologyguided Percutaneous Coronary Intervention in Patients with Coronary Artery Disease Undergoing TAVI: Design and Rationale of the FAITAVI Trial. EuroIntervention 2024, 20, e504–e510. [Google Scholar] [CrossRef]
- Stähli, B.E.; Linke, A.; Westermann, D.; Van Mieghem, N.M.; Leistner, D.M.; Massberg, S.; Alber, H.; Mügge, A.; Musumeci, G.; Kesterke, R.; et al. A Randomized Comparison of the Treatment Sequence of Percutaneous Coronary Intervention and Transcatheter Aortic Valve Implantation: Rationale and Design of the TAVI PCI Trial. Am. Heart J. 2024, 277, 104–113. [Google Scholar] [CrossRef]
- Barbanti, M.; Costa, G.; Picci, A.; Criscione, E.; Reddavid, C.; Valvo, R.; Todaro, D.; Deste, W.; Condorelli, A.; Scalia, M.; et al. Coronary Cannulation After Transcatheter Aortic Valve Replacement. JACC Cardiovasc. Interv. 2020, 13, 2542–2555. [Google Scholar] [CrossRef] [PubMed]
- Mentias, A.; Desai, M.Y.; Saad, M.; Horwitz, P.A.; Rossen, J.D.; Panaich, S.; Elbadawi, A.; Abbott, J.D.; Sorajja, P.; Jneid, H.; et al. Incidence and Outcomes of Acute Coronary Syndrome After Transcatheter Aortic Valve Replacement. JACC Cardiovasc. Interv. 2020, 13, 938–950. [Google Scholar] [CrossRef]
- Khokhar, A.A.; Ponticelli, F.; Zlahoda-Huzior, A.; Chandra, K.; Ruggiero, R.; Toselli, M.; Gallo, F.; Cereda, A.; Sticchi, A.; Laricchia, A.; et al. Coronary Access Following ACURATE Neo Implantation for Transcatheter Aortic Valve-in-Valve Implantation: Ex Vivo Analysis in Patient-Specific Anatomies. Front. Cardiovasc. Med. 2022, 9, 902564. [Google Scholar] [CrossRef]
- Brouwer, J.; Nijenhuis, V.J.; Delewi, R.; Hermanides, R.S.; Holvoet, W.; Dubois, C.L.F.; Frambach, P.; De Bruyne, B.; Van Houwelingen, G.K.; Van Der Heyden, J.A.S.; et al. Aspirin with or without Clopidogrel after Transcatheter Aortic-Valve Implantation. N. Engl. J. Med. 2020, 383, 1447–1457. [Google Scholar] [CrossRef]
- Griese, D.P.; Reents, W.; Tóth, A.; Kerber, S.; Diegeler, A.; Babin-Ebell, J. Concomitant Coronary Intervention Is Associated with Poorer Early and Late Clinical Outcomes in Selected Elderly Patients Receiving Transcatheter Aortic Valve Implantation. Eur. J. Cardio-Thorac. Surg. 2014, 46, e1–e7. [Google Scholar] [CrossRef]
- Pasic, M.; Dreysse, S.; Unbehaun, A.; Buz, S.; Drews, T.; Klein, C.; D’Ancona, G.; Hetzer, R. Combined Elective Percutaneous Coronary Intervention and Transapical Transcatheter Aortic Valve Implantation. Interact. Cardiovasc. Thorac. Surg. 2012, 14, 463–468. [Google Scholar] [CrossRef] [PubMed]
- Conradi, L.; Seiffert, M.; Franzen, O.; Baldus, S.; Schirmer, J.; Meinertz, T.; Reichenspurner, H.; Treede, H. First Experience with Transcatheter Aortic Valve Implantation and Concomitant Percutaneous Coronary Intervention. Clin. Res. Cardiol. 2011, 100, 311–316. [Google Scholar] [CrossRef]
- Wenaweser, P.; Pilgrim, T.; Guerios, E.; Stortecky, S.; Huber, C.; Khattab, A.A.; Kadner, A.; Buellesfeld, L.; Gloekler, S.; Meier, B.; et al. Impact of Coronary Artery Disease and Percutaneous Coronary Intervention on Outcomes in Patients with Severe Aortic Stenosis Undergoing Transcatheter Aortic Valve Implantation. EuroIntervention 2011, 7, 541–548. [Google Scholar] [CrossRef]
- Lateef, N.; Khan, M.S.; Deo, S.V.; Yamani, N.; Riaz, H.; Virk, H.U.H.; Khan, S.U.; Hedrick, D.P.; Kanaan, A.; Reed, G.W.; et al. Meta-Analysis Comparing Outcomes in Patients Undergoing Transcatheter Aortic Valve Implantation with Versus Without Percutaneous Coronary Intervention. Am. J. Cardiol. 2019, 124, 1757–1764. [Google Scholar] [CrossRef]
- Barbanti, M.; Todaro, D.; Costa, G.; Pilato, G.; Picci, A.; Gulino, S.; Capranzano, P.; La Spina, K.; Di Simone, E.; D’Arrigo, P.; et al. Optimized Screening of Coronary Artery Disease with Invasive Coronary Angiography and Ad Hoc Percutaneous Coronary Intervention During Transcatheter Aortic Valve Replacement. Circ. Cardiovasc. Interv. 2017, 10, e005234. [Google Scholar] [CrossRef]
- Ahmad, Y.; Vendrik, J.; Eftekhari, A.; Howard, J.P.; Cook, C.; Rajkumar, C.; Malik, I.; Mikhail, G.; Ruparelia, N.; Hadjiloizou, N.; et al. Determining the Predominant Lesion in Patients with Severe Aortic Stenosis and Coronary Stenoses: A Multicenter Study Using Intracoronary Pressure and Flow. Circ. Cardiovasc. Interv. 2019, 12, e008263. [Google Scholar] [CrossRef] [PubMed]
- Wiegerinck, E.M.A.; Van De Hoef, T.P.; Rolandi, M.C.; Yong, Z.; Van Kesteren, F.; Koch, K.T.; Vis, M.M.; De Mol, B.A.J.M.; Piek, J.J.; Baan, J. Impact of Aortic Valve Stenosis on Coronary Hemodynamics and the Instantaneous Effect of Transcatheter Aortic Valve Implantation. Circ. Cardiovasc. Interv. 2015, 8, e002443. [Google Scholar] [CrossRef]
- Amat-Santos, I.J.; Blasco-Turrión, S.; Ferrero, V.; Ribichini, F.L. PCI of Bystander Coronary Artery Lesions Should Be Performed before TAVI: Pros and Cons. EuroIntervention 2022, 18, 783–785. [Google Scholar] [CrossRef] [PubMed]
- Lunardi, M.; Venturi, G.; Del Sole, P.A.; Ruzzarin, A.; Mainardi, A.; Pighi, M.; Pesarini, G.; Scarsini, R.; Tavella, D.; Gottin, L.; et al. Optimal Timing for Percutaneous Coronary Intervention in Patients Undergoing Transcatheter Aortic Valve Implantation. Int. J. Cardiol. 2022, 365, 114–122. [Google Scholar] [CrossRef]
- Akodad, M.; Lounes, Y.; Meier, D.; Sanguineti, F.; Hovasse, T.; Blanke, P.; Sathananthan, J.; Tzimas, G.; Leipsic, J.; Wood, D.A.; et al. Transcatheter Heart Valve Commissural Alignment: An Updated Review. Front. Cardiovasc. Med. 2023, 10, 1154556. [Google Scholar] [CrossRef]
- Hatoum, H.; Dollery, J.; Lilly, S.M.; Crestanello, J.A.; Dasi, L.P. Implantation Depth and Rotational Orientation Effect on Valve-in-Valve Hemodynamics and Sinus Flow. Ann. Thorac. Surg. 2018, 106, 70–78. [Google Scholar] [CrossRef] [PubMed]
- Tang, G.H.L.; Zaid, S.; Fuchs, A.; Yamabe, T.; Yazdchi, F.; Gupta, E.; Ahmad, H.; Kofoed, K.F.; Goldberg, J.B.; Undemir, C.; et al. Alignment of Transcatheter Aortic-Valve Neo-Commissures (ALIGN TAVR). JACC Cardiovasc. Interv. 2020, 13, 1030–1042. [Google Scholar] [CrossRef] [PubMed]
- Fuchs, A.; Kofoed, K.F.; Yoon, S.-H.; Schaffner, Y.; Bieliauskas, G.; Thyregod, H.G.; Makkar, R.; Søndergaard, L.; De Backer, O.; Bapat, V. Commissural Alignment of Bioprosthetic Aortic Valve and Native Aortic Valve Following Surgical and Transcatheter Aortic Valve Replacement and Its Impact on Valvular Function and Coronary Filling. JACC Cardiovasc. Interv. 2018, 11, 1733–1743. [Google Scholar] [CrossRef] [PubMed]
- Bieliauskas, G.; Wong, I.; Bajoras, V.; Wang, X.; Kofoed, K.F.; De Backer, O.; Søndergaard, L. Patient-Specific Implantation Technique to Obtain Neo-Commissural Alignment with Self-Expanding Transcatheter Aortic Valves. JACC Cardiovasc. Interv. 2021, 14, 2097–2108. [Google Scholar] [CrossRef]
- Meduri, C.U.; Rück, A.; Linder, R.; Verouhis, D.; Settergren, M.; Sorajja, A.; Daher, D.; Saleh, N. Commissural Alignment with ACURATE Neo2 Valve in an Unselected Population. JACC Cardiovasc. Interv. 2023, 16, 670–677. [Google Scholar] [CrossRef]
- Okuno, T.; Demirel, C.; Tomii, D.; Heg, D.; Häner, J.; Siontis, G.C.M.; Lanz, J.; Räber, L.; Strotecky, S.; Fürholz, M.; et al. Long-Term Risk of Unplanned Percutaneous Coronary Intervention after Transcatheter Aortic Valve Replacement. EuroIntervention 2022, 18, 797–803. [Google Scholar] [CrossRef]
- Gonçalves, M.; De Araújo Gonçalves, P.; Campante Teles, R.; De Sousa Almeida, M.; Félix De Oliveira, A.; Brito, J.; Raposo, L.; Mesquita Gabriel, H.; Nolasco, T.; Neves, J.P.; et al. Low Rate of Invasive Coronary Angiography Following Transcatheter Aortic Valve Implantation: Real-World Prospective Cohort Findings. Cardiovasc. Revascularization Med. 2021, 28, 42–49. [Google Scholar] [CrossRef]
- Nai Fovino, L.; Scotti, A.; Massussi, M.; Fabris, T.; Cardaioli, F.; Rodinò, G.; Matsuda, Y.; Frigo, F.; Fraccaro, C.; Tarantini, G. Incidence and Feasibility of Coronary Access after Transcatheter Aortic Valve Replacement. Cathet Cardio Interv. 2020, 96, E535–E541. [Google Scholar] [CrossRef]
- Popma, J.J.; Deeb, G.M.; Yakubov, S.J.; Mumtaz, M.; Gada, H.; O’Hair, D.; Bajwa, T.; Heiser, J.C.; Merhi, W.; Kleiman, N.S.; et al. Transcatheter Aortic-Valve Replacement with a Self-Expanding Valve in Low-Risk Patients. N. Engl. J. Med. 2019, 380, 1706–1715. [Google Scholar] [CrossRef]
- Mack, M.J.; Leon, M.B.; Thourani, V.H.; Makkar, R.; Kodali, S.K.; Russo, M.; Kapadia, S.R.; Malaisrie, S.C.; Cohen, D.J.; Pibarot, P.; et al. Transcatheter Aortic-Valve Replacement with a Balloon-Expandable Valve in Low-Risk Patients. N. Engl. J. Med. 2019, 380, 1695–1705. [Google Scholar] [CrossRef]
- Valvo, R.; Costa, G.; Tamburino, C.; Barbanti, M. Coronary Artery Cannulation after Transcatheter Aortic Valve Implantation. EuroIntervention 2021, 17, 835–847. [Google Scholar] [CrossRef]
- Tarantini, G.; Fabris, T.; Cardaioli, F.; Nai Fovino, L. Coronary Access After Transcatheter Aortic Valve Replacement in Patients With Bicuspid Aortic Valve. JACC Cardiovasc. Interv. 2019, 12, 1190–1191. [Google Scholar] [CrossRef] [PubMed]
- Schymik, G.; Schröfel, H.; Heimeshoff, M.; Luik, A.; Thoenes, M.; Mandinov, L. How to Adapt the Implantation Technique for the New SAPIEN 3 Transcatheter Heart Valve Design. J. Interv. Cardiol. 2015, 28, 82–89. [Google Scholar] [CrossRef]
- Yudi, M.B.; Sharma, S.K.; Tang, G.H.L.; Kini, A. Coronary Angiography and Percutaneous Coronary Intervention After Transcatheter Aortic Valve Replacement. J. Am. Coll. Cardiol. 2018, 71, 1360–1378. [Google Scholar] [CrossRef] [PubMed]
- Meier, D.; Akodad, M.; Landes, U.; Barlow, A.M.; Chatfield, A.G.; Lai, A.; Tzimas, G.; Tang, G.H.L.; Puehler, T.; Lutter, G.; et al. Coronary Access Following Redo TAVR. JACC Cardiovasc. Interv. 2022, 15, 1519–1531. [Google Scholar] [CrossRef]
- Kim, W.-K.; Pellegrini, C.; Ludwig, S.; Möllmann, H.; Leuschner, F.; Makkar, R.; Leick, J.; Amat-Santos, I.J.; Dörr, O.; Breitbart, P.; et al. Feasibility of Coronary Access in Patients with Acute Coronary Syndrome and Previous TAVR. JACC Cardiovasc. Interv. 2021, 14, 1578–1590. [Google Scholar] [CrossRef]
- Stefanini, G.G.; Cerrato, E.; Pivato, C.A.; Joner, M.; Testa, L.; Rheude, T.; Pilgrim, T.; Pavani, M.; Brouwer, J.; Lopez Otero, D.; et al. Unplanned Percutaneous Coronary Revascularization After TAVR. JACC Cardiovasc. Interv. 2021, 14, 198–207. [Google Scholar] [CrossRef] [PubMed]
- Boukantar, M.; Gallet, R.; Mouillet, G.; Belarbi, A.; Rubimbura, V.; Ternacle, J.; Dubois-Rande, J.; Teiger, E. Coronary Procedures After TAVI With the Self-Expanding Aortic Bioprosthesis Medtronic CoreValveTM, Not an Easy Matter. J. Interv. Cardiol. 2017, 30, 56–62. [Google Scholar] [CrossRef]
- Mahtta, D.; Elgendy, I.Y.; Bavry, A.A. From CoreValve to Evolut PRO: Reviewing the Journey of Self-Expanding Transcatheter Aortic Valves. Cardiol. Ther. 2017, 6, 183–192. [Google Scholar] [CrossRef]
- Pilgrim, T.; Tomii, D. Predicting Coronary Obstruction After TAVR. JACC Cardiovasc. Interv. 2023, 16, 426–428. [Google Scholar] [CrossRef]
- Tang, G.H.L.; Zaid, S.; Ahmad, H.; Undemir, C.; Lansman, S.L. Transcatheter Valve Neo-Commissural Overlap With Coronary Orifices After Transcatheter Aortic Valve Replacement: Implication on Coronary Reaccess. Circ. Cardiovasc. Interv. 2018, 11, e007263. [Google Scholar] [CrossRef] [PubMed]
- Tang, G.H.L.; Zaid, S.; Gupta, E.; Ahmad, H.; Patel, N.; Khan, M.; Khan, A.; Kovacic, J.C.; Lansman, S.L.; Dangas, G.D.; et al. Impact of Initial Evolut Transcatheter Aortic Valve Replacement Deployment Orientation on Final Valve Orientation and Coronary Reaccess: A Pilot Study. Circ. Cardiovasc. Interv. 2019, 12, e008044. [Google Scholar] [CrossRef]
- Aoun, J.; Kharsa, C.; Reardon, M.; Kleiman, N.; Chang, S.M.; Atkins, M.; Faza, N.N.; Little, S.H.; Goel, S.S. Transcatheter Aortic Valve Implantation Using the Evolut FX+ Platform With Optimal Diamond-Coronary Alignment. JACC Case Rep. 2024, 29, 102506. [Google Scholar] [CrossRef] [PubMed]
- Tarantini, G.; Nai Fovino, L.; Scotti, A.; Massussi, M.; Cardaioli, F.; Rodinò, G.; Benedetti, A.; Boiago, M.; Matsuda, Y.; Continisio, S.; et al. Coronary Access After Transcatheter Aortic Valve Replacement with Commissural Alignment: The ALIGN-ACCESS Study. Circ. Cardiovasc. Interv. 2022, 15, e011045. [Google Scholar] [CrossRef]
- Tirado-Conte, G.; Gomez-Alvarez, Z.; Gheorghe, L.; Asmarats, L.; Jimenez-Quevedo, P.; Regueiro, A.; García Gamez, A.F.; McInerney, A.; Pedro Li, C.-H.; Pozo, E.; et al. Neo-Commissural Alignment and Coronary Artery Overlap Following Portico Aortic Valve Implantation. JACC Cardiovasc. Interv. 2022, 15, 1590–1592. [Google Scholar] [CrossRef] [PubMed]
- Vinayak, M.; Leone, P.P.; Tanner, R.; Dhulipala, V.; Camaj, A.; Makhija, R.R.K.; Hooda, A.; Kini, A.S.; Sharma, S.K.; Khera, S. Transcatheter Aortic Valve Replacement: Current Status and Future Indications. JCM 2024, 13, 373. [Google Scholar] [CrossRef]
- Costa, G.; Sammartino, S.; Strazzieri, O.; Motta, S.; Frittitta, V.; Dipietro, E.; Comis, A.; Calì, M.; Garretto, V.; Inserra, C.; et al. Coronary Cannulation Following TAVR Using Self-Expanding Devices with Commissural Alignment. JACC Cardiovasc. Interv. 2024, 17, 727–737. [Google Scholar] [CrossRef]
- Ochiai, T.; Chakravarty, T.; Yoon, S.-H.; Kaewkes, D.; Flint, N.; Patel, V.; Mahani, S.; Tiwana, R.; Sekhon, N.; Nakamura, M.; et al. Coronary Access After TAVR. JACC Cardiovasc. Interv. 2020, 13, 693–705. [Google Scholar] [CrossRef]
- Rogers, T.; Greenspun, B.C.; Weissman, G.; Torguson, R.; Craig, P.; Shults, C.; Gordon, P.; Ehsan, A.; Wilson, S.R.; Goncalves, J.; et al. Feasibility of Coronary Access and Aortic Valve Reintervention in Low-Risk TAVR Patients. JACC Cardiovasc. Interv. 2020, 13, 726–735. [Google Scholar] [CrossRef]
- Binder, R.K.; Rodés-Cabau, J.; Wood, D.; Webb, J. Edwards SAPIEN 3 Valve. EuroIntervention 2012, 8, Q83–Q87. [Google Scholar] [CrossRef]
- Yamamoto, M.; Yashima, F.; Shirai, S.; Tada, N.; Naganuma, T.; Yamawaki, M.; Yamanaka, F.; Mizutani, K.; Noguchi, M.; Ueno, H.; et al. Performance and Outcomes of the SAPIEN 3 Ultra RESILIA Transcatheter Heart Valve in the OCEAN-TAVI Registry. EuroIntervention 2024, 20, 579–590. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.K.; Rao, R.S.; Chandra, P.; Goel, P.K.; Bharadwaj, P.; Joseph, G.; Jose, J.; Mahajan, A.U.; Mehrotra, S.; Sengottovelu, G.; et al. First-in-Human Evaluation of a Novel Balloon-Expandable Transcatheter Heart Valve in Patients with Severe Symptomatic Native Aortic Stenosis: The MyVal-1 Study. EuroIntervention 2020, 16, 421–429. [Google Scholar] [CrossRef]
- Jose, J.; Mandalay, A.; Cholenahally, M.N.; Khandenahally, R.S.; Budnur, S.C.; Parekh, M.; Rao, R.S.; Seth, A.; Chandra, P.; Kapoor, R.; et al. Safety and Effectiveness of the Novel Myval Octacor Transcatheter Heart Valve in Severe, Symptomatic Aortic Valve Stenosis—A Real-World Indian Experience (The OCTACOR India Study). Cardiovasc. Revascularization Med. 2024, 63, 1–7. [Google Scholar] [CrossRef]
- Revaiah, P.C.; Mandalay, A.; Sengottuvelu, G.; Elkoumy, A.; Elzomor, H.; Abdelshafy, M.; Bhatt, S.; Onuma, Y.; Soliman, O.; Serruys, P.W. CRT-700.47 Commissural/Coronary Alignment with the Novel Myval Octacor THV—The Octa Align Technique. JACC Cardiovasc. Interv. 2023, 16, S94–S95. [Google Scholar] [CrossRef]
- He, A.; Wilkins, B.; Lan, N.S.R.; Othman, F.; Sehly, A.; Bhat, V.; Jaltotage, B.; Dwivedi, G.; Leipsic, J.; Ihdayhid, A.R. Cardiac Computed Tomography Post-Transcatheter Aortic Valve Replacement. J. Cardiovasc. Comput. Tomogr. 2024, 18, 319–326. [Google Scholar] [CrossRef] [PubMed]
- Blumenstein, J.; Kim, W.-K.; Liebetrau, C.; Gaede, L.; Kempfert, J.; Walther, T.; Hamm, C.; Möllmann, H. Challenges of Coronary Angiography and Intervention in Patients Previously Treated by TAVI. Clin. Res. Cardiol. 2015, 104, 632–639. [Google Scholar] [CrossRef] [PubMed]
- Zivelonghi, C.; Pesarini, G.; Scarsini, R.; Lunardi, M.; Piccoli, A.; Ferrero, V.; Gottin, L.; Vassanelli, C.; Ribichini, F. Coronary Catheterization and Percutaneous Interventions After Transcatheter Aortic Valve Implantation. Am. J. Cardiol. 2017, 120, 625–631. [Google Scholar] [CrossRef]
- Jackson, M.; Williams, P.D. Coronary Access Following TAVI—Selective Coronary Engagement Using Balloon-Assisted Tracking of a Guide Catheter Extension. Cardiovasc. Revascularization Med. 2018, 19, 384–389. [Google Scholar] [CrossRef]
- Khokhar, A.A.; Ponticelli, F.; Zlahoda-Huzior, A.; Zakrzewski, P.; Mikhail, G.; Dudek, D.; Giannini, F. Coronary Access Techniques Following ACURATE Neo2 Implantation in Surgical Bioprosthesis. EuroIntervention 2022, 18, 820–821. [Google Scholar] [CrossRef]
- Ribeiro, H.B.; Rodés-Cabau, J.; Blanke, P.; Leipsic, J.; Kwan Park, J.; Bapat, V.; Makkar, R.; Simonato, M.; Barbanti, M.; Schofer, J.; et al. Incidence, Predictors, and Clinical Outcomes of Coronary Obstruction Following Transcatheter Aortic Valve Replacement for Degenerative Bioprosthetic Surgical Valves: Insights from the VIVID Registry. Eur. Heart J. 2018, 39, 687–695. [Google Scholar] [CrossRef]
- Ribeiro, H.B.; Webb, J.G.; Makkar, R.R.; Cohen, M.G.; Kapadia, S.R.; Kodali, S.; Tamburino, C.; Barbanti, M.; Chakravarty, T.; Jilaihawi, H.; et al. Predictive Factors, Management, and Clinical Outcomes of Coronary Obstruction Following Transcatheter Aortic Valve Implantation. J. Am. Coll. Cardiol. 2013, 62, 1552–1562. [Google Scholar] [CrossRef] [PubMed]
- Duncan, A.; Moat, N.; Simonato, M.; De Weger, A.; Kempfert, J.; Eggebrecht, H.; Walton, A.; Hellig, F.; Kornowski, R.; Spargias, K.; et al. Outcomes Following Transcatheter Aortic Valve Replacement for Degenerative Stentless Versus Stented Bioprostheses. JACC Cardiovasc. Interv. 2019, 12, 1256–1263. [Google Scholar] [CrossRef]
- Tarantini, G.; Dvir, D.; Tang, G.H.L. Transcatheter Aortic Valve Implantation in Degenerated Surgical Aortic Valves. EuroIntervention 2021, 17, 709–719. [Google Scholar] [CrossRef] [PubMed]
- Tarantini, G.; Nai Fovino, L.; Gersh, B.J. Transcatheter Aortic Valve Implantation in Lower-Risk Patients: What Is the Perspective? Eur. Heart J. 2018, 39, 658–666. [Google Scholar] [CrossRef]
- Buzzatti, N.; Romano, V.; De Backer, O.; Soendergaard, L.; Rosseel, L.; Maurovich-Horvat, P.; Karady, J.; Merkely, B.; Ruggeri, S.; Prendergast, B.; et al. Coronary Access After Repeated Transcatheter Aortic Valve Implantation. JACC Cardiovasc. Imaging 2020, 13, 508–515. [Google Scholar] [CrossRef]
- Buzzatti, N.; Montorfano, M.; Romano, V.; De Backer, O.; Søndergaard, L.; Rosseel, L.; Maurovich-Horvat, P.; Karady, J.; Merkely, B.; Prendergast, B.D.; et al. A Computed Tomography Study of Coronary Access and Coronary Obstruction after Redo Transcatheter Aortic Valve Implantation. EuroIntervention 2020, 16, e1005–e1013. [Google Scholar] [CrossRef]
- Nai Fovino, L.; Scotti, A.; Massussi, M.; Cardaioli, F.; Rodinò, G.; Matsuda, Y.; Pavei, A.; Masiero, G.; Napodano, M.; Fraccaro, C.; et al. Coronary Angiography After Transcatheter Aortic Valve Replacement (TAVR) to Evaluate the Risk of Coronary Access Impairment After TAVR-in-TAVR. J. Am. Heart Assoc. 2020, 9, e016446. [Google Scholar] [CrossRef] [PubMed]
- Tarantini, G.; Fabris, T.; Nai Fovino, L. TAVR-in-TAVR and Coronary Access: Importance of Preprocedural Planning. EuroIntervention 2020, 16, e129–e132. [Google Scholar] [CrossRef]
- Gherasie, F.-A.; Achim, A. TAVR Interventions and Coronary Access: How to Prevent Coronary Occlusion. Life 2023, 13, 1605. [Google Scholar] [CrossRef]
- Kim, W.-K.; Frawley, C.; Charitos, E.I.; Khokhar, A.A. Coronary Reaccess After Modified Chimney Stenting in a Self-Expanding Transcatheter Valve-in-Valve. JACC Case Rep. 2023, 28, 102118. [Google Scholar] [CrossRef]
- Redondo, A.; Baladrón Zorita, C.; Tchétché, D.; Santos-Martinez, S.; Delgado-Arana, J.R.; Barrero, A.; Gutiérrez, H.; Serrador Frutos, A.; Ybarra Falcón, C.; Gómez, M.G.; et al. Commissural Versus Coronary Optimized Alignment During Transcatheter Aortic Valve Replacement. JACC Cardiovasc. Interv. 2022, 15, 135–146. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; De Backer, O.; Bieliauskas, G.; Wong, I.; Bajoras, V.; Xiong, T.-Y.; Zhang, Y.; Kofoed, K.F.; Chen, M.; Sondergaard, L. Cusp Symmetry and Coronary Ostial Eccentricity and Its Impact on Coronary Access Following TAVR. JACC Cardiovasc. Interv. 2022, 15, 123–134. [Google Scholar] [CrossRef] [PubMed]
- Dodgson, C.S.; Beitnes, J.O.; Kløve, S.F.; Herstad, J.; Opdahl, A.; Undseth, R.; Eek, C.H.; Broch, K.; Gullestad, L.; Aaberge, L.; et al. An Investigator-Sponsored Pragmatic Randomized Controlled Trial of AntiCoagulation vs AcetylSalicylic Acid after Transcatheter Aortic Valve Implantation: Rationale and Design of ACASA-TAVI. Am. Heart J. 2023, 265, 225–232. [Google Scholar] [CrossRef]
- Nombela-Franco, L.; Trigo, M.D.; Morrison-Polo, G.; Veiga, G.; Jimenez-Quevedo, P.; Abdul-Jawad Altisent, O.; Campelo-Parada, F.; Biagioni, C.; Puri, R.; DeLarochellière, R.; et al. Incidence, Causes, and Predictors of Early (≤30 Days) and Late Unplanned Hospital Readmissions After Transcatheter Aortic Valve Replacement. JACC Cardiovasc. Interv. 2015, 8, 1748–1757. [Google Scholar] [CrossRef]
- Packer, M.; Anker, S.D.; Butler, J.; Filippatos, G.; Pocock, S.J.; Carson, P.; Januzzi, J.; Verma, S.; Tsutsui, H.; Brueckmann, M.; et al. Cardiovascular and Renal Outcomes with Empagliflozin in Heart Failure. N. Engl. J. Med. 2020, 383, 1413–1424. [Google Scholar] [CrossRef]
- McMurray, J.J.V.; Solomon, S.D.; Inzucchi, S.E.; Køber, L.; Kosiborod, M.N.; Martinez, F.A.; Ponikowski, P.; Sabatine, M.S.; Anand, I.S.; Bělohlávek, J.; et al. Dapagliflozin in Patients with Heart Failure and Reduced Ejection Fraction. N. Engl. J. Med. 2019, 381, 1995–2008. [Google Scholar] [CrossRef]
- Scisciola, L.; Paolisso, P.; Belmonte, M.; Gallinoro, E.; Delrue, L.; Taktaz, F.; Fontanella, R.A.; Degrieck, I.; Pesapane, A.; Casselman, F.; et al. Myocardial Sodium–Glucose Cotransporter 2 Expression and Cardiac Remodelling in Patients with Severe Aortic Stenosis: The BIO-AS Study. Eur. J. Heart Fail. 2024, 26, 471–482. [Google Scholar] [CrossRef] [PubMed]
- Paolisso, P.; Belmonte, M.; Gallinoro, E.; Scarsini, R.; Bergamaschi, L.; Portolan, L.; Armillotta, M.; Esposito, G.; Moscarella, E.; Benfari, G.; et al. SGLT2-Inhibitors in Diabetic Patients with Severe Aortic Stenosis and Cardiac Damage Undergoing Transcatheter Aortic Valve Implantation (TAVI). Cardiovasc. Diabetol. 2024, 23, 420. [Google Scholar] [CrossRef]
- Bagur, R.; Webb, J.G.; Nietlispach, F.; Dumont, E.; De Larochelliere, R.; Doyle, D.; Masson, J.-B.; Gutierrez, M.J.; Clavel, M.-A.; Bertrand, O.F.; et al. Acute Kidney Injury Following Transcatheter Aortic Valve Implantation: Predictive Factors, Prognostic Value, and Comparison with Surgical Aortic Valve Replacement. Eur. Heart J. 2010, 31, 865–874. [Google Scholar] [CrossRef]
- Wanner, C.; Inzucchi, S.E.; Lachin, J.M.; Fitchett, D.; Von Eynatten, M.; Mattheus, M.; Johansen, O.E.; Woerle, H.J.; Broedl, U.C.; Zinman, B. Empagliflozin and Progression of Kidney Disease in Type 2 Diabetes. N. Engl. J. Med. 2016, 375, 323–334. [Google Scholar] [CrossRef]
- Wiviott, S.D.; Raz, I.; Bonaca, M.P.; Mosenzon, O.; Kato, E.T.; Cahn, A.; Silverman, M.G.; Zelniker, T.A.; Kuder, J.F.; Murphy, S.A.; et al. Dapagliflozin and Cardiovascular Outcomes in Type 2 Diabetes. N. Engl. J. Med. 2019, 380, 347–357. [Google Scholar] [CrossRef] [PubMed]
- Nusca, A.; Piccirillo, F.; Viscusi, M.M.; Giannone, S.; Mangiacapra, F.; Melfi, R.; Ricottini, E.; Ussia, G.P.; Grigioni, F. Contrast-Induced Acute Kidney Injury in Diabetic Patients and SGLT-2 Inhibitors: A Preventive Opportunity or Promoting Element? J. Cardiovasc. Pharmacol. 2022, 80, 661–671. [Google Scholar] [CrossRef] [PubMed]
- Nusca, A.; Di Bitonto, M.P.; Spanò, A.; Bernardini, F.; Mangiacapra, F.; Ricottini, E.; Melfi, R.; Giannone, S.; Ussia, G.P.; Grigioni, F. Effects of Novel Antidiabetic Agents on Contrast-Associated Acute Kidney Injury in Diabetic Patients Undergoing Percutaneous Coronary Intervention. Am. J. Cardiol. 2025, 240, 50–56. [Google Scholar] [CrossRef]
- Paolisso, P.; Belmonte, M.; Gallinoro, E.; Scarsini, R.; Bergamaschi, L.; Portolan, L.; Armillotta, M.; Esposito, G.; Moscarella, E.; Montalto, C.; et al. Impact of SGLT2-Inhibitors on Acute Kidney Injury in Diabetic Patients with Severe Aortic Stenosis Undergoing Transcatheter Aortic Valve Implantation (TAVI). Cardiovasc. Diabetol. 2025, 24, 221. [Google Scholar] [CrossRef] [PubMed]
A. Non-Invasive Assessment | PROS | CONS |
---|---|---|
Prediction scores | Stratifying patients into risk categories. | More useful for low risk of CAD. |
CCTA | Safety; detailed information about coronary artery; high sensitivity and NPV for moderate obstructive CAD. | Nephrotoxic risk; often suboptimal specificity and PPV for high calcium Burden. |
Non-invasive FFR from standard CCTA | Integrated approach; useful in patients with blooming artifacts and significant calcification. | Limited evidence; underexplored in real world clinical practice. |
CMR | Good evaluation of kinetic abnormalities and EF%. | Limited evidence; relative contraindications in AS patients. |
B. Invasive Assessment | PROS | CONS |
ICA | Gold standard to guide decision making and time for revascularization. | Invasive procedure; nephrotoxic risk; radiation; low reliability in extensive calcification and tortuosity of the coronary arteries. |
FFR and iFR | Functional assessment; improves decision making for revascularization. | Invasive procedure; radiation; underestimation of the true ischemic significance because of AS hemodynamics; time and costs. |
Study | Study Design | Cohort | Inclusion Criteria | Results and Conclusions |
---|---|---|---|---|
Yamanaka et al. [46] | Observational study aim: to compare iFR values vs. FFR values vs. adenosine SPECT. | 95 patients | Severe AS + intermediate coronary artery stenosis (116 vessels). | Good correlation between iFR and FFR (R = 0.854; p < 0.0001); an optimal cutoff of 0.82 for the iFR to indicate an FFR ≤ 0.75. |
Scarsini et al. [53] | Observational study aim: to investigate variations of FFR and iFR at baseline and after TAVI. | 14 patients | Severe AS + physiology assessment of coronary lesions at baseline immediately after TAVR and at follow-up (14–29 months). | FFR decreased in 3 patients (13%), while iFR did not show a systematic trend at long-term after TAVI. |
Ahmad et al. [48] | Prospective study aim: to evaluate variations in FFR and iFR after TAVI. | 28 patients | Severe AS + physiology assessment of coronary artery disease (30 lesions) at rest and during hyperemia immediately before and after TAVR. | Systemic flow and coronary hyperemic flow increased significantly after TAVR: reduction in FFR value mean, while iFR did not change after TAVR. |
Vendrik et al. [52] | Prospective study aim: to investigate variations in FFR and iFR after TAVI (6 months). | 13 patients | Lower-risk patients with TAVI and moderate to severe coronary lesions. | Significant reduction in FFR values, whereas iFR did not show significant variations. |
Lunardi et al. [55] | Retrospective study aim: to compare angiography-guided vs. FFR-guided revascularization in patients undergoing TAVI. | 216 patients | Severe AS undergoing TAVI + bystander CAD (30–70%). | FFR-guided revascularization presented a better MACE-free survival at 24 months, and bystander intermediate coronary lesions were FFR-negative in 78.2% of cases. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Celeski, M.; Nusca, A.; Ciavaroli, N.G.; Martucciello, A.; Crisci, F.; Polito, D.; Mangiacapra, F.; Cammalleri, V.; Melfi, R.; Gallo, P.; et al. Co-Occurrence of Aortic Stenosis and Coronary Artery Disease: Facing Challenges Before, During, and After Transcatheter Aortic Valve Replacement. J. Clin. Med. 2025, 14, 4709. https://doi.org/10.3390/jcm14134709
Celeski M, Nusca A, Ciavaroli NG, Martucciello A, Crisci F, Polito D, Mangiacapra F, Cammalleri V, Melfi R, Gallo P, et al. Co-Occurrence of Aortic Stenosis and Coronary Artery Disease: Facing Challenges Before, During, and After Transcatheter Aortic Valve Replacement. Journal of Clinical Medicine. 2025; 14(13):4709. https://doi.org/10.3390/jcm14134709
Chicago/Turabian StyleCeleski, Mihail, Annunziata Nusca, Nicolò Graziano Ciavaroli, Arianna Martucciello, Filippo Crisci, Dajana Polito, Fabio Mangiacapra, Valeria Cammalleri, Rosetta Melfi, Paolo Gallo, and et al. 2025. "Co-Occurrence of Aortic Stenosis and Coronary Artery Disease: Facing Challenges Before, During, and After Transcatheter Aortic Valve Replacement" Journal of Clinical Medicine 14, no. 13: 4709. https://doi.org/10.3390/jcm14134709
APA StyleCeleski, M., Nusca, A., Ciavaroli, N. G., Martucciello, A., Crisci, F., Polito, D., Mangiacapra, F., Cammalleri, V., Melfi, R., Gallo, P., Ricottini, E., Cocco, N., Rinaldi, R., Tavernese, A., & Ussia, G. P. (2025). Co-Occurrence of Aortic Stenosis and Coronary Artery Disease: Facing Challenges Before, During, and After Transcatheter Aortic Valve Replacement. Journal of Clinical Medicine, 14(13), 4709. https://doi.org/10.3390/jcm14134709