Efficacy and Safety of ACURATE neo2 in Valve-in-Valve TAVI: A Prospective Single-Center Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Patient Selection
2.2. ViV TAVI Procedure
2.3. Definition of the Variables
2.4. In-Hospital Outcomes
2.5. The 30-Day and 1-Year Follow-Up Outcomes
2.6. Statistical Analysis
3. Results
The 30-Day and 1-Year Follow-Up Outcomes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AF | Atrial Fibrillation |
AKI | Acute Kidney Injury |
AR | Aortic Regurgitation |
AVA | Aortic Valve Area |
BE | Balloon-Expandable (valve) |
BMI | Body Mass Index |
CABG | Coronary Artery Bypass Graft Surgery |
CAD | Coronary Artery Disease |
COPD | Chronic Obstructive Pulmonary Disease |
EACTS | European Association for Cardio-Thoracic Surgery |
ECS | European Society of Cardiology |
EOA | Effective Orifice Area |
EuroSCORE II | European System for Cardiac Operative Risk Evaluation II |
eGFR | Estimated Glomerular Filtration Rate |
IQR | Interquartile Range |
ID | True Internal Diameter |
LM | Left Main (coronary artery) |
LVEF | Left Ventricular Ejection Fraction |
MI | Myocardial Infarction |
NYHA | New York Heart Association (functional class) |
PCI | Percutaneous Coronary Intervention |
PPI | Permanent Pacemaker Implantation |
PPM | Patient–Prosthesis Mismatch |
PVL | Paravalvular Leak |
RCA | Right Coronary Artery |
SAVR | Surgical Aortic Valve Replacement |
SE | Self-Expanding (valve) |
SENTINEL | Sentinel Cerebral Protection System |
SVD | Structural Valve Degeneration |
TAVI | Transcatheter Aortic Valve Implantation |
THV | Transcatheter Heart Valve |
TTE | Transthoracic Echocardiography |
VARC-3 | Valve Academic Research Consortium-3 |
References
- Vesely, I. The evolution of bioprosthetic heart valve design and its impact on durability. Cardiovasc. Pathol. 2003, 12, 277–286. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.M. Isolated aortic valve replacement in North America comprising 108,687 patients in 10 years: Changes in risks, valve types, and outcomes in the Society of Thoracic Surgeons National Database. J. Thorac. Cardiovasc. Surg. 2009, 137, 82–90. [Google Scholar] [CrossRef] [PubMed]
- Piazza, N.; Bleiziffer, S.; Brockmann, G.; Hendrick, R.; Deutsch, M.A.; Opitz, A.; Mazzitelli, D.; Tassani-Prell, P.; Schreiber, C.; Lange, R. Transcatheter Aortic Valve Implantation for Failing Surgical Aortic Bioprosthetic Valve. JACC Cardiovasc. Interv. 2011, 4, 721–732. [Google Scholar] [CrossRef]
- Grube, E.; Buellesfeld, L.; Mueller, R.; Sauren, B.; Zickmann, B.; Nair, D.; Beucher, H.; Felderhoff, T.; Iversen, S.; Gerckens, U. Progress and current status of percutaneous aortic valve replacement: Results of three device generations of the CoreValve Revalving system. Circ. Cardiovasc. Interv. 2008, 1, 167–175. [Google Scholar] [CrossRef] [PubMed]
- Piazza, N.; Grube, E.; Gerckens, U.; Heijer, P.D.; Linke, A.; Luha, O.; Ramondo, A.; Ussia, G.; Wenaweser, P.; Windecker, S.; et al. Procedural and 30-day outcomes following transcatheter aortic valve implantation using the third generation (18 Fr) corevalve revalving system: Results from the multicentre, expanded evaluation registry 1-year following CE mark approval. EuroIntervention J. Eur. Collab. Work. Group Interv. Cardiol. Eur. Soc. Cardiol. 2008, 4, 242–249. [Google Scholar] [CrossRef]
- Webb, J.G.; Altwegg, L.; Boone, R.H.; Cheung, A.; Ye, J.; Lichtenstein, S.; Lee, M.; Masson, J.B.; Thompson, C.; Moss, R.; et al. Transcatheter aortic valve implantation: Impact on clinical and valve-related outcomes. Circulation 2009, 119, 3009–3016. [Google Scholar] [CrossRef]
- Buono, A.; Zito, A.; Kim, W.-K.; Fabris, T.; De Biase, C.; Bellamoli, M.; Montarello, N.; Costa, G.; Alfadhel, M.; Koren, O.; et al. Balloon-Expandable vs Self-Expanding Valves for Transcatheter Treatment of Sievers Type 1 Bicuspid Aortic Stenosis. JACC Cardiovasc. Interv. 2024, 17, 2596–2608. [Google Scholar] [CrossRef]
- Lee, H.-A.; Chou, A.-H.; Wu, V.C.-C.; Chen, D.-Y.; Lee, H.-F.; Lee, K.-T.; Chu, P.-H.; Cheng, Y.-T.; Chang, S.-H.; Chen, S.-W.; et al. Balloon-expandable versus self-expanding transcatheter aortic valve replacement for bioprosthetic dysfunction: A systematic review and meta-analysis. PLoS ONE 2020, 15, e0233894. [Google Scholar] [CrossRef]
- Kim, W.K.; Hengstenberg, C.; Hilker, M.; Kerber, S.; Schäfer, U.; Rudolph, T.; Linke, A.; Franz, N.; Kuntze, T.; Nef, H.; et al. The SAVI-TF registry: 1-year outcomes of the European post-market registry using the ACURATE neo transcatheter heart valve under real-world conditions in 1,000 patients. JACC Cardiovasc. Interv. 2018, 11, 1368–1374. [Google Scholar] [CrossRef]
- Toggweiler, S.; Nissen, H.; Mogensen, B.; Cuculi, F.; Fallesen, C.; Veien, K.; Brinkert, M.; Kobza, R.; Rück, A. Very low pacemaker rate following ACURATE neo transcatheter heart valve implantation. EuroIntervention 2017, 13, 1273–1280. [Google Scholar] [CrossRef]
- Vahanian, A.; Beyersdorf, F.; Praz, F.; Milojevic, M.; Baldus, S.; Bauersachs, J.; Capodanno, D.; Conradi, L.; De Bonis, M.; De Paulis, R.; et al. 2021 ESC/EACTS Guidelines for the management of valvular heart disease: Developed by the Task Force for the management of valvular heart disease of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS). Eur. Heart J. 2021, 43, 561–632. [Google Scholar] [CrossRef]
- Généreux, P.; Piazza, N.; Alu, M.C.; Nazif, T.; Hahn, R.T.; Pibarot, P.; Bax, J.J.; Leipsic, J.A.; Blanke, P.; Blackstone, E.H.; et al. Valve Academic Research Consortium 3: Updated Endpoint Definitions for Aortic Valve Clinical Research. J. Am. Coll. Cardiol. 2021, 77, 2717–2746. [Google Scholar] [CrossRef] [PubMed]
- Kim, W.-K.; Seiffert, M.; Rück, A.; Leistner, D.M.; Dreger, H.; Wienemann, H.; Adam, M.; Möllmann, H.; Blumenstein, J.; Eckel, C.; et al. Comparison of two self-expanding transcatheter heart valves for degenerated surgical bioprostheses: The AVENGER multicentre registry. EuroIntervention 2024, 20, e363–e375. [Google Scholar] [CrossRef] [PubMed]
- Barbanti, M.; Pagnesi, M.; Costa, G.; Latib, A. Self-Expanding Transcatheter Aortic Valves. The PCR-EAPCI Textbook. 17 May 2019. Available online: https://textbooks.pcronline.com/the-pci-textbook/self-expanding-transcatheter-aortic-valves (accessed on 5 April 2025).
- Pibarot, P.; Simonato, M.; Barbanti, M.; Linke, A.; Kornowski, R.; Rudolph, T.; Spence, M.; Moat, N.; Aldea, G.; Mennuni, M.; et al. Impact of Pre-Existing Prosthesis-Patient Mismatch on Survival Following Aortic Valve-in-Valve Procedures. JACC Cardiovasc. Interv. 2018, 11, 133–141. [Google Scholar] [CrossRef] [PubMed]
- Dvir, D.; Webb, J.G.; Bleiziffer, S.; Pasic, M.; Waksman, R.; Kodali, S.; Barbanti, M.; Latib, A.; Schaefer, U.; Rodés-Cabau, J.; et al. Transcatheter aortic valve implantation in failed bioprosthetic surgical valves. JAMA 2014, 312, 162–170. [Google Scholar] [CrossRef]
- Chakravarty, T.; Cox, J.; Abramowitz, Y.; Israr, S.; Uberoi, A.; Yoon, S.; Dey, D.; Zadeh, P.; Cheng, W.; Makkar, R.R. High-pressure post-dilation following transcatheter valve-in-valve implantation in small surgical valves. EuroIntervention 2018, 14, 158–165. [Google Scholar] [CrossRef]
- Allen, K.B.; Chhatriwalla, A.K.; Cohen, D.J.; Saxon, J.T.; Aggarwal, S.; Hart, A.; Baron, S.; Davis, J.R.; Pak, A.F.; Dvir, D.; et al. Bioprosthetic Valve Fracture to Facilitate Transcatheter Valve-in-Valve Implantation. Ann. Thorac. Surg. 2017, 104, 1501–1508. [Google Scholar] [CrossRef]
- Chhatriwalla, A.K.; Allen, K.B.; Saxon, J.T.; Cohen, D.J.; Aggarwal, S.; Hart, A.J.; Baron, S.J.; Dvir, D.; Borkon, A.M. Bioprosthetic Valve Fracture Improves the Hemodynamic Results of Valve-in-Valve Transcatheter Aortic Valve Replacement. Circ. Cardiovasc. Interv. 2017, 10, e005216. [Google Scholar] [CrossRef]
- Johansen, P.; Engholt, H.; Tang, M.; Nybo, R.; Rasmussen, P.; Nielsen-Kudsk, J.E. Fracturing mechanics before valve-in-valve therapy of small aortic bioprosthetic heart valves. EuroIntervention 2017, 13, e1026–e1031. [Google Scholar] [CrossRef]
- Nielsen-Kudsk, J.E.; Andersen, A.; Therkelsen, C.J.; Christensen, E.H.; Jensen, K.T.; Krusell, L.R.; Tang, M.; Terp, K.A.; Klaaborg, K.-E.; Greisen, J.R.; et al. High-pressure balloon fracturing of small dysfunctional Mitroflow bioprostheses facilitates transcatheter aortic valve-in-valve implantation. EuroIntervention 2017, 13, e1020–e1025. [Google Scholar] [CrossRef]
- Nielsen-Kudsk, J.E.; Christiansen, E.H.; Terkelsen, C.J.; Nørgaard, B.L.; Jensen, K.T.; Krusell, L.R.; Tang, M.; Terp, K.; Klaaborg, K.-E.; Andersen, H.R. Fracturing the Ring of Small Mitroflow Bioprostheses by High-Pressure Balloon Predilatation in Transcatheter Aortic Valve-in-Valve Implantation. Circ. Cardiovasc. Interv. 2015, 8, e002667. [Google Scholar] [CrossRef] [PubMed]
- Tanase, D.; Grohmann, J.; Schubert, S.; Uhlemann, F.; Eicken, A.; Ewert, P. Cracking the ring of Edwards Perimount bioprosthesis with ultrahigh pressure balloons prior to transcatheter valve in valve implantation. Int. J. Cardiol. 2014, 176, 1048–1049. [Google Scholar] [CrossRef]
- Kim, W.K.; Brinkert, M.; Mangner, N.; Gatto, F.; Husser, O.; Renker, M.; Liebetrau, C.; Gasior, T.; Doss, M.; Walther, T.; et al. Transfemoral implantation of the ACURATE neo prosthesis using a low-profile expandable introducer system: A multicenter registry. Int. J. Cardiol. 2019, 281, 76–81. [Google Scholar] [CrossRef]
- Papadopoulos, G.E.; Ninios, I.; Leptopoulos, E.; Papazoglou, K.; Konstantinidis, K.; Evangelou, S.; Ioannides, A.; Ninios, V. Comparative analysis of percutaneous vs. surgical access in transfemoral TAVR: A propensity-matched cohort study. Hell. J. Cardiol. 2025. [Google Scholar] [CrossRef] [PubMed]
- Macherey, S.; Meertens, M.; Mauri, V.; Frerker, C.; Adam, M.; Baldus, S.; Schmidt, T. Meta-Analysis of Stroke and Mortality Rates in Patients Undergoing Valve-in-Valve Transcatheter Aortic Valve Replacement. J. Am. Heart Assoc. 2021, 10, e019512. [Google Scholar] [CrossRef]
- Haussig, S.; Mangner, N.; Dwyer, M.G.; Lehmkuhl, L.; Lücke, C.; Woitek, F.; Holzhey, D.M.; Mohr, F.W.; Gutberlet, M.; Zivadinov, R.; et al. Effect of a cerebral protection device on brain lesions following transcatheter aortic valve implantation in patients with severe aortic stenosis: The CLEAN-TAVI randomized clinical trial. JAMA 2016, 316, 592–601. [Google Scholar] [CrossRef] [PubMed]
- Kapadia, S.R.; Kodali, S.; Makkar, R.; Mehran, R.; Lazar, R.M.; Zivadinov, R.; Dwyer, M.G.; Jilaihawi, H.; Virmani, R.; Anwaruddin, S.; et al. Protection against cerebral embolism during transcatheter aortic valve replacement. J. Am. Coll. Cardiol. 2017, 69, 367–377. [Google Scholar] [CrossRef]
- Lansky, A.J.; Schofer, J.; Tchetche, D.; Stella, P.; Pietras, C.G.; Parise, H.; Abrams, K.; Forrest, J.K.; Cleman, M.; Reinöhl, J.; et al. A prospective randomized evaluation of the TriGuard™ HDH embolic DEFLECTion device during transcatheter aortic valve implantation: Results from the DEFLECT III trial. Eur. Hearth J. 2015, 36, 2070–2078. [Google Scholar] [CrossRef]
- Seeger, J.; Gonska, B.; Otto, M.; Rottbauer, W.; Wöhrle, J. Cerebral embolic protection during transcatheter aortic valve replacement significantly reduces death and stroke compared with unprotected procedures. JACC Cardiovasc. Interv. 2017, 10, 2297–2303. [Google Scholar] [CrossRef]
- Kapadia, S.R.; Makkar, R.; Leon, M.; Abdel-Wahab, M.; Waggoner, T.; Massberg, S.; Rottbauer, W.; Horr, S.; Sondergaard, L.; Karha, J.; et al. Cerebral Embolic Protection during Transcatheter Aortic-Valve Replacement. N. Engl. J. Med. 2022, 387, 1253–1263. [Google Scholar] [CrossRef]
- Kharbanda, R.K.; Kennedy, J.; Jamal, Z.; Dodd, M.; Evans, R.; Bal, K.K.; Perkins, A.D.; Blackman, D.J.; Hildick-Smith, D.; Banning, A.P.; et al. Routine Cerebral Embolic Protection during Transcatheter Aortic-Valve Implantation. N. Engl. J. Med. 2025, 392, 2403–2412. [Google Scholar] [CrossRef] [PubMed]
Characteristic | Overall, N = 55 1 |
---|---|
Age, years | 78 (6) |
Female sex | 28/55 (51) |
BMI, kg/m2 | 25.5 (1) |
Euroscore II, % | 7.66 ± 0.9 |
NYHA class IV | 21/55 (38) |
Hypertension | 30/55 (55) |
Dyslipidemia | 37/55 (67) |
Diabetes | 15/55 (27) |
CAD | 25/55 (45) |
Previous PCI | 12/55 (22) |
Previous CABG | 13/55 (24) |
Previous MI | 7/55 (13) |
Stroke | 3/55 (5) |
Pacemaker | 11/55 (20) |
AF | 18/55 (33) |
COPD | 17/55 (31) |
eGFR, mL/min/1.73 m2 | 56 ± 17 |
True ID, mm | 22 ± 3 |
Time to failure, years | 10.0 ± 4.1 |
Degeneration mechanism | |
Stenosis | 28/55 (51) |
Regurgitation | 12/55 (22) |
Mixed | 15/55 (27) |
Surgical valve | |
MAGNA EASE | 8/55 (14.5) |
MITROFLOW | 8/55 (14.5) |
MOSAIC | 8/55 (14.5) |
SORIN CROWN | 2/55 (3.6) |
St JUDE EPIC 23 | 2/55 (3.6) |
TRIFECTA | 27/55 (49) |
Echocardiography | |
LVEF, % | 50 (15) |
Mean aortic gradient, mmHg | 38 ± 11 |
AVA, cm2 | 0.8 ± 0.5 |
AR | |
Trivial/Mild | 17/55 (31) |
Moderate | 22/55 (40) |
Severe | 16/55 (29) |
Characteristic | Overall, N = 55 1 |
---|---|
Technical success | 54/55 (98.2) |
Predilation | 48/55 (87) |
Surgical valve fracture | 5/55 (9) |
Postdilation | 36/55 (65) |
SENTINEL cerebral protection system | 55/55 (100) |
Procedural time, mins | 32 ± 5 |
Commissural alignment | 55/55 (100) |
Stroke | 0/55 (0) |
Bleeding | 0/55 (0) |
Vascular complications | 0/55 (0) |
AKI | 0/55 (0) |
Conversion to surgery | 0/55 (0) |
Pacemaker implantation | 0/55 (0) |
In-hospital mortality | 0/55 (0) |
Myocardial infarction | 0/55 (0) |
Elective PCI—chimney stenting | 3/55 (5.5) |
LM | 2/55 (3.6) |
LM + RCA | 1/55 (1.8) |
Postprocedural mean aortic gradient, mmHg | 6.7 ± 1 |
Mean AVA, cm2 | 2 ± 0.1 |
AR | 0/55 (0) |
Trace | 55/55 (100) |
Mild | 0/55 (0) |
Moderate | 0/55 (0) |
Severe | 0/55 (0) |
Hospital stay, days | 3.2 ± 0.6 |
Home—discharged | 55/55 (100) |
30-day mortality | 0/55 (0) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Papadopoulos, G.E.; Ninios, I.; Evangelou, S.; Ioannidis, A.; Nikitopoulos, A.; Giannakoulas, G.; Ninios, V. Efficacy and Safety of ACURATE neo2 in Valve-in-Valve TAVI: A Prospective Single-Center Study. J. Clin. Med. 2025, 14, 4677. https://doi.org/10.3390/jcm14134677
Papadopoulos GE, Ninios I, Evangelou S, Ioannidis A, Nikitopoulos A, Giannakoulas G, Ninios V. Efficacy and Safety of ACURATE neo2 in Valve-in-Valve TAVI: A Prospective Single-Center Study. Journal of Clinical Medicine. 2025; 14(13):4677. https://doi.org/10.3390/jcm14134677
Chicago/Turabian StylePapadopoulos, Georgios E., Ilias Ninios, Sotirios Evangelou, Andreas Ioannidis, Athinodoros Nikitopoulos, George Giannakoulas, and Vlasis Ninios. 2025. "Efficacy and Safety of ACURATE neo2 in Valve-in-Valve TAVI: A Prospective Single-Center Study" Journal of Clinical Medicine 14, no. 13: 4677. https://doi.org/10.3390/jcm14134677
APA StylePapadopoulos, G. E., Ninios, I., Evangelou, S., Ioannidis, A., Nikitopoulos, A., Giannakoulas, G., & Ninios, V. (2025). Efficacy and Safety of ACURATE neo2 in Valve-in-Valve TAVI: A Prospective Single-Center Study. Journal of Clinical Medicine, 14(13), 4677. https://doi.org/10.3390/jcm14134677