Determinants of Brain Atrophy in People Living with HIV: The Role of Lifestyle, Demographics, and Comorbidities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Imagistic Evaluation
2.3. Definitions
- −
- type 2 diabetes: fasting plasma glucose ≥ 126 mg/dL on at least two occasions, HbA1c ≥6.5%, or current use of antidiabetic medication.
- −
- systemic arterial hypertension: systolic blood pressure ≥ 140 mmHg and/or diastolic ≥ 90 mmHg on repeated clinic visits.
- −
- chronic kidney disease: estimated glomerular filtration rate (eGFR) < 60 mL/min/1.73 m2 for at least 3 months.
- −
- HAND: diagnosis made by a neurologist or infectious disease specialist using clinical neurocognitive testing, in accordance with the Frascati criteria.All comorbidities were recorded as binary variables (present/absent) and used in both univariate and multivariable analyses.
2.4. Statistic
3. Results
Study Group Characteristics
4. Discussion
4.1. Prevalence and Patterns of Brain Atrophy
4.2. Brain Atrophy and Behavioral Factors
4.3. Comorbidities in PLWH and Brain Atrophy
4.4. Study Limitations and Future Research Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chitu-Tisu, C.E.; Barbu, E.C.; Lazar, M.; Ionescu, R.; Bojinca, M.; Ion, D.A.; Badarau, A.I. An overview of bone disease in HIV-infected patients. Acta Medica Mediterr. 2015, 31, 1139–1151. [Google Scholar]
- Ances, B.M.; Ellis, R.J. Dementia and neurocognitive disorders due to HIV-1 infection. Semin. Neurol. 2007, 27, 86–92. [Google Scholar] [CrossRef]
- UNAIDS. Global HIV & AIDS Statistics—2024 Fact Sheet. Available online: https://www.unaids.org/en/resources/fact-sheet (accessed on 10 April 2025).
- Sanford, R.; Fellows, L.K.; Ances, B.M.; Collins, D.L. Association of Brain Structure Changes and Cognitive Function with Combination Antiretroviral Therapy in HIV-Positive Individuals. JAMA Neurol. 2018, 75, 72–79. [Google Scholar] [CrossRef]
- Cohen, R.A.; Seider, T.R.; Navia, B. HIV effects on age-associated neurocognitive dysfunction: Premature cognitive aging or neurodegenerative disease? Alzheimers Res. Ther. 2015, 7, 37. [Google Scholar] [CrossRef] [PubMed]
- Munteanu, D.; Negru, A.; Mihailescu, R.; Tiliscan, T.; Tudor, A.M.; Lazar, M.; Arama, S.S.; Ion, D.; Arama, V. Evaluation of bone mineral density and correlations with inflammation markers in Romanian HlV-positive patients undergoing combined antiretroviral therapy. Farmacia 2017, 65, 114–119. [Google Scholar]
- Durazzo, T.C.; Rothlind, J.C.; Cardenas, V.A.; Studholme, C.; Weiner, M.W.; Meyerhoff, D.J. Chronic cigarette smoking and heavy drinking in human immunodeficiency virus: Consequences for neurocognition and brain morphology. Alcohol 2007, 41, 489–501. [Google Scholar] [CrossRef]
- Dufour, C.A.; Marquine, M.J.; Fazeli, P.L.; Henry, B.L.; Ellis, R.J.; Grant, I.; Moore, D.J.; HNRP Group. Physical exercise is associated with less neurocognitive impairment among HIV-infected adults. J. Neurovirol. 2013, 19, 410–417. [Google Scholar] [CrossRef] [PubMed]
- Rubin, L.H.; Neigh, G.N.; Sundermann, E.E.; Xu, Y.; Scully, E.P.; Maki, P.M. Sex Differences in Neurocognitive Function in Adults with HIV: Patterns, Predictors, and Mechanisms. Curr. Psychiatry Rep. 2019, 21, 94. [Google Scholar] [CrossRef]
- Gustafson, D.R. Adiposity hormones and dementia. J. Neurol. Sci. 2010, 299, 30–34. [Google Scholar] [CrossRef]
- Lv, H.; Zeng, N.; Li, M.; Sun, J.; Wu, N.; Xu, M.; Chen, Q.; Zhao, X.; Chen, S.; Liu, W.; et al. Association between Body Mass Index and Brain Health in Adults: A 16-Year Population-Based Cohort and Mendelian Randomization Study. Health Data Sci. 2024, 4, 0087. [Google Scholar] [CrossRef]
- Lazar, M.; Moroti, R.; Barbu, E.C.; Chitu-Tisu, C.E.; Tiliscan, C.; Erculescu, T.M.; Rosca, R.R.; Frasila, S.; Schmilevschi, E.T.; Simion, V.; et al. The Impact of HIV on Early Brain Aging—A Pathophysiological (Re)View. J. Clin. Med. 2024, 13, 7031. [Google Scholar] [CrossRef]
- Chițu-Tișu, C.E.; Barbu, E.C.; Lazăr, M.; Bojincă, M.; Tudor, A.M.; Hristea, A.; Abagiu, A.O.; Ion, D.A.; Bădărău, A.I. Body composition in HIV-infected patients receiving highly active antiretroviral therapy. Acta Clin. Belg. 2017, 72, 55–62. [Google Scholar] [CrossRef]
- World Health Organization. Adherence to Long-Term Therapies: Evidence for Action; WHO: Geneva, Switzerland, 2003. [Google Scholar]
- DHHS Panel on Antiretroviral Guidelines for Adults and Adolescents. Guidelines for the Use of Antiretroviral Agents in Adults and Adolescents with HIV (Updated 2024). Available online: https://clinicalinfo.hiv.gov/en/guidelines/adult-and-adolescent-arv (accessed on 10 April 2025).
- Cilliers, K.; Muller, C.J.F. Effect of human immunodeficiency virus on the brain: A review. Anat. Rec. 2021, 304, 1389–1399. [Google Scholar] [CrossRef]
- Pini, L.; Pievani, M.; Bocchetta, M.; Altomare, D.; Bosco, P.; Cavedo, E.; Galluzzi, S.; Marizzoni, M.; Frisoni, G.B. Brain atrophy in Alzheimer’s Disease and aging. Ageing Res. Rev. 2016, 30, 25–48]. [Google Scholar] [CrossRef] [PubMed]
- Al-Janabi, O.M.; Panuganti, P.; Abner, E.L.; Bahrani, A.A.; Murphy, R.; Bardach, S.H.; Caban-Holt, A.; Nelson, P.T.; Gold, B.T.; Smith, C.D.; et al. Global Cerebral Atrophy Detected by Routine Imaging: Relationship with Age, Hippocampal Atrophy, and White Matter Hyperintensities. J. Neuroimaging 2018, 28, 301–306. [Google Scholar] [CrossRef] [PubMed]
- Imansyah, A.N.; Daulay, E.R.; Surbakti, K.P. The Relationship between Age and Cerebral Atrophy on Head CT-Scan Examination at Haji Adam Malik General Hospital Medan. J. Soc. Med. 2024, 3, 132–138. [Google Scholar] [CrossRef]
- Hestad, K.; McArthur, J.H.; Dal Pan, G.J.; Selnes, O.A.; Nance-Sproson, T.E.; Aylward, E.; Mathews, V.P.; McArthur, J.C. Regional brain atrophy in HIV-1 infection: Association with specific neuropsychological test performance. Acta Neurol. Scand. 1993, 88, 112–118. [Google Scholar] [CrossRef] [PubMed]
- Oliveira-Filho, J. Stroke and brain atrophy in chronic Chagas disease patients: A new theory proposition. Dement. Neuropsychol. 2009, 3, 22–26. [Google Scholar] [CrossRef]
- Harris, T.C.; de Rooij, R.; Kuhl, E. The Shrinking Brain: Cerebral Atrophy Following Traumatic Brain Injury. Ann. Biomed. Eng. 2019, 47, 1941–1959. [Google Scholar] [CrossRef]
- Househam, K.C.; De Villiers, J.F.K. Computed tomography in severe protein energy malnutrition. Arch. Dis. Child. 1987, 62, 589–592. [Google Scholar] [CrossRef]
- Sciacchitano, S.; Lavra, L.; Morgante, A.; Ulivieri, A.; Magi, F.; De Francesco, G.P.; Bellotti, C.; Salehi, L.B.; Ricci, A. Galectin-3: One Molecule for an Alphabet of Diseases, from A to Z. Int. J. Mol. Sci. 2018, 19, 379. [Google Scholar] [CrossRef]
- Lazar, M.; Sandulescu, M.; Barbu, E.C.; Chitu-Tisu, C.E.; Andreescu, D.I.; Anton, A.N.; Erculescu, T.M.; Petre, A.M.; Duca, G.T.; Simion, V.; et al. The Role of Cytokines and Molecular Pathways in Lung Fibrosis Following SARS-CoV-2 Infection: A Physiopathologic (Re)view. Biomedicines 2024, 12, 639. [Google Scholar] [CrossRef] [PubMed]
- Stojanovic, B.S.; Stojanovic, B.; Milovanovic, J.; Arsenijević, A.; Dimitrijevic Stojanovic, M.; Arsenijevic, N.; Milovanovic, M. The Pivotal Role of Galectin-3 in Viral Infection: A Multifaceted Player in Host-Pathogen Interactions. Int. J. Mol. Sci. 2023, 24, 9617. [Google Scholar] [CrossRef]
- Srejovic, I.; Selakovic, D.; Jovicic, N.; Jakovljević, V.; Lukic, M.L.; Rosic, G. Galectin-3: Roles in Neurodevelopment, Neuroinflammation, and Behavior. Biomolecules 2020, 10, 798. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.F.; Tsao, C.H.; Lin, Y.T.; Hsu, D.K.; Chiang, M.L.; Lo, C.H.; Chien, F.C.; Chen, P.; Arthur Chen, Y.M.; Chen, H.Y.; et al. Galectin-3 promotes HIV-1 budding via association with Alix and Gag p6. Glycobiology 2014, 24, 1022–1035. [Google Scholar] [CrossRef]
- Jernigan, T.L.; Archibald, S.; Hesselink, J.R.; Atkinson, J.H.; Velin, R.A.; McCutchan, J.A.; Chandler, J.; Grant, I. Magnetic resonance imaging morphometric analysis of cerebral volume loss in human immunodeficiency virus infection. The HNRC Group. Arch. Neurol. 1993, 50, 250–255. [Google Scholar] [CrossRef] [PubMed]
- Wade, B.S.C.; Valcour, V.G.; Wendelken-Riegelhaupt, L.; Esmaeili-Firidouni, P.; Joshi, S.H.; Gutman, B.A.; Thompson, P.M. Mapping abnormal subcortical brain morphometry in an elderly HIV + cohort. NeuroImage Clin. 2015, 9, 564–573. [Google Scholar] [CrossRef]
- Di Sclafani, V.; Mackay, R.D.S.; Meyerhoff, D.J.; Norman, D.; Weiner, M.W.; Fein, G. Brain atrophy in HIV infection is more strongly associated with CDC clinical stage than with cognitive impairment. J. Int. Neuropsychol. Soc. 1997, 3, 276–287. [Google Scholar] [CrossRef]
- Moccia, M.; Prados, F.; Filippi, M.; Rocca, M.A.; Valsasina, P.; Brownlee, W.J.; Zecca, C.; Gallo, A.; Rovira, A.; Gass, A.; et al. Longitudinal spinal cord atrophyin multiple sclerosis using the generalized boundary shift integral. Ann. Neurol. 2019, 86, 704–713. [Google Scholar] [CrossRef]
- Munir, H.; Arshad, N.; Ali, A.; Jamil, M.; John, A. Frequency Of Brain Atrophy Diagnosed on Computed Tomography: Frequency of Brain Atrophy Diagnosed on Computed Tomography. Pak. J. Health Sci. 2022, 3, 25–29. [Google Scholar] [CrossRef]
- Tian, Q.; Resnick, S.M.; Davatzikos, C.; Erus, G.; Simonsick, E.M.; Studenski, S.A.; Ferrucci, L. A prospective study of focal brain atrophy, mobility and tness. J. Intern. Med. 2019, 286, 88–100. [Google Scholar] [CrossRef] [PubMed]
- Kalumbilo, L.J.; Mpolya, E.A.; Vianney, J.M. Prevalence and risk factors of brain atrophy and associated confusion state among adults from three hospitals in northern Tanzania. Pan Afr. Med. J. 2023, 45, 1. [Google Scholar] [PubMed]
- Aylward, E.H.; Henderer, J.D.; McArthur, J.C.; Brettschneider, P.D.; Harris, G.J.; Barta, P.E.; Pearlson, G.D. Reduced basal ganglia volume in HIV-1-associated dementia: Results from quantitative neuroimaging. Neurology 1993, 43, 2099–2104. [Google Scholar] [CrossRef]
- Paul, R.; Cohen, R.; Navia, B.; Tashima, K. Relationships between cognition and structural neuroimaging findings in adults with human immunodeficiency virus type-1. Neurosci. Biobehav. Rev. 2002, 26, 353–359. [Google Scholar] [CrossRef] [PubMed]
- Becker, J.T.; Sanders, J.; Madsen, S.K.; Ragin, A.; Kingsley, L.; Maruca, V.; Cohen, B.; Goodkin, K.; Martin, E.; Miller, E.N.; et al. Multicenter AIDS Cohort Study. Subcortical brain atrophy persists even in HAART-regulated HIV disease. Brain Imaging Behav. 2011, 5, 77–85. [Google Scholar] [CrossRef]
- Castelo, J.B.M.; Courtney, M.G.; Melrose, R.J.; Stern, C.E. Putamen hypertrophy in nondemented patients with human immunodeficiency virus infection and cognitive compromise. Arch. Neurol. 2007, 64, 1275–1280. [Google Scholar] [CrossRef]
- Fennema-Notestine, C.; Ellis, R.J.; Archibald, S.L.; Jernigan, T.L.; Letendre, S.L.; Notestine, R.J.; Taylor, M.J.; Theilmann, R.J.; Julaton, M.D.; Croteau, D.J.; et al. Increases in brain white matter abnormalities and subcortical gray matter are linked to CD4 recovery in HIV infection. J. Neurovirol. 2013, 19, 393–401. [Google Scholar] [CrossRef]
- Liu, D.; Zhao, C.; Wang, W.; Wang, Y.; Li, R.; Sun, J.; Liu, J.; Liu, M.; Zhang, X.; Liang, Y.; et al. Altered Gray Matter Volume and Functional Connectivity in Human Immunodeficiency Virus-Infected Adults. Front. Neurosci. 2020, 14, 601063. [Google Scholar] [CrossRef]
- Archibald, S.L.; McCutchan, J.A.; Sanders, C.; Wolfson, T.; Jernigan, T.L.; Ellis, R.J.; Ances, B.M.; Collier, A.C.; McArthur, J.C.; Morgello, S.; et al. Brain morphometric correlates of metabolic variables in HIV: The CHARTER study. J. Neurovirol. 2014, 20, 603–611. [Google Scholar] [CrossRef]
- Karama, S.; Ducharme, S.; Corley, J.; Chouinard-Decorte, F.; Starr, J.M.; Wardlaw, J.M.; Bastin, M.E.; Deary, I.J. Cigarette smoking and thinning of the brain’s cortex. Mol. Psychiatry 2015, 20, 778–785. [Google Scholar] [CrossRef]
- Chang, L.; Liang, H.; Kandel, S.R.; He, J.J. Independent and Combined Effects of Nicotine or Chronic Tobacco Smoking and HIV on the Brain: A Review of Preclinical and Clinical Studies. J. Neuroimmune Pharmacol. 2020, 15, 658–693. [Google Scholar] [CrossRef]
- Liang, H.; Chang, L.; Chen, R.; Oishi, K.; Ernst, T. Independent and Combined Effects of Chronic HIV-Infection and Tobacco Smoking on Brain Microstructure. J. Neuroimmune Pharmacol. 2018, 13, 509–522. [Google Scholar] [CrossRef]
- Nunez, K.; Kay, J.; Krotow, A.; Tong, M.; Agarwal, A.R.; Cadenas, E.; de la Monte, S.M. Cigarette Smoke-Induced Alterations in Frontal White Matter Lipid Profiles Demonstrated by MALDI-Imaging Mass Spectrometry: Relevance to Alzheimer’s Disease. J. Alzheimers Dis. 2016, 51, 151–163. [Google Scholar] [CrossRef]
- Keane, A.M.; Swartz, T.H. The impacts of tobacco and nicotine on HIV-1 infection, inflammation, and the blood-brain barrier in the central nervous system. Front. Pharmacol. 2024, 15, 1477845. [Google Scholar] [CrossRef] [PubMed]
- Liang, H.J.; Ernst, T.; Cunningham, E.; Chang, L. Contributions of chronic tobacco smoking to HIV-associated brain atrophy and cognitive deficits. AIDS 2022, 36, 513–524. [Google Scholar] [CrossRef] [PubMed]
- Buckley, S.; Byrnes, S.; Cochrane, C.; Roche, M.; Estes, J.D.; Selemidis, S.; Angelovich, T.A.; Churchill, M.J. The role of oxidative stress in HIV-associated neurocognitive disorders. Brain Behav. Immun. Health 2021, 13, 100235. [Google Scholar] [CrossRef] [PubMed]
- Ashare, R.L.; Thompson, M.; Leone, F.; Metzger, D.; Gross, R.; Mounzer, K.; Tyndale, R.F.; Lerman, C.; Mahoney, M.C.; Cinciripini, P.; et al. Differences in the rate of nicotine metabolism among smokers with and without HIV. AIDS 2019, 33, 1083–1088. [Google Scholar] [CrossRef]
- Winhusen, T.; Feaster, D.J.; Duan, R.; Brown, J.L.; Daar, E.S.; Mandler, R.; Metsch, L.R. Baseline Cigarette Smoking Status as a Predictor of Virologic Suppression and CD4 Cell Count During One-Year Follow-Up in Substance Users with Uncontrolled HIV Infection. AIDS Behav. 2018, 22, 2026–2032. [Google Scholar] [CrossRef]
- Hawkins, K.L.; Zhang, L.; Ng, D.K.; Althoff, K.N.; Palella, F.J., Jr.; Kingsley, L.A.; Jacobson, L.P.; Margolick, J.B.; Lake, J.E.; Brown, T.T.; et al. Abdominal obesity, sarcopenia, and osteoporosis are associated with frailty in men living with and without HIV. AIDS 2018, 32, 1257–1266. [Google Scholar] [CrossRef]
- Fazeli, P.L.; Woods, S.P.; Heaton, R.K.; Umlauf, A.; Gouaux, B.; Rosario, D.; Group, H. An active lifestyle is associated with better neurocognitive functioning in adults living with HIV infection. J. Neurovirol. 2014, 20, 233–242. [Google Scholar] [CrossRef]
- Ortega, M.; Baker, L.M.; Vaida, F.; Paul, R.; Basco, B.; Ances, B.M. Physical Activity Affects Brain Integrity in HIV+ Individuals. J. Int. Neuropsychol. Soc. 2015, 21, 880–889. [Google Scholar] [CrossRef]
- Erickson, K.I.; Voss, M.W.; Prakash, R.S.; Basak, C.; Szabo, A.; Chaddock, L.; Kim, J.S.; Heo, S.; Alves, H.; White, S.M.; et al. Exercise training increases size of hippocampus and improves memory. Proc. Natl. Acad. Sci. USA 2011, 108, 3017–3022. [Google Scholar] [CrossRef] [PubMed]
- Ghayomzadeh, M.; Earnest, C.P.; Hackett, D.; SeyedAlinaghi, S.; Navalta, J.W.; Gholami, M.; Hosseini Rouzbahani, N.; Mohraz, M.; Voltarelli, F.A. Combination of resistance and aerobic exercise for six months improves bone mass and physical function in HIV infected individuals: A randomized controlled trial. Scand. J. Med. Sci. Sports 2021, 31, 720–732. [Google Scholar] [CrossRef]
- Pedro, R.E.; Candido, N.; Guariglia, D.A.; Melo, B.P.; Bertolini, D.A.; Peres, S.B.; Franzói de Moraes, S.M. Exercise improves cytokine profile in HIV-infected people: A randomized clinical trial. Cytokine 2017, 99, 18–23. [Google Scholar] [CrossRef]
- Fazeli, P.L.; Willig, A.L.; Oliveira, V.; Buford, T.W.; Vance, D.E.; Burkholder, G.; Crane, H.M.; Horvat Davey, C.; Fleming, J.; Webel, A.R. The Association Between Objectively-Measured Physical Activity and Cognitive Functioning in Middle-Aged and Older People Living with HIV. AIDS Behav. 2023, 27, 1199–1210. [Google Scholar] [CrossRef] [PubMed]
- Fazeli, P.L.; Marquine, M.J.; Dufour, C.; Henry, B.L.; Montoya, J.; Gouaux, B.; Moore, R.C.; Letendre, S.L.; Woods, S.P.; Grant, I.; et al. Physical Activity is Associated with Better Neurocognitive and Everyday Functioning Among Older Adults with HIV Disease. AIDS Behav. 2015, 19, 1470–1477. [Google Scholar] [CrossRef] [PubMed]
- Heaton, R.K.; Clifford, D.B.; Franklin, D.R., Jr.; Woods, S.P.; Ake, C.; Vaida, F.; Ellis, R.J.; Letendre, S.L.; Marcotte, T.D.; Atkinson, J.H.; et al. HIV-associated neurocognitive disorders persist in the era of potent antiretroviral therapy: CHARTER Study. Neurology 2010, 75, 2087–2096. [Google Scholar] [CrossRef]
- McCutchan, J.A.; Marquie-Beck, J.A.; Fitzsimons, C.A.; Letendre, S.L.; Ellis, R.J.; Heaton, R.K.; Wolfson, T.; Rosario, D.; Alexander, T.J.; Marra, C.; et al. Role of obesity, metabolic variables, and diabetes in HIV-associated neurocognitive disorder. Neurology 2012, 78, 485–492. [Google Scholar] [CrossRef]
- McMahan, C.; Dietrich, D.K.; Horne, E.F.; Kelly, E.; Geannopoulos, K.; Siyahhan Julnes, P.S.; Ham, L.; Santamaria, U.; Lau, C.Y.; Wu, T.; et al. Neurocognitive Dysfunction with Neuronal Injury in People with HIV on Long-Duration Antiretroviral Therapy. Neurology 2023, 100, e2466–e2476. [Google Scholar] [CrossRef]
- Seider, T.R.; Gongvatana, A.; Woods, A.J.; Chen, H.; Porges, E.C.; Cummings, T.; Correia, S.; Tashima, K.; Cohen, R.A. Age exacerbates HIV-associated white matter abnormalities. J. Neurovirol. 2016, 22, 201–212. [Google Scholar] [CrossRef]
- Cohen, R.A.; Harezlak, J.; Schifitto, G.; Hana, G.; Clark, U.; Gongvatana, A.; Paul, R.; Taylor, M.; Thompson, P.; Alger, J.; et al. Effects of nadir CD4 count and duration of human immunodeficiency virus infection on brain volumes in the highly active antiretroviral therapy era. J. Neurovirol. 2010, 16, 25–32. [Google Scholar] [CrossRef]
- Kallianpur, K.J.; Jahanshad, N.; Sailasuta, N.; Benjapornpong, K.; Chan, P.; Pothisri, M.; Dumrongpisutikul, N.; Laws, E.; Ndhlovu, L.C.; Clifford, K.M.; et al. Regional brain volumetric changes despite 2 years of treatment initiated during acute HIV infection. AIDS 2020, 34, 415–426. [Google Scholar] [CrossRef] [PubMed]
- Lamers, S.L.; Rose, R.; Maidji, E.; Agsalda-Garcia, M.; Nolan, D.J.; Fogel, G.B.; Salemi, M.; Garcia, D.L.; Bracci, P.; Yong, W.; et al. HIV DNA Is Frequently Present within Pathologic Tissues Evaluated at Autopsy from Combined Antiretroviral Therapy-Treated Patients with Undetectable Viral Loads. J. Virol. 2016, 90, 8968–8983. [Google Scholar] [CrossRef]
- Clifford, K.M.; Samboju, V.; Cobigo, Y.; Milanini, B.; Marx, G.A.; Hellmuth, J.M.; Rosen, H.J.; Kramer, J.H.; Allen, I.E.; Valcour, V.G. Progressive Brain Atrophy Despite Persistent Viral Suppression in HIV Patients Older Than 60 Years. J. Acquir. Immune Defic. Syndr. 2017, 76, 289–297. [Google Scholar] [CrossRef] [PubMed]
- Cole, J.H.; Underwood, J.; Caan, M.W.; De Francesco, D.; van Zoest, R.A.; Leech, R.; Wit, F.W.; Portegies, P.; Geurtsen, G.J.; Schmand, B.A.; et al. Increased brain-predicted aging in treated HIV disease. Neurology 2017, 88, 1349–1357. [Google Scholar] [CrossRef] [PubMed]
- Nir, T.M.; Jahanshad, N.; Ching, C.R.K.; Cohen, R.A.; Harezlak, J.; Schifitto, G.; Lam, H.Y.; Hua, X.; Zhong, J.; Zhu, T.; et al. HIV Neuroimaging Consortium. Progressive brain atrophy in chronically infected and treated HIV+ individuals. J. Neurovirol. 2019, 25, 342–353. [Google Scholar] [CrossRef]
- Akusjärvi, S.S.; Neogi, U. Biological Aging in People Living with HIV on Successful Antiretroviral Therapy: Do They Age Faster? Curr. HIV/AIDS Rep. 2023, 20, 42–50. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, M.; Lu, Q.; Farrell, M.; Lappin, J.M.; Shi, J.; Lu, L.; Bao, Y. Global prevalence and burden of HIV-associated neurocognitive disorder: A meta-analysis. Neurology 2020, 95, e2610–e2621. [Google Scholar] [CrossRef]
- Mitra, P.; Sharman, T. HIV Neurocognitive Disorders. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Torices, S.; Roberts, S.A.; Park, M.; Malhotra, A.; Toborek, M. Occludin, caveolin-1, and Alix form a multi-protein complex and regulate HIV-1 infection of brain pericytes. FASEB J. 2020, 34, 16319–16332. [Google Scholar] [CrossRef]
- Zhao, Z.; Nelson, A.R.; Betsholtz, C.; Zlokovic, B.V. Establishment and Dysfunction of the Blood-Brain Barrier. Cell 2015, 163, 1064–1078. [Google Scholar] [CrossRef]
- Kong, W.; Frouard, J.; Xie, G.; Corley, M.J.; Helmy, E.; Zhang, G.; Schwarzer, R.; Montano, M.; Sohn, P.; Roan, N.R.; et al. Neuroinflammation generated by HIV-infected microglia promotes dysfunction and death of neurons in human brain organoids. Proc. Natl. Acad. Sci. USA 2024, 3, 179. [Google Scholar] [CrossRef] [PubMed]
- Marino, J.; Maubert, M.E.; Mele, A.R.; Spector, C.; Wigdahl, B.; Nonnemacher, M.R. Functional impact of HIV-1 Tat on cells of the CNS and its role in HAND. Cell Mol. Life Sci. 2020, 77, 5079–5099. [Google Scholar] [CrossRef]
- Casten, M.; Herbert, S.; Smith, D.J.; Petoumenos, K.; Coorey, C.; Edmiston, N. What are the predictors of change in multimorbidity among people with HIV? A longitudinal observational cohort study. HIV Med. 2023, 24, 807–817. [Google Scholar] [CrossRef]
- Ruzicka, D.J.; Imai, K.; Takahashi, K.; Naito, T. Comorbidities and the use of comedications in people living with HIV on antiretroviral therapy in Japan: A cross-sectional study using a hospital claims database. BMJ Open 2018, 8, e019985. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Shaw, M.; Cherbuin, N. Association between Type 2 Diabetes Mellitus and Brain Atrophy: A Meta-Analysis. Diabetes Metab. J. 2022, 46, 781–802. [Google Scholar] [CrossRef]
- Kalra, S.; Kalra, B.; Agrawal, N.; Unnikrishnan, A. Understanding diabetes in patients with HIV/AIDS. Diabetol. Metab. Syndr. 2011, 3, 2. [Google Scholar] [CrossRef] [PubMed]
- Andric, V.; Boban, J.; Maric, D.; Kozic, D.; Brkic, S.; Bulovic, A. Additive Effect of Metabolic Syndrome on Brain Atrophy in People Living with HIV–Magnetic Resonance Volumetry Study. Metabolites 2024, 14, 331. [Google Scholar] [CrossRef]
- D’Souza, G.; Bhondoekhan, F.; Benning, L.; Margolick, J.B.; Adedimeji, A.A.; Adimora, A.A.; Alcaide, M.L.; Cohen, M.H.; Detels, R.; Friedman, M.R.; et al. Characteristics of the MACS/WIHS Combined Cohort Study: Opportunities for Research on Aging with HIV in the Longest US Observational Study of HIV. Am. J. Epidemiol. 2021, 190, 1457–1475. [Google Scholar] [CrossRef]
- Hategan, A.; Masliah, E.; Nath, A. HIV and Alzheimer’s disease: Complex interactions of HIV-Tat with amyloid β peptide and Tau protein. J. Neurovirol. 2019, 25, 648–660. [Google Scholar] [CrossRef]
- Li, Q.; Yang, Y.; Reis, C.; Tao, T.; Li, W.; Li, X.; Zhang, J.H. Cerebral Small Vessel Disease. Cell Transplant. 2018, 27, 1711–1722. [Google Scholar] [CrossRef]
- Coppola, N.; Martini, S.; Pisaturo, M.; Sagnelli, C.; Filippini, P.; Sagnelli, E. Treatment of chronic hepatitis C in patients with HIV/HCV coinfection. World J. Virol. 2015, 4, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Leumi, S.; Bigna, J.J.; Amougou, M.A.; Ngouo, A.; Nyaga, U.F.; Noubiap, J.J. Global burden of hepatitis B infection in people living with human immunodeficiency virus: A systematic review and meta-analysis. Clin. Infect. Dis. 2020, 71, 2799–2806. [Google Scholar] [CrossRef] [PubMed]
- Barbu, E.C.; Chiţu-Tișu, C.E.; Lazăr, M.; Olariu, C.M.; Olteanu, D.; Bojincă, M.; Abagiu, A.O.; Aramă, V.; Ion, D.A.; Bădărău, I.A. Body Composition Changes in Patients with Chronic Hepatitis C. J. Gastrointest. Liver Dis. 2016, 25, 323–329. [Google Scholar] [CrossRef]
- Barbu, E.C.; Moroti-Constantinescu, V.R.; Lazar, M.; Chitu, C.E.; Olariu, C.M.; Bojinca, M.; Ion, D.A. Body composition changes in men with HIV/HCV coinfection, HIV monoinfection, and HCV monoinfection. Acta Endocrinol. 2022, 18, 442–451. [Google Scholar] [CrossRef]
- Shin, H.W.; Park, H.K. Recent Updates on Acquired Hepatocerebral Degeneration. Tremor Other Hyperkinet Mov. 2017, 7, 463. [Google Scholar] [CrossRef]
- Park, J.; Zuñiga, J.A. Chronic Kidney Disease in Persons Living with HIV: A Systematic Review. J. Assoc. Nurses AIDS Care 2018, 29, 655–666. [Google Scholar] [CrossRef]
- Tsuruya, K.; Yoshida, H. Cognitive Impairment and Brain Atrophy in Patients with Chronic Kidney Disease. J. Clin. Med. 2024, 13, 1401. [Google Scholar] [CrossRef]
Parameter | Group A (38) | Group B (83) | ||
---|---|---|---|---|
Number of Cases | Percentage | Number of Cases | Percentage | |
Type 2 diabetes | 8 | 21.05% | 9 | 10.84% |
Arterial hypertension | 10 | 26.31% | 16 | 19.27% |
Arterial hypotension | 1 | 2.63% | 2 | 2.41% |
Chronic hepatitis | 4 | 10.52% | 11 | 13.25% |
Chronic kidney disease | 6 | 15.78% | 6 | 7.23% |
COPD | 6 | 15.78% | 7 | 8.43% |
HAND | 24 | 63.15% | 15 | 18.07% |
Parameter | Group A | Group B | p-Value |
---|---|---|---|
Brain (mL) | 1166.7 [1102.5;1201.2] | 1275.1 [1211.2; 1341.8] | <0.001 |
Brain (% *) | 72.9 [72.1; 74.4] | 83.1 [81.2; 84.6] | <0.001 |
Gray matter (mL) | 720.3 [650.1; 762.2] | 752.1 [706; 812.8] | 0.003 |
Gray matter (% *) | 45.1 [41.3; 47.2] | 49.4 [45.6; 52.7] | <0.001 |
Cortical gray matter (mL) | 563.8 [520; 626.3] | 582.8 [529.3; 633.9] | 0.326 |
Cortical gray matter (% *) | 36.3 [33.1; 38.7] | 38.2 [35.1; 41.3] | 0.006 |
White matter (mL) | 433.3 [393.9; 494.6] | 506.1 [471.1; 568.9] | <0.001 |
White matter (% *) | 27.5 [26.1; 32.1] | 33.1 [31.3; 35.8] | <0.001 |
Cerebro-spinal fluid (mL) | 346.8 [315.1; 372.9] | 257.6 [235.1; 307.3] | <0.001 |
Cerebro-spinal fluid (% *) | 22.2 [21.3; 22.6] | 17.1 [15.4; 19.2] | <0.001 |
Thalamus (mL) | 14.9 [13.9; 16.4] | 15.5 [14.4; 16.5] | 0.096 |
Thalamus (% *) | 0.97 [0.89; 1] | 1.03 [0.96; 1.08] | <0.001 |
Putamen (mL) | 15 [14.2; 15.8] | 15.7 [14.4; 16.6] | 0.085 |
Putamen (% *) | 0.96 [0.91; 0.98] | 1.02 [0.96; 1.07] | <0.001 |
Caudate (mL) | 9.1 [8.6; 10.1] | 9.23 [8.37; 10.14] | 0.806 |
Caudate (% *) | 0.6 [0.54; 0.64] | 0.62 [0.56; 0.67] | 0.290 |
Globus pallidus (mL) | 4.3 [4; 4.7] | 4.1 [3.8; 4.5] | 0.105 |
Globus pallidus (% *) | 0.28 [0.25; 0.3] | 0.27 [0.26; 0.3] | 0.698 |
Hippocampus (mL) | 6.9 [6.4; 7.5] | 7.1 [6.4; 7.7] | 0.250 |
Hippocampus (% *) | 0.43 [0.41; 0.47] | 0.47 [0.43; 0.5] | 0.008 |
Ventricles (mL) | 24 [19.1; 27.3] | 21.1 [18.3; 25] | 0.144 |
Ventricles (% *) | 1.5 [1.2; 1.8] | 1.4 [1.2; 1.6] | 0.490 |
Frontal gray matter (mL) | 214.9 [198.1; 233.3] | 220 [202; 240.2] | 0.208 |
Frontal gray matter (% *) | 13.7 [12.7; 14.3] | 14.4 [13.3; 15.6] | 0.002 |
Parietal gray matter (mL) | 131.7 [115; 152.7] | 137.1 [123.4; 153.4] | 0.369 |
Parietal gray matter (% *) | 8.6 [7.5; 9.2] | 9.1 [8.2; 9.9] | 0.031 |
Occipital gray matter (mL) | 67.95 [62.9; 69.9] | 67.9 [60.6; 75.1] | 0.619 |
Occipital gray matter (% *) | 4.3 [4; 4.5] | 4.5 [4; 4.7] | 0.051 |
Temporal gray matter (mL) | 142.6 [126.6; 168] | 142.9 [128.1; 155] | 0.617 |
Temporal gray matter (% *) | 9.1 [7.9; 10.4] | 9.3 [8.3; 10.2] | 0.647 |
Insular gray matter (mL) | 13.5 [12.6; 14.3] | 12.9 [12.2; 13.8] | 0.087 |
Insular gray matter (% *) | 0.87 [0.8; 0.92] | 0.85 [0.81; 0.92] | 0.748 |
Cingular gray matter (mL) | 19.8 [17.4; 20.7] | 19.2 [17.3; 20.5] | 0.657 |
Cingular gray matter (% *) | 1.2 [1.1; 1.3] | 1.2 [1.2; 1.3] | 0.071 |
Frontal white matter (mL) | 172.5 [153.4; 185.5] | 173.6 [157.3; 189.3] | 0.366 |
Frontal white matter (% *) | 10.8 [10.1; 11.5] | 11.3 [10.6; 12.1] | 0.003 |
Parietal white matter (mL) | 102.5 [93.5; 113.9] | 107.6 [98.9; 123.4] | 0.056 |
Parietal white matter (% *) | 6.8 [6.1; 7.1] | 7.2 [6.6; 7.8] | 0.002 |
Occipital white matter (mL) | 29.5 [25.2; 36.3] | 32.3 [26; 36.2] | 0.490 |
Occipital white matter (% *) | 1.9 [1.6; 2.3] | 2.1 [1.7; 2.4] | 0.064 |
Temporal white matter (mL) | 59.4 [54.7; 64.2] | 62.7 [57.3; 65.1] | 0.058 |
Temporal white matter (% *) | 3.8 [3.6; 4] | 4.1 [4; 4.1] | <0.001 |
Cerebellum (mL) | 134.6 [128.4; 144.1] | 134.8 [127.9; 143.8] | 0.891 |
Cerebellum (% *) | 8.5 [8.2; 9.2] | 8.8 [8.5; 9.4] | 0.075 |
Corpus callosum (cm2) | 5.2 [4.9; 5.5] | 5.2 [5; 5.6] | 0.893 |
Parameter | Spearman’s Rho | p-Value | OR | [CI] |
---|---|---|---|---|
Education | −0.101 | 0.271 | 0.730 | [0.413; 1.290] |
Smoking status | 0.395 | <0.001 | 3.395 | [1.921; 6] |
Number of pack-year | 0.289 | <0.001 | 1.074 | [1.018; 1.132] |
Weight | 0.103 | 0.261 | 1.015 | [0.992; 1.039] |
Height | 0.061 | 0.505 | 6.710 | [0.135; 332.439] |
BMI | 0.100 | 0.273 | 1.043 | [0.951; 1.144] |
Physical activity | −0.323 | <0.001 | 0.366 | [0.200; 0.669] |
Disease duration | 0.416 | <0.001 | 1.244 | [1.127; 1.372] |
Treatment duration | 0.394 | <0.001 | 1.275 | [1.137; 1.430] |
Lack of compliance to treatment | 0.225 | 0.013 | 4.160 | [1.260; 13.730] |
Type 2 diabetes | 0.363 | <0.001 | 5.829 | [2.323; 14.626] |
Arterial hypertension | 0.080 | 0.386 | 1.496 | [0.605; 3.696] |
Arterial hypotension | 0.007 | 0.943 | 1.095 | [0.096; 12.455] |
Chronic hepatitis | −0.038 | 0.676 | 0.770 | [0.229; 2.595] |
Chronic kidney disease | 0.110 | 0.229 | 2.406 | [0.722; 8.024] |
COPD | 0.110 | 0.227 | 2.036 | [0.634; 6.533] |
HAND | 0.448 | <0.001 | 7.771 | [3.274; 18.445] |
Parameter | AUC | Std Error | p-Value | CI 95% | |
---|---|---|---|---|---|
Lower Bound | Upper Bound | ||||
Smoking status | 0.718 | 0.053 | <0.001 | 0.615 | 0.822 |
Number of pack-year | 0.661 | 0.054 | 0.005 | 0.554 | 0.768 |
Physical activity | 0.313 | 0.053 | 0.001 | 0.210 | 0.416 |
Disease duration | 0.757 | 0.052 | <0.001 | 0.655 | 0.860 |
Lack of compliance to treatment/Non-adherence | 0.575 | 0.058 | 0.186 | 0.461 | 0.690 |
Diabetes type II | 0.663 | 0.057 | 0.004 | 0.551 | 0.774 |
HAND | 0.725 | 0.053 | <0.001 | 0.622 | 0.829 |
Variable | B | S.E. | Wald | p | OR | 95% CI for OR | |
---|---|---|---|---|---|---|---|
Lower | Upper | ||||||
Smoking | 1.662 | 0.473 | 12.340 | <0.001 | 5.271 | 2.085 | 13.327 |
Physical activity | −0.831 | 0.408 | 4.145 | 0.042 | 0.436 | 0.196 | 0.969 |
Disease duration | 0.139 | 0.057 | 6.017 | 0.014 | 1.149 | 1.028 | 1.284 |
Arterial hypertension | 1.600 | 0.799 | 4.007 | 0.045 | 4.955 | 1.034 | 23.741 |
Chronic kidney disease | 2.418 | 0.852 | 8.058 | 0.005 | 11.220 | 2.114 | 59.565 |
HAND | 2.344 | 0.664 | 12.456 | <0.001 | 10.425 | 2.836 | 38.322 |
Constant | −4.974 | 1.134 | 19.230 | <0.001 | 0.007 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lazar, M.; Chitu, C.E.; Ion, D.A.; Barbu, E.C. Determinants of Brain Atrophy in People Living with HIV: The Role of Lifestyle, Demographics, and Comorbidities. J. Clin. Med. 2025, 14, 4430. https://doi.org/10.3390/jcm14134430
Lazar M, Chitu CE, Ion DA, Barbu EC. Determinants of Brain Atrophy in People Living with HIV: The Role of Lifestyle, Demographics, and Comorbidities. Journal of Clinical Medicine. 2025; 14(13):4430. https://doi.org/10.3390/jcm14134430
Chicago/Turabian StyleLazar, Mihai, Cristina Emilia Chitu, Daniela Adriana Ion, and Ecaterina Constanta Barbu. 2025. "Determinants of Brain Atrophy in People Living with HIV: The Role of Lifestyle, Demographics, and Comorbidities" Journal of Clinical Medicine 14, no. 13: 4430. https://doi.org/10.3390/jcm14134430
APA StyleLazar, M., Chitu, C. E., Ion, D. A., & Barbu, E. C. (2025). Determinants of Brain Atrophy in People Living with HIV: The Role of Lifestyle, Demographics, and Comorbidities. Journal of Clinical Medicine, 14(13), 4430. https://doi.org/10.3390/jcm14134430