Myocardial Performance Improvement After Iron Replacement in Heart Failure Patients: The IRON-PATH II Echo-Substudy
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Baseline Characteristics
3.2. Echocardiographic Features at Baseline
3.3. Echocardiographic Features After Iron Repletion
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AF | Atrial fibrillation |
ARNI | Angiotensin receptor neprilysin inhibitor |
ATP | Adenosine triphosphate |
CRT | Cardiac resynchronization therapy |
CW | Constructive work |
Ea | Arterial elastance |
Ees | End-systolic elastance |
ESC | European Society of Cardiology |
FCM | Ferric carboxymaltose |
FAC | Fractional area change |
GLS | Global longitudinal strain |
GWI | Global work index |
Hb | Hemoglobin |
HF | Heart failure |
ID | Iron deficiency |
LVEF | Left ventricular ejection fraction |
LVEDV | Left ventricular end-diastolic volume |
LVESD | Left ventricular end-systolic diameter |
LVESV | Left ventricular end-systolic volume |
MW | Myocardial work |
MRA | Mineralocorticoid receptor antagonist |
NTproBNP | N-terminal pro-brain natriuretic peptide |
NYHA | New York Heart Association |
RV | Right ventricle |
RVFW | Right ventricular free wall |
sPAP | Systolic pulmonary artery pressure |
TAPSE | Tricuspid annular plane systolic excursion |
TSAT | Transferrin saturation |
VAC | Ventricular–arterial coupling |
WE | Work efficiency |
WW | Wasted work |
References
- Melenovsky, V.; Petrak, J.; Mracek, T.; Benes, J.; Borlaug, B.A.; Nusková, H.; Pluhacek, T.; Spatenka, J.; Kovalcikova, J.; Drahota, Z.; et al. Myocardial iron content and mitochondrial function in human heart failure: A direct tissue analysis. Eur. J. Heart Fail. 2017, 19, 522–530. [Google Scholar] [CrossRef] [PubMed]
- Rocha, B.M.L.; Cunha, G.J.L.; Falcão, L.F. The Burden of Iron Deficiency in Heart Failure. J. Am. Coll. Cardiol. 2018, 71, 782–793. [Google Scholar] [CrossRef] [PubMed]
- Hoes, M.F.; Grote Beverborg, N.; Kijlstra, J.D.; Kuipers, J.; Swinkels, D.W.; Giepmans, B.N.G.; Rodenburg, R.J.; Van Veldhuisen, D.J.; De Boer, R.A.; Van Der Meer, P. Iron deficiency impairs contractility of human cardiomyocytes through decreased mitochondrial function. Eur. J. Heart Fail. 2018, 20, 910–919. [Google Scholar] [CrossRef]
- Zhang, H.; Jamieson, K.L.; Grenier, J.; Nikhanj, A.; Tang, Z.; Wang, F.; Wang, S.; Seidman, J.G.; Seidman, C.E.; Thompson, R.; et al. Myocardial Iron Deficiency and Mitochondrial Dysfunction in Advanced Heart Failure in Humans. J. Am. Heart Assoc. 2022, 11, e022853. [Google Scholar] [CrossRef]
- Sutil-Vega, M.; Rizzo, M.; Martínez-Rubio, A. Anemia and iron deficiency in heart failure: A review of echocardiographic features. Echocardiography 2019, 36, 585–594. [Google Scholar] [CrossRef] [PubMed]
- Graham, F.J.; Pellicori, P.; Kalra, P.R.; Ford, I.; Bruzzese, D.; Cleland, J.G.F. Intravenous iron in patients with heart failure and iron deficiency: An updated meta-analysis. Eur. J. Heart Fail. 2023, 25, 528–537. [Google Scholar] [CrossRef]
- Anker, S.D.; Comin Colet, J.; Filippatos, G.; Willenheimer, R.; Dickstein, K.; Drexler, H.; Lüscher, T.F.; Bart, B.; Banasiak, W.; Niegowska, J.; et al. Ferric Carboxymaltose in Patients with Heart Failure and Iron Deficiency. N. Engl. J. Med. 2009, 361, 2436–2448. [Google Scholar] [CrossRef]
- Ponikowski, P.; Kirwan, B.-A.; Anker, S.D.; McDonagh, T.; Dorobantu, M.; Drozdz, J.; Fabien, V.; Filippatos, G.; Göhring, U.M.; Keren, A.; et al. Ferric carboxymaltose for iron deficiency at discharge after acute heart failure: A multicentre, double-blind, randomised, controlled trial. Lancet 2020, 396, 1895–1904. [Google Scholar] [CrossRef]
- Jankowska, E.A.; Kirwan, B.-A.; Kosiborod, M.; Butler, J.; Anker, S.D.; McDonagh, T.; Dorobantu, M.; Drozdz, J.; Filippatos, G.; Keren, A.; et al. The effect of intravenous ferric carboxymaltose on health-related quality of life in iron-deficient patients with acute heart failure: The results of the AFFIRM-AHF study. Eur. Heart J. 2021, 42, 3011–3020. [Google Scholar] [CrossRef]
- Kalra, P.R.; Cleland, J.G.F.; Petrie, M.C.; A Thomson, E.; A Kalra, P.; Squire, I.B.; Ahmed, F.Z.; Al-Mohammad, A.; Cowburn, P.J.; Foley, P.W.X.; et al. Intravenous ferric derisomaltose in patients with heart failure and iron deficiency in the UK (IRONMAN): An investigator-initiated, prospective, randomised, open-label, blinded-endpoint trial. Lancet 2022, 400, 2199–2209. [Google Scholar] [CrossRef]
- Gaber, R.; Kotb, N.A.; Ghazy, M.; Nagy, H.M.; Salama, M.; Elhendy, A. Tissue Doppler and Strain Rate Imaging Detect Improvement of Myocardial Function in Iron Deficient Patients with Congestive Heart Failure after Iron Replacement Therapy. Echocardiography 2012, 29, 13–18. [Google Scholar] [CrossRef] [PubMed]
- Marwick, T.H. Ejection Fraction Pros and Cons. J. Am. Coll. Cardiol. 2018, 72, 2360–2379. [Google Scholar] [CrossRef]
- Brady, B.; King, G.; Murphy, R.T.; Walsh, D. Myocardial strain: A clinical review. Ir. J. Med. Sci. (1971) 2023, 192, 1649–1656. [Google Scholar] [CrossRef]
- Ilardi, F.; D’Andrea, A.; D’Ascenzi, F.; Bandera, F.; Benfari, G.; Esposito, R.; Malagoli, A.; Mandoli, G.E.; Santoro, C.; Russo, V.; et al. Myocardial Work by Echocardiography: Principles and Applications in Clinical Practice. J. Clin. Med. 2021, 10, 4521. [Google Scholar] [CrossRef]
- Enjuanes, C.; Bruguera, J.; Grau, M.; Cladellas, M.; Gonzalez, G.; Meroño, O.; Moliner-Borja, P.; Verdú, J.M.; Farré, N.; Comín-Colet, J. Estado del hierro en la insuficiencia cardiaca crónica: Impacto en síntomas, clase funcional y capacidad de ejercicio submáxima. Rev. Esp. Cardiol. 2016, 69, 247–255. [Google Scholar] [CrossRef]
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; Chioncel, O.; et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. Heart J. 2021, 42, 3599–3726. [Google Scholar] [CrossRef] [PubMed]
- Tajes, M.; Díez-López, C.; Enjuanes, C.; Moliner, P.; Ferreiro, J.L.; Garay, A.; Jiménez-Marrero, S.; Yun, S.; Sosa, S.G.; Alcoberro, L.; et al. Neurohormonal activation induces intracellular iron deficiency and mitochondrial dysfunction in cardiac cells. Cell Biosci. 2021, 11, 89. [Google Scholar] [CrossRef]
- Díez-López, C.; Orduña, M.T.; Grau, C.E.; Borja, P.M.; González-Costello, J.; García-Romero, E.; Manzano, J.F.; Viladomat, S.Y.; Jiménez-Marrero, S.; Ramos-Polo, R.; et al. Blood Differential Gene Expression in Patients with Chronic Heart Failure and Systemic Iron Deficiency: Pathways Involved in Pathophysiology and Impact on Clinical Outcomes. J. Clin. Med. 2021, 10, 4937. [Google Scholar] [CrossRef] [PubMed]
- Alnuwaysir, R.I.S.; Hoes, M.F.; van Veldhuisen, D.J.; van der Meer, P.; Beverborg, N.G. Iron Deficiency in Heart Failure: Mechanisms and Pathophysiology. J. Clin. Med. 2021, 11, 125. [Google Scholar] [CrossRef]
- Toblli, J.E.; Di Gennaro, F.; Rivas, C. Changes in Echocardiographic Parameters in Iron Deficiency Patients with Heart Failure and Chronic Kidney Disease Treated with Intravenous Iron. Heart Lung Circ. 2015, 24, 686–695. [Google Scholar] [CrossRef]
- Martens, P.; Dupont, M.; Dauw, J.; Nijst, P.; Herbots, L.; Dendale, P.; Vandervoort, P.; Bruckers, L.; Tang, W.H.W.; Mullens, W. The effect of intravenous ferric carboxymaltose on cardiac reverse remodelling following cardiac resynchronization therapy—The IRON-CRT trial. Eur. Heart J. 2021, 42, 4905–4914. [Google Scholar] [CrossRef] [PubMed]
- Del Canto, I.; Santas, E.; Cardells, I.; Miñana, G.; Palau, P.; Llàcer, P.; López-Vilella, R.; Almenar, L.; Bodí, V.; López-Lereu, M.P.; et al. Short-Term Changes in Left and Right Ventricular Cardiac Magnetic Resonance Feature Tracking Strain Following Ferric Carboxymaltose in Patients With Heart Failure: A Substudy of the Myocardial-IRON Trial. J. Am. Heart Assoc. 2022, 11, e022214. [Google Scholar] [CrossRef] [PubMed]
- Plesner, L.L.; Schoos, M.M.; Dalsgaard, M.; Goetze, J.P.; Kjøller, E.; Vestbo, J.; Iversen, K. Iron Deficiency in COPD Associates with Increased Pulmonary Artery Pressure Estimated by Echocardiography. Heart Lung Circ. 2017, 26, 101–104. [Google Scholar] [CrossRef]
- Paolisso, P.; Gallinoro, E.; Mileva, N.; Moya, A.; Fabbricatore, D.; Esposito, G.; De Colle, C.; Beles, M.; Spapen, J.; Heggermont, W.; et al. Performance of non-invasive myocardial work to predict the first hospitalization for de novo heart failure with preserved ejection fraction. ESC Heart Fail. 2022, 9, 373–384. [Google Scholar] [CrossRef] [PubMed]
- Nikoo, M.H.; Naeemi, R.; Moaref, A.; Attar, A. Global longitudinal strain for prediction of ventricular arrhythmia in patients with heart failure. ESC Heart Fail. 2020, 7, 2956–2961. [Google Scholar] [CrossRef]
- Monge García, M.I.; Santos, A. Understanding ventriculo-arterial coupling. Ann. Transl. Med. 2020, 8, 795. [Google Scholar] [CrossRef]
- Russell, K.; Eriksen, M.; Aaberge, L.; Wilhelmsen, N.; Skulstad, H.; Remme, E.W.; Haugaa, K.H.; Opdahl, A.; Fjeld, J.G.; Gjesdal, O.; et al. A novel clinical method for quantification of regional left ventricular pressure–strain loop area: A non-invasive index of myocardial work. Eur. Heart J. 2012, 33, 724–733. [Google Scholar] [CrossRef] [PubMed]
- Bouali, Y.; Donal, E.; Gallard, A.; Laurin, C.; Hubert, A.; Bidaut, A.; Leclercq, C.; Galli, E. Prognostic Usefulness of Myocardial Work in Patients with Heart Failure and Reduced Ejection Fraction Treated by Sacubitril/Valsartan. Am. J. Cardiol. 2020, 125, 1856–1862. [Google Scholar] [CrossRef]
- Hedwig, F.; Nemchyna, O.; Stein, J.; Knosalla, C.; Merke, N.; Knebel, F.; Hagendorff, A.; Schoenrath, F.; Falk, V.; Knierim, J. Myocardial Work Assessment for the Prediction of Prognosis in Advanced Heart Failure. Front. Cardiovasc. Med. 2021, 8, 691611. [Google Scholar] [CrossRef]
- Galli, E.; Leclercq, C.; Hubert, A.; Bernard, A.; A Smiseth, O.; Mabo, P.; Samset, E.; Hernandez, A.; Donal, E. Role of myocardial constructive work in the identification of responders to CRT. Eur. Heart J. Cardiovasc. Imaging 2018, 19, 1010–1018. [Google Scholar] [CrossRef]
- Ikonomidis, I.; Aboyans, V.; Blacher, J.; Brodmann, M.; Brutsaert, D.L.; Chirinos, J.A.; De Carlo, M.; Delgado, V.; Lancellotti, P.; Lekakis, J.; et al. The role of ventricular–arterial coupling in cardiac disease and heart failure: Assessment, clinical implications and therapeutic interventions. A consensus document of the European Society of Cardiology Working Group on Aorta & Peripheral Vascular Diseases, European Association of Cardiovascular Imaging, and Heart Failure Association. Eur. J. Heart Fail. 2019, 21, 402–424. [Google Scholar] [PubMed]
- Chen, C.H.; Fetics, B.; Nevo, E.; Rochitte, C.E.; Chiou, K.-R.; Ding, P.A.; Kawaguchi, M.; Kass, D.A. Noninvasive single-beat determination of left ventricular end-systolic elastance in humans. J. Am. Coll. Cardiol. 2001, 38, 2028–2034. [Google Scholar] [CrossRef]
- Chirinos, J.A.; Sweitzer, N. Ventricular–Arterial Coupling in Chronic Heart Failure. Card. Fail. Rev. 2017, 3, 12. [Google Scholar] [CrossRef] [PubMed]
- Zanon, F.; Aggio, S.; Baracca, E.; Pastore, G.; Corbucci, G.; Boaretto, G.; Braggion, G.; Piergentili, C.; Rigatelli, G.; Roncon, L. Ventricular-arterial coupling in patients with heart failure treated with cardiac resynchronization therapy: May we predict the long-term clinical response? Eur. J. Echocardiogr. 2009, 10, 106–111. [Google Scholar] [CrossRef] [PubMed]
- Dekleva, M.; Lazic, J.S.; Soldatovic, I.; Inkrot, S.; Arandjelovic, A.; Waagstein, F.; Gelbrich, G.; Cvijanovic, D.; Dungen, H.D. Improvement of Ventricular-Arterial Coupling in Elderly Patients with Heart Failure After Beta Blocker Therapy: Results from the CIBIS-ELD Trial. Cardiovasc. Drugs Ther. 2015, 29, 287–294. [Google Scholar] [CrossRef]
- Kolwicz, S.C.; Purohit, S.; Tian, R. Cardiac Metabolism and its Interactions with Contraction, Growth, and Survival of Cardiomyocytes. Circ. Res. 2013, 113, 603–616. [Google Scholar] [CrossRef]
- Toblli, J.E.; Cao, G.; Rivas, C.; Giani, J.F.; Dominici, F.P. Intravenous iron sucrose reverses anemia-induced cardiac remodeling, prevents myocardial fibrosis, and improves cardiac function by attenuating oxidative/nitrosative stress and inflammation. Int. J. Cardiol. 2016, 212, 84–91. [Google Scholar] [CrossRef]
Whole Cohort (n = 98) | No ID (n = 54) | ID (n = 44) | p-Value | |
---|---|---|---|---|
Demographics | ||||
Age, years | 72 (10) | 70 (11) | 74 (8) | 0.030 |
Sex (female), n (%) | 22 (22) | 16 (30) | 6 (14) | 0.059 |
Systolic blood pressure, mmHg | 119 (19) | 118 (21) | 119 (18) | 0.627 |
Heart rate, bpm | 69 (12) | 67 (11) | 72 (13) | 0.043 |
NYHA functional class, n (%) | 0.095 | |||
I | 16 (16) | 12 (22) | 4 (9) | |
II | 70 (71%) | 38 (71%) | 32 (72%) | |
III | 10 (10%) | 3 (6%) | 7 (16%) | |
IV | 2 (2%) | 0 (0%) | 2 (4%) | |
6 min walking test, meters | 357 (102) | 366 (108) | 346 (86) | 0.359 |
BMI, kg/m2 | 27 (4) | 27 (4) | 27 (5) | 0.423 |
CV hospitalization in previous year, n (%) | 45 (46%) | 21 (21%) | 24 (25%) | 0.311 |
Comorbidities | ||||
Ischemic etiology of HF, n (%) | 49 (50%) | 20 (20%) | 29 (30%) | 0.103 |
Hypertension, n (%) | 76 (78%) | 39 (40%) | 37 (38%) | 0.161 |
Diabetes mellitus, n (%) | 47 (48%) | 22 (22%) | 25 (26%) | 0.189 |
Previous MI, n (%) | 50 (51%) | 23 (24%) | 27 (28%) | 0.064 |
PAD, n (%) | 15 (15%) | 9 (9%) | 6 (6%) | 0.679 |
Atrial fibrillation, n (%) | 49 (50%) | 22 (22%) | 27 (28%) | 0.042 |
Laboratory | ||||
Hemoglobin, g/dL | 14.1 (1.4) | 14.2 (1.5) | 13.2 (1.3) | 0.001 |
Creatinine, umol/L | 124.7 (52.7) | 123.2 (51.1) | 126.4 (55.2) | 0.771 |
Estimated glomerular filtration rate, mL/min/kg | 55 (21) | 56 (21) | 54 (21) | 0.709 |
Sodium, mmol/L | 141 (2) | 141 (2) | 141 (3) | 0.336 |
Potassium, mmol/L | 4.75 (0.43) | 4.72 (0.40) | 4.78 (0.47) | 0.554 |
Ferritin, ng/mL | 244 (204) | 349 (216) | 116 (73) | <0.001 |
TSAT, % | 22 (9) | 28 (7) | 16 (6) | <0.001 |
Iron, umol/L | 13 (5) | 15 (4) | 9 (4) | <0.001 |
Transferrin, umol/L | 32.8 (30.2) | 32.4 (37.2) | 33.3 (18.8) | 0.890 |
TIBC, umol/L | 58 (9.7) | 55.5 (8.3) | 61.2 (10.3) | 0.003 |
NT-proBNP, pg/mL (median, IQR) | 1793 (697–3381) | 997 (510–3098) | 2180 (1226–3698) | 0.015 |
Treatment | ||||
ARNI, n (%) | 74 (76%) | 42 (78%) | 32 (73%) | 0.563 |
ACEI or ARBs, n (%) | 12 (12%) | 5 (9%) | 7 (16%) | 0.732 |
Beta-blockers, n (%) | 92 (94%) | 50 (93%) | 42 (95%) | 0.557 |
MRA, n (%) | 74 (76%) | 42 (78%) | 32 (73%) | 0.563 |
iSGLT2, n (%) | 70 (71%) | 37 (68%) | 33 (75%) | 0.674 |
Diuretics, n (%) | 73 (75%) | 35 (65%) | 38 (86%) | 0.046 |
Antiplatelet therapy, n (%) | 38 (39%) | 23 (42%) | 15 (34%) | 0.390 |
Anticoagulant therapy, n (%) | 57 (57%) | 25 (46%) | 32 (73%) | 0.021 |
Cardiac resynchronization therapy, n (%) | 9 (9%) | 4 (7%) | 5 (11%) | 0.500 |
Implantable cardioverter defibrillator device, n (%) | 15 (15%) | 8 (15%) | 7 (16%) | 0.881 |
Whole Cohort (n = 98) | No ID (n = 54) | ID (n = 44) | p-Value | |
---|---|---|---|---|
Septal wall, mm | 11 (3) | 11 (3) | 11 (3) | 0.890 |
Posterior wall, mm | 10 (2) | 10 (2) | 10 (2) | 0.267 |
LV end-diastolic diameter, mm | 55 (10) | 55 (10) | 55 (10) | 0.803 |
LV indexed end-diastolic volume, mL/m2 | 78 (31) | 76 (32) | 80 (28) | 0.452 |
LV indexed end-systolic volume, mL/m2 | 50 (26) | 46 (27) | 54 (25) | 0.182 |
LA indexed volume, mL/m2 | 49 (17) | 45 (17) | 53 (16) | 0.026 |
E/A ratio | 1.4 (1) | 1.3 (1) | 1.5 (1) | 0.661 |
E/e′ ratio | 13 (7) | 13 (6) | 14 (9) | 0.596 |
LVEF, % | 36 (9.66) | 38 (10.26) | 35 (8.78) | 0.210 |
TAPSE, mm | 17 (4.18) | 18 (4.24) | 17 (4.03) | 0.118 |
Systolic pulmonary artery pressure, mmHg (median, IQR) | 30 (25–37) | 29 (24–35) | 30 (26–42) | 0.15 |
Whole Cohort (n = 98) | Non-ID | ID Baseline Before Iron Replacement | ID 3rd Month After Iron Replacement | p-Value ID Baseline vs. Non-ID Baseline | p-Value ID Baseline vs. ID 3rd Month | p-Value ID 3rd Month vs. Non-ID | |
---|---|---|---|---|---|---|---|
Left ventricular function | |||||||
LVEF, % | 36 (9.66) | 38 (10.26) | 35 (8.78) | 36 (9.66) | 0.210 | 0.06 | 0.203 |
GLS, % | −9.5 (3.69) | −10.2 (10.26) | −8.5 (8.78) | −9.31 (3.43) | 0.024 | 0.003 | 0.329 |
LV indexed stroke work, g.m/m2 | 33 (13) | 34 (9) | 32 (17) | 31 (10) | 0.423 | 0.422 | 0.564 |
Cardiac output, L/min (median, IQR) | 4.7 (3.8–5.7) | 4.7 (3.78–5.90) | 4.61 (3.93–5.46) | 4.2 (3.50–4.40) | 0.62 | 0.08 | 0.131 |
Cardiac index, L/min/m2 (median, IQR) | 2.4 (2–2.5) | 2.6 (2.1–3) | 2.7 (2.5–2.9) | 2.3 (2–2.7) | 0.728 | 0.075 | 0.135 |
Myocardial work, mmHg% (median, IQR) | 823 (504–1113) | 947 (542–1199) | 665 (453–1013) | 801 (447–1183) | 0.025 | 0.003 | 0.435 |
Constructive work, mmHg% | 1131 (449.10) | 1191 (449.82) | 1053 (441.63) | 1108(471) | 0.149 | 0.06 | 0.420 |
Wasted work, mmHg% (median, IQR) | 262 (155–361) | 212 (138–305) | 290 (228–384) | 239 (151–302) | 0.034 | 0.006 | 0.919 |
Work efficiency, % | 77.41 (10.37) | 80 (9.93) | 74 (10.32) | 79 (9.98) | 0.017 | 0.017 | 0.521 |
Right ventricular function | |||||||
TAPSE, mm | 17 (4.18) | 18 (4.24) | 17 (4.03) | 17 (4.31) | 0.118 | 0.118 | 0.989 |
Systolic pulmonary artery pressure, mmHg (median, IQR) | 30 (25–37) | 29 (24–35) | 30 (26–42) | 28.10 (24.72–40.28) | 0.15 | 0.58 | 0.73 |
FAC, % (median, IQR) | 45 (38–52) | 45.45 (38.74–54.69) | 45.19 (36.93–49.66) | 44 (35.45–47.57) | 0.095 | 0.68 | 0.162 |
RV coupling ratio, mm/mmHg | 0.59 (0.23) | 0.63 (0.25) | 0.54 (0.21) | 0.61 (0.27) | 0.083 | 0.036 | 0.764 |
RV free wall strain, % (median, IQR) | −16 (-22–−12) | −17 (-23–−14) | −13 (-20–−11) | −17.6 (−23.5–−14.3) | 0.022 | <0.001 | 0.528 |
Cardiovascular function | |||||||
Systemic arterial compliance, mL/m2/mmHg (median, IQR) | 1.3 (1–1.6) | 1.26 (1.01–1.56) | 1.27 (1.04–1.63) | 1.1 (0.90–1.51) | 0.93 | 0.16 | 0.09 |
Systemic arterial resistance index, dyn·s·cm−5·m−2 | 2449 (764.39) | 2442 (751) | 2458 (789) | 2690 (822) | 0.923 | 0.10 | 0.217 |
LV end-systolic elastance, mmHg/mL (median, IQR) | 2.5 (1.7–3.5) | 3.0 (1.9–3.6) | 2.1 (1.5–3.1) | 2.34 (1.53–3.42) | 0.03 | 0.20 | 0.511 |
Arterial elastance, mmHg/mL (median, IQR) | 2.8 (2.4–3.4) | 2.7 (2.4–3.3) | 3.0 (2.4–3.7) | 3.26 (2.73–3.80) | 0.26 | 0.1 | 0.011 |
Ventricular–arterial coupling (ratio) (median, IQR) | 1.1 (0.8–1.9) | 0.95 (0.75–1.4) | 1.4 (0.9–2.2) | 1.46 (0.86–2.37) | 0.04 | 0.53 | 0.109 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramos-Polo, R.; Ras-Jiménez, M.d.M.; Basalo Carbajales, M.d.C.; Jovells-Vaqué, S.; Garcia-Pinilla, J.M.; Cobo-Marcos, M.; de Juan-Bagudá, J.; Fonseca, C.; Francesch Manzano, J.; Cosa, A.E.; et al. Myocardial Performance Improvement After Iron Replacement in Heart Failure Patients: The IRON-PATH II Echo-Substudy. J. Clin. Med. 2025, 14, 4048. https://doi.org/10.3390/jcm14124048
Ramos-Polo R, Ras-Jiménez MdM, Basalo Carbajales MdC, Jovells-Vaqué S, Garcia-Pinilla JM, Cobo-Marcos M, de Juan-Bagudá J, Fonseca C, Francesch Manzano J, Cosa AE, et al. Myocardial Performance Improvement After Iron Replacement in Heart Failure Patients: The IRON-PATH II Echo-Substudy. Journal of Clinical Medicine. 2025; 14(12):4048. https://doi.org/10.3390/jcm14124048
Chicago/Turabian StyleRamos-Polo, Raúl, Maria del Mar Ras-Jiménez, María del Carmen Basalo Carbajales, Sílvia Jovells-Vaqué, José Manuel Garcia-Pinilla, Marta Cobo-Marcos, Javier de Juan-Bagudá, Cândida Fonseca, Josep Francesch Manzano, Andreea Eunice Cosa, and et al. 2025. "Myocardial Performance Improvement After Iron Replacement in Heart Failure Patients: The IRON-PATH II Echo-Substudy" Journal of Clinical Medicine 14, no. 12: 4048. https://doi.org/10.3390/jcm14124048
APA StyleRamos-Polo, R., Ras-Jiménez, M. d. M., Basalo Carbajales, M. d. C., Jovells-Vaqué, S., Garcia-Pinilla, J. M., Cobo-Marcos, M., de Juan-Bagudá, J., Fonseca, C., Francesch Manzano, J., Cosa, A. E., Yun-Viladomat, S., Enjuanes, C., Tajes Orduña, M., & Comin-Colet, J. (2025). Myocardial Performance Improvement After Iron Replacement in Heart Failure Patients: The IRON-PATH II Echo-Substudy. Journal of Clinical Medicine, 14(12), 4048. https://doi.org/10.3390/jcm14124048