Short-Term Morphological and Quantitative Changes in Non-Exudative Macular Neovascularization Using Spectral-Domain OCT and OCT Angiography: A Pilot Study
Abstract
:1. Introduction
2. Methods
2.1. OCTA Parameters and CVI Calculation
2.2. Quantitative Non-Exudative Macular Neovascularization Assessment
- MNV Area (mm2): This reflects the size of the neovascular area.
- Vessel area (mm2): This is a biomarker of the vessel dimensions, specifically the vessel components where active flow signals are detected within neovascularization.
- Vessel density: This refers to the vascular density and is the ratio of vessel area over MNV area.
- Vessel Length (mm): This represents the total length of the neovascularization.
- Vessel junctions: This denotes the number of vascular junctions and serves as an index of the neovascular structure internal branching, identified as the connection points within the MNV vasculature.
- Junction density (n/mm): This is the ratio between number of junctions over total neovascular length, reflecting the complexity of the branching.
- Vessel tortuosity: This is a morphological marker that quantifies the micro-tortuosity of the MNV.
- Fractal dimensions: This is a biomarker that characterizes the complexity of the MNV, evaluating the intricacy of even very small vascular networks.
2.3. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, J.Q.; Welchowski, T.; Schmid, M.; Mauschitz, M.M.; Holz, F.G.; Finger, R.P. Prevalence and incidence of age-related macular degeneration in Europe: A systematic review and meta-analysis. Br. J. Ophthalmol. 2020, 104, 1077–1084. [Google Scholar] [CrossRef] [PubMed]
- Hadziahmetovic, M.; Malek, G. Age-Related Macular Degeneration Revisited: From Pathology and Cellular Stress to Potential Therapies. Front. Cell Dev. Biol. 2021, 8, 612812. [Google Scholar] [CrossRef] [PubMed]
- Klein, R.; Chou, C.-F.; Klein, B.E.K.; Zhang, X.; Meuer, S.M.; Saaddine, J.B. Prevalence of age-related macular degeneration in the US population. Arch. Ophthalmol. 2011, 129, 75–80. [Google Scholar] [CrossRef]
- Abdolrahimzadeh, S.; Di Pippo, M.; Sordi, E.; Cusato, M.; Lotery, A.J. Subretinal drusenoid deposits as a biomarker of age-related macular degeneration progression via reduction of the choroidal vascularity index. Eye 2022, 8, 1365–1370. [Google Scholar] [CrossRef]
- Faatz, H.; Rothaus, K.; Ziegler, M.; Book, M.; Heimes-Bussmann, B.; Pauleikhoff, D.; Lommatzsch, A. Vascular Analysis of Type 1, 2, and 3 Macular Neovascularization in Age-Related Macular Degeneration Using Swept-Source Optical Coherence Tomography Angiography Shows New Insights into Differences of Pathologic Vasculature and May Lead to a More Personalized Understanding. Biomedicines 2022, 10, 694. [Google Scholar] [CrossRef]
- Haj Najeeb, B.; Schmidt-Erfurth, U. Do patients with unilateral macular neovascularization type 3 need AREDS supplements to slow the progression to advanced age-related macular degeneration? Eye 2023, 37, 1751–1753. [Google Scholar] [CrossRef]
- Thomas, C.J.; Mirza, R.G.; Gill, M.K. Age-Related Macular Degeneration. Med. Clin. North Am. 2021, 105, 473–491. [Google Scholar] [CrossRef]
- Querques, G.; Srour, M.; Massamba, N.; Georges, A.; Ben Moussa, N.; Rafaeli, O.; Souied, E.H. Functional characterization and multimodal imaging of treatment-naive “quiescent” choroidal neovascularization. Investig. Ophthalmol. Vis. Sci. 2013, 54, 6886–6892. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Messinger, J.D.; Sloan, K.R.; Swain, T.A.; Sugiura, Y.; Yannuzzi, L.A.; Curcio, C.A.; Freund, K.B. Nonexudative Macular Neovascularization Supporting Outer Retina in Age-Related Macular Degeneration: A Clinicopathologic Correlation. Ophthalmology 2020, 127, 931–947. [Google Scholar] [CrossRef]
- Carnevali, A.; Cicinelli, M.V.; Capuano, V.; Corvi, F.; Mazzaferro, A.; Querques, L.; Scorcia, V.; Souied, E.H.; Bandello, F.; Querques, G. Optical Coherence Tomography Angiography: A Useful Tool for Diagnosis of Treatment-Naïve Quiescent Choroidal Neovascularization. Am. J. Ophthalmol 2016, 169, 189–198. [Google Scholar] [CrossRef]
- Sacconi, R.; Fragiotta, S.; Sarraf, D.; Sadda, S.R.; Freund, K.B.; Parravano, M.; Corradetti, G.; Cabral, D.; Capuano, V.; Miere, A.; et al. Towards a better understanding of non-exudative choroidal and macular neovascularization. Prog. Retin. Eye Res. 2023, 92, 101113. [Google Scholar] [CrossRef] [PubMed]
- Deshpande, A.; Raman, S.; Dubey, A.; Susvar, P.; Raman, R. An ImageJ macro tool for OCTA-based quantitative analysis of Myopic Choroidal neovascularization. PLoS ONE 2023, 18, e0283929. [Google Scholar] [CrossRef] [PubMed]
- Sonoda, S.; Sakamoto, T.; Yamashita, T.; Shirasawa, M.; Uchino, E.; Terasaki, H.; Tomita, M. Choroidal structure in normal eyes and after photodynamic therapy determined by binarization of optical coherence tomographic images. Investig. Ophthalmol. Vis. Sci. 2014, 55, 3893–3899. [Google Scholar] [CrossRef]
- Sonoda, S.; Sakamoto, T.; Yamashita, T.; Uchino, E.; Kawano, H.; Yoshihara, N.; Terasaki, H.; Shirasawa, M.; Tomita, M.; Ishibashi, T. Luminal and stromal areas of choroid determined by binarization method of optical coherence tomographic images. Am. J. Ophthalmol. 2015, 159, 1123–1131.e1. [Google Scholar] [CrossRef]
- Di Pippo, M.; Santia, C.; Rullo, D.; Ciancimino, C.; Grassi, F.; Abdolrahimzadeh, S. The Choroidal Vascularity Index Versus Optical Coherence Tomography Angiography in the Evaluation of the Choroid with a Focus on Age-Related Macular Degeneration. Tomography 2023, 9, 1456–1470. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, Z.; Zhu, T.; Su, Z.; Fang, X.; Lin, J.; Chen, Z.; Su, Z.; Ye, P.; Ma, J.; et al. Optical Coherence Tomography Angiography-Based Quantitative Assessment of Morphologic Changes in Active Myopic Choroidal Neovascularization During Anti-vascular Endothelial Growth Factor Therapy. Front. Med. 2021, 8, 657772. [Google Scholar] [CrossRef] [PubMed]
- Faridi, A.; Jia, Y.; Gao, S.S.; Huang, D.; Bhavsar, K.V.; Wilson, D.J.; Sill, A.; Flaxel, C.J.; Hwang, T.S.; Lauer, A.K.; et al. Sensitivity and Specificity of OCT Angiography to Detect Choroidal Neovascularization. Ophthalmol. Retin. 2017, 1, 294–303. [Google Scholar] [CrossRef]
- Capuano, V.; Miere, A.; Querques, L.; Sacconi, R.; Carnevali, A.; Amoroso, F.; Bandello, F.; Souied, E.H.; Querques, G. Treatment-Naïve Quiescent Choroidal Neovascularization in Geographic Atrophy Secondary to Nonexudative Age-Related Macular Degeneration. Am. J. Ophthalmol. 2017, 182, 45–55. [Google Scholar] [CrossRef]
- Fukushima, A.; Maruko, I.; Chujo, K.; Hasegawa, T.; Arakawa, H.; Iida, T. Characteristics of treatment-naïve quiescent choroidal neovascularization detected by optical coherence tomography angiography in patients with age-related macular degeneration. Graefe’s Arch. Clin. Exp. Ophthalmol. 2021, 259, 2671–2677. [Google Scholar] [CrossRef]
- Carnevali, A.; Sacconi, R.; Querques, L.; Marchese, A.; Capuano, V.; Rabiolo, A.; Corbelli, E.; Panozzo, G.; Miere, A.; Souied, E.; et al. Natural History of Treatment-Naïve Quiescent Choroidal Neovascularization in Age-Related Macular Degeneration Using OCT Angiography. Ophthalmol. Retin. 2018, 2, 922–930. [Google Scholar] [CrossRef]
- Serra, R.; Coscas, F.; Boulet, J.F.; Cabral, D.; Lupidi, M.; Coscas, G.J.; Souied, E.H. Predictive Activation Biomarkers of Treatment-Naive Asymptomatic Choroidal Neovascularization in Age-Related Macular Degeneration. Retina 2020, 40, 1224–1233. [Google Scholar] [CrossRef] [PubMed]
- Shahidatul-Adha, M.; Zunaina, E.; Aini-Amalina, M.N. Evaluation of vascular endothelial growth factor (VEGF) level in the tears and serum of age-related macular degeneration patients. Sci. Rep. 2022, 12, 4423. [Google Scholar] [CrossRef]
- Moshtaghion, S.M.M.; Locri, F.; Reyes, A.P.; Plastino, F.; Kvanta, A.; Morillo-Sanchez, M.J.; Rodríguez-de-la-Rúa, E.; Gutierrez-Sanchez, E.; Montero-Sánchez, A.; Lucena-Padros, H.; et al. VEGF in Tears as a Biomarker for Exudative Age-Related Macular Degeneration: Molecular Dynamics in a Mouse Model and Human Samples. Int. J. Mol. Sci. 2025, 26, 3855. [Google Scholar] [CrossRef] [PubMed]
- Querques, G.; Sacconi, R.; Capuano, V.; Carnevali, A.; Colantuono, D.; Battista, M.; Borrelli, E.; Miere, A.; Parravano, M.; Costanzo, E.; et al. Treatment-naïve quiescent macular neovascularization secondary to AMD: The 2019 Young Investigator Lecture of Macula Society. Eur. J. Ophthalmol. 2021, 31, 3164–3176. [Google Scholar] [CrossRef] [PubMed]
- Forte, R.; Coscas, F.; Serra, R.; Cabral, D.; Colantuono, D.; Souied, E.H. Long-term follow-up of quiescent choroidal neovascularisation associated with age-related macular degeneration or pachychoroid disease. Br. J. Ophthalmol. 2020, 104, 1057–1063. [Google Scholar] [CrossRef]
- Al-Sheikh, M.; Iafe, N.A.; Phasukkijwatana, N.; Sadda, S.R.; Sarraf, D. Biomarkers of Neovascular Activity in Age-Related Macular Degeneration Using Optical Coherence Tomography Angiography. Retina 2018, 38, 220–230. [Google Scholar] [CrossRef]
- Riazi-Esfahani, H.; Khameneh, E.A.; Ghassemi, F.; Bahar, M.M.; Torkashvand, A.; Mahmoudi, A.; Ahmed, A.H.; Faghihi, S.; Rahimi, M.; Akbarzadeh, A.; et al. Pachychoroid neovasculopathy versus macular neovascularization in age-related macular degeneration with and without shallow irregular pigment epithelial detachment. Sci. Rep. 2023, 13, 19513. [Google Scholar] [CrossRef]
- Takeuchi, J.; Kataoka, K.; Ito, Y.; Takayama, K.; Yasuma, T.; Kaneko, H.; Terasaki, H. Optical Coherence Tomography Angiography to Quantify Choroidal Neovascularization in Response to Aflibercept. Ophthalmologica 2018, 240, 90–98. [Google Scholar] [CrossRef]
Parameters Evaluated | Baseline (n = 16) | Follow-Up (n = 16) | p-Value a |
---|---|---|---|
MNV area | 6.04 ± 5.96 | 8.42 ± 10.38 | 0.318 |
Vessel area | 2.67 ± 2.38 | 2.70 ± 2.39 | 0.697 |
Vessel Junction | 91.32 ± 126.92 | 174.37 ± 160.20 | 0.037 * |
Vessel Length | 24.99 ± 35.82 | 46.11 ± 41.81 | 0.036 * |
Fractal Dimension | 1.40 ± 0.90 | 1.43 ± 0.59 | 0.013 * |
Tortuosity | 1.15 ± 0.33 | 1.16 ± 0.54 | 0.601 |
Vessel Density | 0.480 ± 0.47 | 0.447 ± 0.11 | 0.278 |
Junction Density | 3.49 ± 0.59 | 3.72 ± 0.44 | 0.153 |
Significant Parameters | p-Value a | Mean Difference | Standard Deviation | 95% Confidence Interval | Cohen’s d |
---|---|---|---|---|---|
Vessel junction | 0.037 * | −83.06 | 145.32 | −160.50 to −5.62 | 0.567 |
Vessel length | 0.036 * | −21.12 | 36.57 | −40.60 to −1.63 | 0.538 |
Fractal dimension | 0.013 * | −0.03 | 0.04 | −0.05 to −0.007 | 0.337 |
Parameters Evaluated | Baseline (n = 16) | Follow-Up (n = 16) | p-Value a |
---|---|---|---|
Foveal avascular zone | 0.280 ± 0.12 | 0.292 ± 0.11 | 0.702 |
Vessel density superficial capillary plexus | 26.24 ± 4.81 | 27.78 ± 5.60 | 0.408 |
Vessel density deep capillary plexus | 31.19 ± 7.05 | 32.82 ± 7.72 | 0.483 |
Flow area outer retina | 1.72 ± 0.48 | 1.76 ± 0.49 | 0.618 |
Flow area choriocapillaris | 1.53 ± 0.51 | 1.53 ± 0.55 | 0.923 |
Luminal choroidal area | 0.968 ± 0.40 | 1.070 ± 0.49 | 0.091 |
Total choroidal area | 1.469 ± 0.57 | 1.604 ± 0.62 | 0.138 |
Choroidal vascularity index | 0.652 ± 0.38 | 0.651 ± 0.56 | 0.896 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Pippo, M.; Rullo, D.; Maugliani, E.; Lotery, A.J.; Abdolrahimzadeh, S. Short-Term Morphological and Quantitative Changes in Non-Exudative Macular Neovascularization Using Spectral-Domain OCT and OCT Angiography: A Pilot Study. J. Clin. Med. 2025, 14, 3622. https://doi.org/10.3390/jcm14113622
Di Pippo M, Rullo D, Maugliani E, Lotery AJ, Abdolrahimzadeh S. Short-Term Morphological and Quantitative Changes in Non-Exudative Macular Neovascularization Using Spectral-Domain OCT and OCT Angiography: A Pilot Study. Journal of Clinical Medicine. 2025; 14(11):3622. https://doi.org/10.3390/jcm14113622
Chicago/Turabian StyleDi Pippo, Mariachiara, Daria Rullo, Elisa Maugliani, Andrew John Lotery, and Solmaz Abdolrahimzadeh. 2025. "Short-Term Morphological and Quantitative Changes in Non-Exudative Macular Neovascularization Using Spectral-Domain OCT and OCT Angiography: A Pilot Study" Journal of Clinical Medicine 14, no. 11: 3622. https://doi.org/10.3390/jcm14113622
APA StyleDi Pippo, M., Rullo, D., Maugliani, E., Lotery, A. J., & Abdolrahimzadeh, S. (2025). Short-Term Morphological and Quantitative Changes in Non-Exudative Macular Neovascularization Using Spectral-Domain OCT and OCT Angiography: A Pilot Study. Journal of Clinical Medicine, 14(11), 3622. https://doi.org/10.3390/jcm14113622