Low, Intermediate, and High Glutamine Levels Are Progressively Associated with Increased Lymphopenia, a Diminished Inflammatory Response, and Higher Mortality in Internal Medicine Patients with Sepsis
Abstract
:1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Rudd, K.E.; Johnson, S.C.; Agesa, K.M.; Shackelford, K.A.; Tsoi, D.; Kievlan, D.R.; Colombara, D.V.; Ikuta, K.S.; Kissoon, N.; Finfer, S.; et al. Global, regional, and national sepsis incidence and mortality, 1990-2017: Analysis for the Global Burden of Disease Study. Lancet 2020, 395, 200–211. [Google Scholar] [CrossRef] [PubMed]
- Oudemans-van Straaten, H.M.; Bosman, R.J.; Treskes, M.; van der Spoel, H.J.; Zandstra, D.F. Plasma glutamine depletion and patient outcome in acute ICU admissions. Intensive Care Med. 2001, 27, 84–90. [Google Scholar] [CrossRef] [PubMed]
- Rodas, P.C.; Rooyackers, O.; Hebert, C.; Norberg, Å.; Wernerman, J. Glutamine and glutathione at ICU admission in relation to outcome. Clin. Sci. 2012, 122, 591–597. [Google Scholar] [CrossRef] [PubMed]
- Blaauw, R.; Nel, D.G.; Schleicher, G.K. Plasma Glutamine Levels in Relation to Intensive Care Unit Patient Outcome. Nutrients 2020, 12, 402. [Google Scholar] [CrossRef]
- Nienaber, A.; Dolman, R.C.; van Graan, A.E.; Blaauw, R. Prevalence of glutamine deficiency in ICU patients: A cross-sectional analytical study. Nutr. J. 2016, 15, 73. [Google Scholar] [CrossRef]
- Cruzat, V.; Macedo Rogero, M.; Noel Keane, K.; Curi, R.; Newsholme, P. Glutamine: Metabolism and Immune Function, Supplementation and Clinical Translation. Nutrients 2018, 10, 1564. [Google Scholar] [CrossRef]
- Singer, P.; Blaser, A.R.; Berger, M.M.; Calder, P.C.; Casaer, M.; Hiesmayr, M.; Mayer, K.; Montejo-Gonzalez, J.C.; Pichard, C.; Preiser, J.-C.; et al. ESPEN practical and partially revised guideline: Clinical nutrition in the intensive care unit. Clin. Nutr. 2023, 42, 1671–1689. [Google Scholar] [CrossRef]
- Smedberg, M.; Helleberg, J.; Norberg, Å.; Tjäder, I.; Rooyackers, O.; Wernerman, J. Plasma glutamine status at intensive care unit admission: An independent risk factor for mortality in critical illness. Crit. Care 2021, 25, 240. [Google Scholar] [CrossRef]
- Tsujimoto, T.; Shimizu, K.; Hata, N.; Takagi, T.; Uejima, E.; Ogura, H.; Wasa, M.; Shimazu, T. Both high and low plasma glutamine levels predict mortality in critically ill patients. Surg. Today 2017, 47, 1331–1338. [Google Scholar] [CrossRef]
- van der Poll, T.; Shankar-Hari, M.; Wiersinga, W.J. The immunology of sepsis. Immunity 2021, 54, 2450–2464. [Google Scholar] [CrossRef]
- Torres, L.K.; Pickkers, P.; van der Poll, T. Sepsis-Induced Immunosuppression. Annu. Rev. Physiol. 2022, 84, 157–181. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhang, W.; Chen, L.; Lu, X.; Tu, Y. Lymphopenia in sepsis: A narrative review. Crit. Care 2024, 28, 315. [Google Scholar] [CrossRef] [PubMed]
- Di Girolamo, F.G.; Mearelli, F.; Sturma, M.; Fiotti, N.; Teraz, K.; Ivetac, A.; Nunnari, A.; Vinci, P.; Šimunič, B.; Pišot, R.; et al. Initial glutathione depletion during short-term bed rest: Pinpointing synthesis and degradation checkpoints in the γ-glutamil cycle. Antioxidants 2024, 13, 1430. [Google Scholar] [CrossRef]
- Gamarra, Y.; Santiago, F.C.; Molina-López, J.; Castaño, J.; Herrera-Quintana, L.; Domínguez, Á.; Planells, E. Pyroglutamic acidosis by glutathione regeneration blockage in critical patients with septic shock. Crit. Care 2019, 23, 162. [Google Scholar] [CrossRef]
- Dempsey, G.A.; Lyall, H.J.; Corke, C.F.; Scheinkestel, C.D. Pyroglutamic acidemia: A cause of high anion gap metabolic acidosis. Crit. Care Med. 2000, 28, 1803–1807. [Google Scholar] [CrossRef]
- Hirose, T.; Shimizu, K.; Ogura, H.; Tasaki, O.; Hamasaki, T.; Yamano, S.; Ohnishi, M.; Kuwagata, Y.; Shimazu, T. Altered balance of the aminogram in patients with sepsis—The relation to mortality. Clin. Nutr. 2014, 33, 179–182. [Google Scholar] [CrossRef]
- Ploder, M.; Neurauter, G.; Spittler, A.; Schroecksnadel, K.; Roth, E.; Fuchs, D. Serum phenylalanine in patients post trauma and with sepsis correlate to neopterin concentrations. Amino Acids 2008, 35, 303–307. [Google Scholar] [CrossRef]
- Tsou, Y.L.; Wang, C.H.; Chen, W.S.; Wu, H.P.; Liu, M.H.; Lin, H.C.; Chang, J.J.; Tsai, M.S.; Chen, T.Y.; Cheng, C.I.; et al. Combining Phenylalanine and Leucine Levels Predicts 30-Day Mortality in Critically Ill Patients Better than Traditional Risk Factors with Multicenter Validation. Nutrients 2023, 15, 649. [Google Scholar] [CrossRef]
- Huang, S.-S.; Lin, J.-Y.; Chen, W.-S.; Liu, M.-H.; Cheng, C.-W.; Cheng, M.-L.; Wang, C.-H. Phenylalanine- and leucine-defined metabolic types identify high mortality risk in patients with severe infection. Int. J. Infect. Dis. 2019, 85, 143–149. [Google Scholar] [CrossRef]
- Wang, M.Y.; Wang, C.H.; Chen, W.S.; Chu, C.M.; Wu, H.P.; Liu, M.H.; Lin, Y.T.; Kao, K.C.; Liang, C.Y.; Chen, W.H.; et al. U-Shape Relationship between Plasma Leucine Level and Mortality in the Intensive Care Unit. Dis. Markers 2022, 2022, 7389258. [Google Scholar] [CrossRef]
- Laufenberg, L.J.; Pruznak, A.M.; Navaratnarajah, M.; Lang, C.H. Sepsis-induced changes in amino acid transporters and leucine signaling via mTOR in skeletal muscle. Amino Acids 2014, 46, 2787–2798. [Google Scholar] [CrossRef] [PubMed]
- Karinch, A.M.; Pan, M.; Lin, C.M.; Strange, R.; Souba, W.W. Glutamine metabolism in sepsis and infection. J. Nutr. 2001, 131 (Suppl. 9), 2535S–2538S; discussion 2550S–2551S. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Liu, T.; Zheng, Y.; Xia, Z. Metabolic Reprogramming and Its Regulatory Mechanism in Sepsis-Mediated Inflammation. J. Inflamm. Res. 2023, 16, 1195–1207. [Google Scholar] [CrossRef]
- Tandon, R.; Tandon, A. Unraveling the Multifaceted Role of Glutathione in Sepsis: A Comprehensive Review. Cureus 2024, 16, e56896. [Google Scholar] [CrossRef]
- Labow, B.I.; Souba, W.W.; Abcouwer, S.F. Mechanisms governing the expression of the enzymes of glutamine metabolism–glutaminase and glutamine synthetase. J. Nutr. 2001, 131 (Suppl. S9), 2467S–2474S; discussion 2486S–2487S. [Google Scholar] [CrossRef]
- Thooft, A.; Conotte, R.; Colet, J.M.; Zouaoui Boudjeltia, K.; Biston, P.; Piagnerelli, M. Serum Metabolomic Profiles in Critically Ill Patients with Shock on Admission to the Intensive Care Unit. Metabolites 2023, 13, 523. [Google Scholar] [CrossRef]
- Druml, W.; Heinzel, G.; Kleinberger, G. Amino acid kinetics in patients with sepsis. Am. J. Clin. Nutr. 2001, 73, 908–913. [Google Scholar] [CrossRef]
- Wang, C.H.; Chen, W.S.; Liu, M.H.; Lee, C.Y.; Wang, M.Y.; Liang, C.Y.; Chu, C.M.; Wu, H.P.; Chen, W.H. Stress Hyperphenylalaninemia Is Associated with Mortality in Cardiac ICU: Clinical Factors, Genetic Variants, and Pteridines. Crit. Care Med. 2022, 50, 1577–1587. [Google Scholar] [CrossRef]
- Rehman, S.U.; Ali, R.; Zhang, H.; Zafar, M.H.; Wang, M. Research progress in the role and mechanism of Leucine in regulating animal growth and development. Front. Physiol. 2023, 14, 1252089. [Google Scholar] [CrossRef]
- McIntire, K.L.; Chen, Y.; Sood, S.; Rabkin, R. Acute uremia suppresses leucine-induced signal transduction in skeletal muscle. Kidney Int. 2014, 85, 374–382. [Google Scholar] [CrossRef]
- Biolo, G.; Fleming, R.Y.; Maggi, S.P.; Nguyen, T.T.; Herndon, D.N.; Wolfe, R.R. Inhibition of muscle glutamine formation in hypercatabolic patients. Clin. Sci. 2000, 99, 189–194. [Google Scholar] [CrossRef]
- Huang, T.L.; O’Banion, M.K. Interleukin-1 beta and tumor necrosis factor-alpha suppress dexamethasone induction of glutamine synthetase in primary mouse astrocytes. J. Neurochem. 1998, 71, 1436–1442. [Google Scholar] [CrossRef] [PubMed]
- Smedberg, M.; Rooyackers, O.; Norberg, Å.; Tjäder, I.; Wernerman, J. Endogenous production of glutamine and plasma glutamine concentration in critically ill patients. Clin. Nutr. ESPEN 2020, 40, 226–230. [Google Scholar] [CrossRef]
- Sun, Y.; Zhu, S.; Li, S.; Liu, H. Glutamine on critical-ill patients: A systematic review and meta-analysis. Ann. Palliat. Med. 2021, 10, 1503–1520. [Google Scholar] [CrossRef] [PubMed]
- Mearelli, F.; Fiotti, N.; Giansante, C.; Casarsa, C.; Orso, D.; De Helmersen, M.; Altamura, N.; Ruscio, M.; Castello, L.M.; Colonetti, E.; et al. Derivation and Validation of a Biomarker-Based Clinical Algorithm to Rule Out Sepsis From Noninfectious Systemic Inflammatory Response Syndrome at Emergency Department Admission: A Multicenter Prospective Study. Crit. Care Med. 2018, 46, 1421–1429. [Google Scholar] [CrossRef]
- Mearelli, F.; Nunnari, A.; Rombini, A.; Chitti, F.; Spagnol, F.; Casarsa, C.; Bolzan, G.; Martini, I.; Marinelli, A.; Rizzo, S.; et al. Inhibitory Immune Checkpoints Predict 7-Day, In-Hospital, and 1-Year Mortality of Internal Medicine Patients Admitted With Bacterial Sepsis. J. Infect. Dis. 2025, 231, 706–715. [Google Scholar] [CrossRef]
- Mearelli, F.; Orso, D.; Fiotti, N.; Altamura, N.; Breglia, A.; De Nardo, M.; Paoli, I.; Zanetti, M.; Casarsa, C.; Biolo, G. Sepsis outside intensive care unit: The other side of the coin. Infection 2015, 43, 1–11. [Google Scholar] [CrossRef]
- Mearelli, F.; Barbati, G.; Casarsa, C.; Giansante, C.; Breglia, A.; Spica, A.; Moras, C.; Olivieri, G.; Occhipinti, A.A.; De Nardo, M.; et al. The Integration of qSOFA with Clinical Variables and Serum Biomarkers Improves the Prognostic Value of qSOFA Alone in Patients with Suspected or Confirmed Sepsis at ED Admission. J. Clin. Med. 2020, 9, 1205. [Google Scholar] [CrossRef]
- Casarsa, C.; Mearelli, F.; Nunnari, A.; Spagnol, F.; Bella, S.D. Why doesn’t sepsis rhyme with Internal Medicine? Eur. J. Intern. Med. 2025, S0953-6205(25)00076-7. [Google Scholar] [CrossRef]
- Leitner, B.P.; Lee, W.D.; Zhu, W.; Zhang, X.; Gaspar, R.C.; Li, Z.; Rabinowitz, J.D.; Perry, R.J. Tissue-specific reprogramming of glutamine metabolism maintains tolerance to sepsis. PLoS ONE 2023, 18, e0286525. [Google Scholar] [CrossRef]
Characteristics | n = 469 (100) |
---|---|
Female | 222 (47) |
Median age | 82 (75–88) |
Median Charlson Comorbidity Index | 3 (2–5) |
Chronic liver disease | 30 (6) |
Chronic immune deficiency | 81 (17) |
Severity of sepsis at IMU admission | |
Median SOFA score | 3 (2–4) |
Median lactate (mg/dL) | 14 (10–20) |
Amino acids at IMU admission | |
Median glutamine (μmol/L) | 414 (324–518) |
Median glutamic acid (μmol/L) | 148 (104–214) |
Median leucine (μmol/L) | 117 (93–145) |
Median 5-oxoproline (μmol/L) | 106 (79–137) |
Median phenylalanine (μmol/L) | 81 (69–98) |
Median tyrosine (μmol/L) | 55 (46–70) |
Ratio of amino acids § at IMU admission | |
Median glutamic acid/5-oxoproline | 1.52 (1.24–1.73) |
Median tyrosine/phenylalanine | 1.48 (1.23–1.77) |
Source of sepsis | |
Multiple sources of infection | 37 (8) |
LRTI | 271 (63) |
Non-LRTI | 161 (37) |
Etiology of sepsis | |
Clinically documented | 287 (61) |
Microbiologically documented | 182 (39) |
-Gram-negative bacteria | 120 (26) |
-Gram-positive bacteria | 83 (18) |
-Non-bacterial | 23 (5) |
Positive blood cultures | 86 (18) |
Mortality | |
<30 days | 86 (18) |
<6 months | 186 (40) |
Predictor * | B | SE | Wald | p | Odds Ratio (95% CI) |
---|---|---|---|---|---|
Age | 0.072 | 0.013 | 31.228 | <0.001 | 1.07 (1.05–1.10) |
SOFA score | 0.391 | 0.059 | 43.83 | <0.001 | 1.48 (1.32–1.66) |
Log glutamine levels | 0.569 | 0.263 | 4.498 | 0.030 | 1.77 (1.05–2.95) |
Multiple sources of infection | 1.262 | 0.413 | 9.358 | 0.002 | 3.54 (1.58–7.92) |
Characteristics | Gln < 400 μmol/L n = 217 (46) | Gln 400–700 μmol/L n = 218 (47) | Gln > 700 μmol/L n = 34 (7) | p |
---|---|---|---|---|
Median age | 80 (74–86) a | 83 (77–90) | 84 (73–91) | 0.003 |
Chronic liver disease | 6 (4) | 16 (10) | 8 (29) | <0.001 |
Chronic immune deficiency | 49 (23) | 29 (13) b | 3 (9) c | 0.015 |
Inflammation markers at IMU admission | ||||
Median body temperature (°C) | 37.8 (36.8–38) a | 37.1 (36.1–38) | 36.5 (36–37.5) c | <0.001 |
Median white blood cell count (×109/L) | 13.7 (10.3–18.2) a | 12.3 (8.4–16.5) | 11.5 (7.3–15-9) | 0.008 |
Median C-reactive protein (mg/L) | 138 (53–231) a | 90 (28–152) b | 33 (7–61) c | <0.001 |
Lymphocyte count at IMU admission * | ||||
Median lymphocyte (×109/L) | 1 (0.72–1.4) a | 0.78 (0.5–1.2) | 0.72 (0.42–1.2) | 0.001 |
Lymphocytes < 0.5 × 109/L | 21 (13) a | 47 (25) | 10 (32) c | 0.003 |
Severity of sepsis at IMU admission | ||||
Median SOFA score | 3 (2–4) | 3 (2–4) b | 4 (3–6) c | 0.006 |
Median lactate (mg/dL) | 13 (10–18) a | 14 (10–21) | 17 (13–26) c | 0.002 |
Amino acids at IMU admission | ||||
Median glutamic acid (μmol/L) | 171 (116–255) a | 128 (97–184) b | 156 (130–218) | <0.001 |
Median leucine (μmol/L) | 110 (88–137) a | 123 (100–149) | 123 (94–154) | 0.009 |
Median 5-oxoproline (μmol/L) | 105 (79–141) | 101 (78–129) b | 139 (117–176) c | <0.001 |
Median phenylalanine (μmol/L) | 77 (68–95) | 84 (70–99) | 94 (76–138) c | 0.002 |
Median tyrosine (μmol/L) | 51 (42–62) a | 59 (48–72) b | 85 (58–103) c | <0.001 |
Ratios between amino acids § at IMU admission | ||||
Median glutamic acid/5-oxoproline | 1.68 (1.41–1.86) a | 1.41 (1.14–1.61) | 1.19 (0.97–1.5) c | <0.001 |
Median tyrosine/phenylalanine | 0.90 (0.86–0.94) a | 0.92 (0.88–0.96) b | 0.95 (0.91–1) c | <0.001 |
Source of sepsis | ||||
LRTIs ^ | 109 (55) | 141 (70) b | 21 (66) c | 0.013 |
Etiology of sepsis | ||||
Positive blood cultures | 46 (21) | 38 (17) b | 2 (6) c | 0.035 |
Mortality | ||||
<30 days | 28 (13) | 49 (23) b | 9 (27) c | 0.016 |
<6 months | 73 (34) | 93 (42) b | 20 (59) c | 0.009 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mearelli, F.; Nunnari, A.; Chitti, F.; Rombini, A.; Macor, A.; Denora, D.; Messana, L.; Scardino, M.; Martini, I.; Bolzan, G.; et al. Low, Intermediate, and High Glutamine Levels Are Progressively Associated with Increased Lymphopenia, a Diminished Inflammatory Response, and Higher Mortality in Internal Medicine Patients with Sepsis. J. Clin. Med. 2025, 14, 3313. https://doi.org/10.3390/jcm14103313
Mearelli F, Nunnari A, Chitti F, Rombini A, Macor A, Denora D, Messana L, Scardino M, Martini I, Bolzan G, et al. Low, Intermediate, and High Glutamine Levels Are Progressively Associated with Increased Lymphopenia, a Diminished Inflammatory Response, and Higher Mortality in Internal Medicine Patients with Sepsis. Journal of Clinical Medicine. 2025; 14(10):3313. https://doi.org/10.3390/jcm14103313
Chicago/Turabian StyleMearelli, Filippo, Alessio Nunnari, Federica Chitti, Annalisa Rombini, Alessandra Macor, Donatella Denora, Luca Messana, Marianna Scardino, Ilaria Martini, Giulia Bolzan, and et al. 2025. "Low, Intermediate, and High Glutamine Levels Are Progressively Associated with Increased Lymphopenia, a Diminished Inflammatory Response, and Higher Mortality in Internal Medicine Patients with Sepsis" Journal of Clinical Medicine 14, no. 10: 3313. https://doi.org/10.3390/jcm14103313
APA StyleMearelli, F., Nunnari, A., Chitti, F., Rombini, A., Macor, A., Denora, D., Messana, L., Scardino, M., Martini, I., Bolzan, G., Merlo, N., Di Paola, F., Spagnol, F., Casarsa, C., Fiotti, N., Costantino, V., Zerbato, V., Di Bella, S., Tascini, C., ... Biolo, G. (2025). Low, Intermediate, and High Glutamine Levels Are Progressively Associated with Increased Lymphopenia, a Diminished Inflammatory Response, and Higher Mortality in Internal Medicine Patients with Sepsis. Journal of Clinical Medicine, 14(10), 3313. https://doi.org/10.3390/jcm14103313