Evaluation of Choroidal Structure in Type 1 Macular Neovascularization Using Different Optical Coherence Tomography Analyses: Scale Bar and Binarization
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Miotto, S.; Zemella, N.; Gusson, E.; Panozzo, G.; Saviano, S.; Scarpa, G.; Boschi, G.; Piermarocchi, S. Morphologic criteria of lesion activity in neovascular age-related macular degeneration: A consensus article. J. Ocul. Pharmacol. Ther. 2018, 34, 298–308. [Google Scholar] [CrossRef] [PubMed]
- Freund, K.B.; Staurenghi, G.; Jung, J.J.; Zweifel, S.A.; Cozzi, M.; Hill, L.; Blotner, S.; Tsuboi, M.; Gune, S. Macular neovascularization lesion type and vision outcomes in neovascular age-related macular degeneration: Post hoc analysis of HARBOR. Graefes. Arch. Clin. Exp. Ophthalmol. 2022, 260, 2437–2447. [Google Scholar] [CrossRef] [PubMed]
- Spaide, R.F.; Jaffe, G.J.; Sarraf, D.; Freund, K.B.; Sadda, S.R.; Staurenghi, G.; Waheed, N.K.; Chakravarthy, U.; Rosenfeld, P.J.; Holz, F.G.; et al. Consensus nomenclature for reporting neovascular age-related macular degeneration data: Consensus on neovascular age-related macular degeneration nomenclature study group. Ophthalmology 2020, 127, 616–636. [Google Scholar] [CrossRef]
- Zhang, Y.; Gan, Y.; Zeng, Y.; Zhuang, X.; Zhang, X.; Ji, Y.; Su, Y.; Wen, F. Incidence and multimodal imaging characteristics of macular neovascularisation subtypes in Chinese neovascular age-related macular degeneration patients. Br. J. Ophthalmol. 2023, 108, 391–397. [Google Scholar] [CrossRef]
- Kaiser, P.K.; Wykoff, C.C.; Singh, R.P.; Khanani, A.M.; Do, D.V.; Patel, H.; Patel, N. Retinal fluid and thickness as measures of disease activity in neovascular age-related macular degeneration. Retina 2021, 41, 1579–1586. [Google Scholar] [CrossRef] [PubMed]
- Chantarasorn, Y.; Ruamviboonsuk, P.; Thoongsuwan, S.; Vongkulsiri, S.; Kungwanpongpun, P.; Hanutsaha, P. Clinical correlation of retinal fluid fluctuation represented by fluctuation index in wet age-related macular degeneration: TOWER study Report 2 Report 2. Transl. Vis. Sci. Technol. 2023, 12, 2. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Jonas, J.B.; Wei, W. Choroidal vessel diameter in central serous chorioretinopathy. Acta Ophthalmol. 2013, 91, e358–e362. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Wang, Y.X.; Zhang, Q.; Wei, W.B.; Xu, L.; Jonas, J.B. Macular choroidal small-vessel layer, Sattler’s layer and Haller’s layer thicknesses: The Beijing Eye study. Sci. Rep. 2018, 8, 4411. [Google Scholar] [CrossRef]
- Ambiya, V.; Goud, A.; Rasheed, M.A.; Gangakhedkar, S.; Vupparaboina, K.K.; Chhablani, J. Retinal and choroidal changes in steroid-associated central serous chorioretinopathy. Int. J. Retin. Vitr. 2018, 4, 11. [Google Scholar] [CrossRef]
- Sonoda, S.; Sakamoto, T.; Yamashita, T.; Shirasawa, M.; Uchino, E.; Terasaki, H.; Tomita, M. Choroidal structure in normal eyes and after photodynamic therapy determined by binarization of optical coherence tomographic images. Investig. Ophthalmol. Vis. Sci. 2014, 55, 3893–3899. [Google Scholar] [CrossRef]
- Aksoy, F.E.; Altan, C.; Kesim, C.; Demircan, A.; Tunç, U.; Demir, G.; Taskapılı, M. Choroidal vascularity index as an indicator of vascular status of choroid, in eyes with nanophthalmos. Eye 2020, 34, 2336–2340. [Google Scholar] [CrossRef]
- Iovino, C.; Pellegrini, M.; Bernabei, F.; Borrelli, E.; Sacconi, R.; Govetto, A.; Vagge, A.; Di Zazzo, A.; Forlini, M.; Finocchio, L.; et al. Choroidal vascularity index: An in-depth analysis of this novel optical coherence tomography parameter. J. Clin. Med. 2020, 9, 595. [Google Scholar] [CrossRef] [PubMed]
- Di Pippo, M.; Santia, C.; Rullo, D.; Ciancimino, C.; Grassi, F.; Abdolrahimzadeh, S. The choroidal vascularity index versus optical coherence tomography angiography in the evaluation of the choroid with a focus on age-related macular degeneration. Tomography 2023, 9, 1456–1470. [Google Scholar] [CrossRef] [PubMed]
- Ting, D.S.W.; Yanagi, Y.; Agrawal, R.; Teo, H.Y.; Seen, S.; Yeo, I.Y.S.; Mathur, R.; Chan, C.M.; Lee, S.Y.; Wong, E.Y.M.; et al. Choroidal Remodeling in Age-related Macular Degeneration and Polypoidal choroidal vasculopathy: A 12-month Prospective Study. Sci. Rep. 2017, 7, 7868. [Google Scholar] [CrossRef]
- Yamashiro, K.; Hosoda, Y.; Miyake, M.; Ooto, S.; Tsujikawa, A. Characteristics of pachychoroid diseases and age-related macular degeneration: Multimodal imaging and genetic backgrounds. J. Clin. Med. 2020, 9, 2034. [Google Scholar] [CrossRef]
- Sato, M.; Minami, S.; Nagai, N.; Suzuki, M.; Kurihara, T.; Shinojima, A.; Sonobe, H.; Akino, K.; Ban, N.; Watanabe, K.; et al. Association between axial length and choroidal thickness in early age-related macular degeneration. PLoS ONE 2020, 15, e0240357. [Google Scholar] [CrossRef] [PubMed]
- Wakatsuki, Y.; Shinojima, A.; Kawamura, A.; Yuzawa, M. Correlation of aging and segmental choroidal thickness measurement using swept source optical coherence tomography in healthy eyes. PLoS ONE 2015, 10, e0144156. [Google Scholar] [CrossRef]
- Giavarina, D. Understanding Bland Altman analysis. Biochem. Med. 2015, 25, 141–151. [Google Scholar] [CrossRef]
- Liljequist, D.; Elfving, B.; Skavberg Roaldsen, K. Intraclass correlation—A discussion and demonstration of basic features. PLoS ONE 2019, 14, e0219854. [Google Scholar] [CrossRef]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 2012, 9, 676–682. [Google Scholar] [CrossRef]
- Keenan, T.D.; Klein, B.; Agrón, E.; Chew, E.Y.; Cukras, C.A.; Wong, W.T. Choroidal thickness and vascularity vary with disease severity and subretinal drusenoid deposit presence in nonadvanced age-related macular degeneration. Retina 2020, 40, 632–642. [Google Scholar] [CrossRef] [PubMed]
- Pellegrini, M.; Bernabei, F.; Mercanti, A.; Sebastiani, S.; Peiretti, E.; Iovino, C.; Casini, G.; Loiudice, P.; Scorcia, V.; Giannaccare, G. Short-term choroidal vascular changes after aflibercept therapy for neovascular age-related macular degeneration. Graefes. Arch. Clin. Exp. Ophthalmol. 2021, 259, 911–918. [Google Scholar] [CrossRef] [PubMed]
- Betzler, B.K.; Ding, J.; Wei, X.; Lee, J.M.; Grewal, D.S.; Fekrat, S.; Sadda, S.R.; Zarbin, M.A.; Agarwal, A.; Gupta, V.; et al. Choroidal vascularity index: A step towards software as a medical device. Br. J. Ophthalmol. 2022, 106, 149–155. [Google Scholar] [CrossRef] [PubMed]
- Lai, C.Y.; Tian, L.; Schisterman, E.F. Exact confidence interval estimation for the Youden index and its corresponding optimal cut-point. Comput. Stat. Data Anal. 2012, 56, 1103–1114. [Google Scholar] [CrossRef] [PubMed]
- Kanda, Y. Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transpl. 2013, 48, 452–458. [Google Scholar] [CrossRef] [PubMed]
- Karasu, B.; Celebi, A.R.C. Choroidal vascularity index: An enhanced depth optical coherence tomography-based parameter to determine vascular status in patients with proliferative and non-proliferative macular telangiectasia. Int. Ophthalmol. 2021, 41, 3505–3513. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Zheng, G.; Yu, X.; Jiang, Y.; Lin, Z.; Lin, G.; Chen, W.; Shen, M.; Lu, F. Impact of penetration and image analysis in optical coherence tomography on the measurement of choroidal vascularity parameters. Retina 2022, 42, 1965–1974. [Google Scholar] [CrossRef]
- Ruiz-Medrano, J.; Flores-Moreno, I.; Peña-García, P.; Montero, J.A.; García-Feijóo, J.; Duker, J.S.; Ruiz-Moreno, J.M. Analysis of age-related choroidal layers thinning in healthy eyes using swept-source optical coherence tomography. Retina 2017, 37, 1305–1313. [Google Scholar] [CrossRef]
- Nagai, N.; Suzuki, M.; Minami, S.; Kurihara, T.; Kamoshita, M.; Sonobe, H.; Watanabe, K.; Uchida, A.; Shinoda, H.; Tsubota, K.; et al. Dynamic changes in choroidal conditions during anti-vascular endothelial growth factor therapy in polypoidal choroidal vasculopathy. Sci. Rep. 2019, 9, 11389. [Google Scholar] [CrossRef]
- Lee, W.K.; Baek, J.; Dansingani, K.K.; Lee, J.H.; Freund, K.B. Choroidal morphology in eyes with polypoidal choroidal vasculopathy and normal or subnormal subfoveal choroidal thickness. Retina 2016, 36 (Suppl. S1), S73–S82. [Google Scholar] [CrossRef]
- Qiu, B.; Zhang, X.; Li, Z.; Chhablani, J.; Fan, H.; Wang, Y.; Xie, R. Characterization of choroidal morphology and vasculature in the phenotype of pachychoroid diseases by swept-source OCT and OCTA. J. Clin. Med. 2022, 11, 3243. [Google Scholar] [CrossRef]
- Shen, M.; Zhou, H.; Lu, J.; Li, J.; Jiang, X.; Trivizki, O.; Laiginhas, R.; Liu, J.; Zhang, Q.; de Sisternes, L.; et al. Choroidal changes after anti-vegf therapy in AMD eyes with different types of macular neovascularization using swept-source OCT angiography. Investig. Ophthalmol. Vis. Sci. 2023, 64, 16. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Dai, Y.; Shi, Y.; Russell, J.F.; Lyu, C.; Noorikolouri, J.; Feuer, W.J.; Chu, Z.; Zhang, Q.; de Sisternes, L.; et al. Age-Related Changes in Choroidal Thickness and the Volume of Vessels and Stroma Using Swept-Source OCT and Fully Automated Algorithms. Ophthalmol. Retin. 2020, 4, 204–215. [Google Scholar] [CrossRef] [PubMed]
- Shen, M.; Zhou, H.; Kim, K.; Bo, Q.; Lu, J.; Laiginhas, R.; Jiang, X.; Yan, Q.; Iyer, P.; Trivizki, O.; et al. Choroidal changes in eyes with polypoidal choroidal vasculopathy after anti-VEGF therapy imaged with swept-source OCT angiography. Investig. Ophthalmol. Vis. Sci. 2021, 62, 5. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Medrano, J.; Ruiz-Moreno, J.M.; Goud, A.; Vupparaboina, K.K.; Jana, S.; Chhablani, J. Age-related changes in choroidal vascular density of healthy subjects based on image binarization of swept-source optical coherence tomography. Retina 2018, 38, 508–515. [Google Scholar] [CrossRef]
- Kim, J.; Lee, Y.J.; Won, J.Y. Molecular mechanisms of retinal pigment epithelium dysfunction in age-related macular degeneration. Int. J. Mol. Sci. 2021, 22, 12298. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.H.; Jin, H.N.; Kim, H.J.; Lee, J.H.; Ji, Y.S. Influence of scan direction on subfoveal choroidal vascularity index using optical coherence tomography. Sci. Rep. 2022, 12, 16626. [Google Scholar] [CrossRef]
- Shen, M.; Bo, Q.; Song, M.; Jiang, X.; Yehoshua, Z.; Gregori, G.; Sun, X.; Wang, F.; Rosenfeld, P.J. Replacement of polyps with type 1 macular neovascularization in polypoidal choroidal vasculopathy imaged with swept source OCT angiography. Am. J. Ophthalmol. Case Rep. 2021, 22, 101057. [Google Scholar] [CrossRef]
Age, median (IQR) | 72.5 (68.0–79.0) |
Sex (male), n (%) | 61 (73) |
Polyp lesions, n (%) | 51 (61) |
BCVA (LogMAR unit), Median (IQR) | 0.19 (0.05–0.40) |
SRF, n (%) | 63 (75) |
PED, n (%) | 28 (33) |
Drusen, n (%) | 18 (21) |
CCT, median (IQR), µm | 228 (183–275) |
CVD, median (IQR), µm | 172 (125–212) |
SCT, median (IOR), µm | 57.0 (40.9–71.1) |
SV ratio (%), median (IQR) | 31.7 (26.7–45.9) |
Horizontal LC ratio (%), Median (IQR) | 63.3 (61.5–65.2) |
Vertical LC ratio (%), Median (IQR) | 62.8 (61.0–65.0) |
Male (n = 61) | Female (n = 23) | p Value | |
---|---|---|---|
Age, median (IQR) | 74.0 (69.0–79.0) | 69.0 (64.5–78.5) | 0.19 |
Polyp lesions, n (%) | 38 (62) | 13 (57) | 0.63 |
SRF, n (%) | 48 (79) | 15 (65) | 0.26 |
PED, n (%) | 17 (28) | 11 (48) | 0.12 |
Drusen, n (%) | 16 (26) | 2 (9) | 0.13 |
CCT | CVD | SCT | |
---|---|---|---|
ICC (1,1), 95%CI | 0.947 (0.920–0.965) | 0.945 (0.917–0.964) | 0.907 (0.861–0.939) |
ICC (1,2), 95%CI | 0.973 (0.958–0.982) | 0.972 (0.957–0.982) | 0.951 (0.925–0.969) |
Type1 MNV without Polyps (n = 33) | Type1 MNV with Polyps (n = 51) | p Value | |
---|---|---|---|
Age, median (IQR) | 74.0 (68.0–80.0) | 72.0 (68.0–78.0) | 0.27 † |
Sex (male), n (%) | 23 (70) | 38 (75) | 0.63 ‡ |
BCVA (LogMAR unit), Median (IQR) | 0.15 (0.10–0.40) | 0.22 (0.05–0.40) | 0.74 † |
SRF, n (%) | 23 (70) | 40 (78) | 0.44 ‡ |
PED, n (%) | 7 (21) | 21 (41) | 0.06 ‡ |
Drusen, n (%) | 6 (18) | 12 (24) | 0.6 ‡ |
CCT, Median (IQR), µm | 248 (206–289) | 214 (174–261) | 0.56 † |
CVD, Median (IQR), µm | 158 (116–215) | 175 (147–209) | 0.12 † |
SCT, Median (IOR), µm | 63.5 (57.0–72.5) | 48.5 (37.5–63.8) | 0.0047 † |
SV ratio (%), Median (IQR) | 45.8 (31.1–63.0) | 30.4 (24.5–36.4) | <0.001 † |
Horizontal LC ratio (%), Median (IQR) | 62.8 (60.6–65.5) | 63.9 (62.1–65.0) | 0.48 † |
Vertical LC ratio (%), Median (IQR) | 63.6 (60.6–65.0) | 62.7 (61.3–65.1) | 0.67 † |
Type1 MNV without Polyps (n = 33) | p Value | Type1 MNV with Polyps (n = 51) | p Value | |||
---|---|---|---|---|---|---|
SRF (+) (n = 23) | SRF (−) (n = 10) | SRF (+) (n = 40) | SRF (−) (n = 11) | |||
CCT, median (IQR), µm | 256 (214–294) | 229 (165–278) | 0.34 | 220 (183–263) | 209 (132–237) | 0.27 |
CVD, median (IQR), µm | 176 (132–221) | 119 (82–183) | 0.06 | 183 (153–212) | 150 (110–203) | 0.2 |
SCT, median (IOR), µm | 65.5 (56.0–72.0) | 63.0 (57.8–74.3) | 0.85 | 49.3 (37.9–68.8) | 46.5 (31.8–58.5) | 0.28 |
SV ratio (%), median (IQR) | 36.5 (29.9–53.9) | 58.5 (46.8–81.9) | 0.07 | 28.9 (24.8–36.1) | 31.8 (25.1–37.1) | 0.69 |
Horizontal LC ratio (%), Median (IQR) | 64.2 (61.7–66.2) | 61.6 (58.9–62.5) | 0.047 | 63.5 (62.1–64.8) | 64.2 (61.2–65.1) | 0.9 |
Vertical LC ratio (%), Median (IQR) | 64.5 (61.7–65.3) | 60.5 (58.5–63.5) | 0.08 | 62.8 (61.5–65.0) | 62.2 (61.3–64.5) | 0.63 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hirai, H.; Yamashita, M.; Ijuin, N.; Jimura, H.; Nishi, T.; Ogata, N.; Ueda, T. Evaluation of Choroidal Structure in Type 1 Macular Neovascularization Using Different Optical Coherence Tomography Analyses: Scale Bar and Binarization. J. Clin. Med. 2024, 13, 1383. https://doi.org/10.3390/jcm13051383
Hirai H, Yamashita M, Ijuin N, Jimura H, Nishi T, Ogata N, Ueda T. Evaluation of Choroidal Structure in Type 1 Macular Neovascularization Using Different Optical Coherence Tomography Analyses: Scale Bar and Binarization. Journal of Clinical Medicine. 2024; 13(5):1383. https://doi.org/10.3390/jcm13051383
Chicago/Turabian StyleHirai, Hiromasa, Mariko Yamashita, Nobuo Ijuin, Hironobu Jimura, Tomo Nishi, Nahoko Ogata, and Tetsuo Ueda. 2024. "Evaluation of Choroidal Structure in Type 1 Macular Neovascularization Using Different Optical Coherence Tomography Analyses: Scale Bar and Binarization" Journal of Clinical Medicine 13, no. 5: 1383. https://doi.org/10.3390/jcm13051383
APA StyleHirai, H., Yamashita, M., Ijuin, N., Jimura, H., Nishi, T., Ogata, N., & Ueda, T. (2024). Evaluation of Choroidal Structure in Type 1 Macular Neovascularization Using Different Optical Coherence Tomography Analyses: Scale Bar and Binarization. Journal of Clinical Medicine, 13(5), 1383. https://doi.org/10.3390/jcm13051383