Association Between Sarcopenic Obesity and Activities of Daily Living in Individuals with Spinal Cord Injury
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design, Participants, and Setting
2.2. Data Collection
2.3. Outcome Measurements
2.4. Criteria for Identifying Sarcopenia, Obesity, and Sarcopenic Obesity
2.5. Statistical Analysis
2.6. Ethical Considerations
3. Results
3.1. Participant Characteristics, Anthropometrics, and Body Composition Measures
3.2. FIM Scores
3.3. Association Between Body Composition Measures and ADL
3.4. Post Hoc Power Analysis
4. Discussion
4.1. Association Between SMI, %BF, and ADL
4.2. Sarcopenic Obesity
4.3. Limitations and Future Prospects
4.4. Clinical Implications
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, L.K.; Woo, J.; Assantachai, P.; Auyeung, T.W.; Chou, M.Y.; Iijima, K.; Jang, H.C.; Kang, L.; Kim, M.; Kim, S.; et al. Asian Working Group for Sarcopenia: 2019 consensus update on sarcopenia diagnosis and treatment. J. Am. Med. Dir. Assoc. 2020, 21, 300–307.e2. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.N.; Yang, S.J.; Yoo, H.J.; Lim, K.I.; Kang, H.J.; Song, W.; Seo, J.A.; Kim, S.G.; Kim, N.H.; Baik, S.H.; et al. Prevalence of sarcopenia and sarcopenic obesity in Korean adults: The Korean sarcopenic obesity study. Int. J. Obes. 2009, 33, 885–892. [Google Scholar] [CrossRef] [PubMed]
- Batsis, J.A.; Mackenzie, T.A.; Emeny, R.T.; Lopez-Jimenez, F.; Bartels, S.J. Low lean mass with and without obesity, and mortality: Results from the 1999–2004 National Health and Nutrition Examination Survey. J. Gerontol. A Biol. Sci. Med. Sci. 2017, 72, 1445–1451. [Google Scholar] [CrossRef]
- Yoshimura, Y.; Wakabayashi, H.; Nagano, F.; Bise, T.; Shimazu, S.; Kudo, M.; Shiraishi, A. Sarcopenic obesity is associated with activities of daily living and home discharge in post-acute rehabilitation. J. Am. Med. Dir. Assoc. 2020, 21, 1475–1480. [Google Scholar] [CrossRef]
- Matsushita, T.; Nishioka, S.; Taguchi, S.; Yamanouchi, A.; Nakashima, R.; Wakabayashi, H. Sarcopenic obesity and activities of daily living in stroke rehabilitation patients: A cross-sectional study. Healthcare 2020, 8, 255. [Google Scholar] [CrossRef] [PubMed]
- Castro, M.J.; Apple, D.F., Jr.; Hillegass, E.A.; Dudley, G.A. Influence of complete spinal cord injury on skeletal muscle cross-sectional area within the first 6 months of injury. Eur. J. Appl. Physiol. Occup. Physiol. 1999, 80, 373–378. [Google Scholar] [CrossRef]
- Gorgey, A.S.; Dudley, G.A. Skeletal muscle atrophy and increased intramuscular fat after incomplete spinal cord injury. Spinal Cord 2007, 45, 304–309. [Google Scholar] [CrossRef]
- Shah, P.K.; Stevens, J.E.; Gregory, C.M.; Pathare, N.C.; Jayaraman, A.; Bickel, S.C.; Bowden, M.; Behrman, A.L.; Walter, G.A.; Dudley, G.A.; et al. Lower-extremity muscle cross-sectional area after incomplete spinal cord injury. Arch. Phys. Med. Rehabil. 2006, 87, 772–778. [Google Scholar] [CrossRef] [PubMed]
- Gorgey, A.S.; Dolbow, D.R.; Dolbow, J.D.; Khalil, R.K.; Castillo, C.; Gater, D.R. Effects of spinal cord injury on body composition and metabolic profile—Part I. J. Spinal Cord Med. 2014, 37, 693–702. [Google Scholar] [CrossRef]
- Raguindin, P.F.; Bertolo, A.; Zeh, R.M.; Fränkl, G.; Itodo, O.A.; Capossela, S.; Bally, L.; Minder, B.; Brach, M.; Eriks-Hoogland, I.; et al. Body composition according to spinal cord injury level: A systematic review and meta-analysis. J. Clin. Med. 2021, 10, 3911. [Google Scholar] [CrossRef]
- Farkas, G.J.; Pitot, M.A.; Berg, A.S.; Gater, D.R. Nutritional status in chronic spinal cord injury: A systematic review and meta-analysis. Spinal Cord 2019, 57, 3–17. [Google Scholar] [CrossRef] [PubMed]
- Buchholz, A.C.; Pencharz, P.B. Energy expenditure in chronic spinal cord injury. Curr. Opin. Clin. Nutr. Metab. Care 2004, 7, 635–639. [Google Scholar] [CrossRef] [PubMed]
- Pelletier, C.A.; Miyatani, M.; Giangregorio, L.; Craven, B.C. Sarcopenic obesity in adults with spinal cord injury: A cross-sectional study. Arch. Phys. Med. Rehabil. 2016, 97, 1931–1937. [Google Scholar] [CrossRef] [PubMed]
- Ishimoto, R.; Mutsuzaki, H.; Shimizu, Y.; Kishimoto, H.; Takeuchi, R.; Hada, Y. Prevalence of sarcopenic obesity and factors influencing body composition in persons with spinal cord injury in Japan. Nutrients 2023, 15, 473. [Google Scholar] [CrossRef] [PubMed]
- McMillan, D.W.; Nash, M.S.; Gater, D.R.; Valderrábano, R.J. Neurogenic obesity and skeletal pathology in spinal cord injury. Top. Spinal Cord Inj. Rehabil. 2021, 27, 57–67. [Google Scholar] [CrossRef]
- Atkins, J.L.; Whincup, P.H.; Morris, R.W.; Lennon, L.T.; Papacosta, O.; Wannamethee, S.G. Sarcopenic obesity and risk of cardiovascular disease and mortality: A population-based cohort study of older men. J. Am. Geriatr. Soc. 2014, 62, 253–260. [Google Scholar] [CrossRef]
- Baumgartner, R.N.; Wayne, S.J.; Waters, D.L.; Janssen, I.; Gallagher, D.; Morley, J.E. Sarcopenic obesity predicts instrumental activities of daily living disability in the elderly. Obes. Res. 2004, 12, 1995–2004. [Google Scholar] [CrossRef]
- Hirani, V.; Naganathan, V.; Blyth, F.; Le Couteur, D.G.; Seibel, M.J.; Waite, L.M.; Handelsman, D.J.; Cumming, R.G. Longitudinal associations between body composition, sarcopenic obesity and outcomes of frailty, disability, institutionalisation and mortality in community-dwelling older men: The Concord Health and Ageing in Men Project. Age Ageing 2017, 46, 413–420. [Google Scholar] [CrossRef]
- Rupp, R.; Biering-Sørensen, F.; Burns, S.P.; Graves, D.E.; Guest, J.; Jones, L.; Read, M.S.; Rodriguez, G.M.; Schuld, C.; Tansey-Md, K.E.; et al. International Standards for Neurological Classification of Spinal Cord Injury: Revised 2019. Top. Spinal Cord Inj. Rehabil. 2021, 27, 1–22. [Google Scholar] [CrossRef]
- Roberts, T.T.; Leonard, G.R.; Cepela, D.J. Classifications in brief: American Spinal Injury Association (ASIA) impairment scale. Clin. Orthop. Relat. Res. 2017, 475, 1499–1504. [Google Scholar] [CrossRef]
- Charlson, M.E.; Pompei, P.; Ales, K.L.; MacKenzie, C.R. A new method of classifying prognostic comorbidity in longitudinal studies: Development and validation. J. Chronic Dis. 1987, 40, 373–383. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Sonoda, S.; Domen, K. Stroke Impairment Assessment Set (SIAS) and Functional Independence Measure (FIM) and their practical use. In Functional Assessment of Stroke Patients: Practical Aspects of SIAS and FIM; Chino, N., Ed.; Splinger: Tokyo, Japan, 1997; pp. 17–139. (In Japanese) [Google Scholar]
- Tsuji, T.; Sonoda, S.; Domen, K.; Saitoh, E.; Liu, M.; Chino, N. ADL structure for stroke patients in Japan based on the functional independence measure. Am. J. Phys. Med. Rehabil. 1995, 74, 432–438. [Google Scholar] [CrossRef] [PubMed]
- Dionyssiotis, Y.; Skarantavos, G.; Petropoulou, K.; Galanos, A.; Rapidi, C.A.; Lyritis, G.P. Application of current sarcopenia definitions in spinal cord injury. J. Musculoskelet. Neuronal Interact. 2019, 19, 21–29. [Google Scholar]
- Garvey, W.T.; Mechanick, J.I.; Brett, E.M.; Garber, A.J.; Hurley, D.L.; Jastreboff, A.M.; Nadolsky, K.; Pessah-Pollack, R.; Plodkowski, R. Reviewers of the AACE/ACE Obesity Clinical Practice Guidelines. American Association of Clinical Endocrinologists and American College of Endocrinology Comprehensive Clinical Practice Guidelines for medical care of patients with obesity. Endocr. Pract. 2016, 22 (Suppl. 3), 1–203. [Google Scholar] [CrossRef]
- Batsis, J.A.; Villareal, D.T. Sarcopenic obesity in older adults: Aetiology, epidemiology and treatment strategies. Nat. Rev. Endocrinol. 2018, 14, 513–537. [Google Scholar] [CrossRef]
- Faul, F.; Erdfelder, E.; Lang, A.G.; Buchner, A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef] [PubMed]
- Faul, F.; Erdfelder, E.; Buchner, A.; Lang, A.G. Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behav. Res. Methods 2009, 41, 1149–1160. [Google Scholar] [CrossRef]
- Janssen, I.; Heymsfield, S.B.; Ross, R. Low relative skeletal muscle mass (sarcopenia) in older persons is associated with functional impairment and physical disability. J. Am. Geriatr. Soc. 2002, 50, 889–896. [Google Scholar] [CrossRef]
- Broadwin, J.; Goodman-Gruen, D.; Slymen, D. Ability of fat and fat-free mass percentages to predict functional disability in older men and women. J. Am. Geriatr. Soc. 2001, 49, 1641–1645. [Google Scholar] [CrossRef]
- Meskers, C.G.M.; Reijnierse, E.M.; Numans, S.T.; Kruizinga, R.C.; Pierik, V.D.; van Ancum, J.M.; Slee-Valentijn, M.; Scheerman, K.; Verlaan, S.; Maier, A.B. Association of handgrip strength and muscle mass with dependency in (instrumental) activities of daily living in hospitalized older adults- the EMPOWER study. J. Nutr. Health Aging 2019, 23, 232–238. [Google Scholar] [CrossRef]
- Yoshimura, Y.; Wakabayashi, H.; Bise, T.; Tanoue, M. Prevalence of sarcopenia and its association with activities of daily living and dysphagia in convalescent rehabilitation ward inpatients. Clin. Nutr. 2018, 37, 2022–2028. [Google Scholar] [CrossRef] [PubMed]
- Blackmer, J.; Marshall, S. Obesity and spinal cord injury: An observational study. Spinal Cord 1997, 35, 245–247. [Google Scholar] [CrossRef] [PubMed]
- Stenson, K.W.; Deutsch, A.; Heinemann, A.W.; Chen, D. Obesity and inpatient rehabilitation outcomes for patients with a traumatic spinal cord injury. Arch. Phys. Med. Rehabil. 2011, 92, 384–390. [Google Scholar] [CrossRef] [PubMed]
- Tian, W.; Hsieh, C.H.; DeJong, G.; Backus, D.; Groah, S.; Ballard, P.H. Role of body weight in therapy participation and rehabilitation outcomes among individuals with traumatic spinal cord injury. Arch. Phys. Med. Rehabil. 2013, 94, S125–S136. [Google Scholar] [CrossRef] [PubMed]
- Kao, Y.H.; Chen, Y.; Deutsch, A.; Wen, H.; Tseng, T.S. Rehabilitation length of stay, body mass index, and functional improvement among adults with traumatic spinal cord injury. Arch. Phys. Med. Rehabil. 2022, 103, 657–664. [Google Scholar] [CrossRef]
- Tanaka, M.; Momosaki, R.; Wakabayashi, H.; Kikura, T.; Maeda, K. Relationship between nutritional status and improved ADL in individuals with cervical spinal cord injury in a convalescent rehabilitation ward. Spinal Cord 2019, 57, 501–508. [Google Scholar] [CrossRef]
- Buchholz, A.C.; Bugaresti, J.M. A review of body mass index and waist circumference as markers of obesity and coronary heart disease risk in persons with chronic spinal cord injury. Spinal Cord 2005, 43, 513–518. [Google Scholar] [CrossRef]
- Kim, Y.; Lee, C.; Oh, H.; Son, J.S.; Doo, A. The effects of body composition characteristics on the functional disability in patients with degenerative lumbar spinal stenosis. J. Clin. Med. 2023, 12, 612. [Google Scholar] [CrossRef]
- Reed, R.L.; Pearlmutter, L.; Yochum, K.; Meredith, K.E.; Mooradian, A.D. The relationship between muscle mass and muscle strength in the elderly. J. Am. Geriatr. Soc. 1991, 39, 555–561. [Google Scholar] [CrossRef]
- Hayashida, I.; Tanimoto, Y.; Takahashi, Y.; Kusabiraki, T.; Tamaki, J. Correlation between muscle strength and muscle mass, and their association with walking speed, in community-dwelling elderly Japanese individuals. PLoS ONE 2014, 9, e111810. [Google Scholar] [CrossRef]
- Tanaka, M.; Masuda, S.; Yamakage, H.; Inoue, T.; Ohue-Kitano, R.; Yokota, S.; Kusakabe, T.; Wada, H.; Sanada, K.; Ishii, K.; et al. Role of serum myostatin in the association between hyperinsulinemia and muscle atrophy in Japanese obese patients. Diabetes Res. Clin. Pract. 2018, 142, 195–202. [Google Scholar] [CrossRef] [PubMed]
- Someya, Y.; Tamura, Y.; Kaga, H.; Sugimoto, D.; Kadowaki, S.; Suzuki, R.; Aoki, S.; Hattori, N.; Motoi, Y.; Shimada, K.; et al. Sarcopenic obesity is associated with cognitive impairment in community-dwelling older adults: The Bunkyo Health Study. Clin. Nutr. 2022, 41, 1046–1051. [Google Scholar] [CrossRef] [PubMed]
- Tolea, M.I.; Chrisphonte, S.; Galvin, J.E. Sarcopenic obesity and cognitive performance. Clin. Interv. Aging 2018, 13, 1111–1119. [Google Scholar] [CrossRef] [PubMed]
- Levine, M.E.; Crimmins, E.M. Sarcopenic obesity and cognitive functioning: The mediating roles of insulin resistance and inflammation? Curr. Gerontol. Geriatr. Res. 2012, 2012, 826398. [Google Scholar] [CrossRef] [PubMed]
- Spungen, A.M.; Adkins, R.H.; Stewart, C.A.; Wang, J.; Pierson, R.N., Jr.; Waters, R.L.; Bauman, W.A. Factors influencing body composition in persons with spinal cord injury: A cross-sectional study. J. Appl. Physiol. (1985) 2003, 95, 2398–2407. [Google Scholar] [CrossRef]
- Han, S.H.; Lee, B.S.; Choi, H.S.; Kang, M.S.; Kim, B.R.; Han, Z.A.; Lee, H.J. Comparison of fat mass percentage and body mass index in Koreans with spinal cord injury according to the severity and duration of motor paralysis. Ann. Rehabil. Med. 2015, 39, 384–392. [Google Scholar] [CrossRef]
Total (n = 82) | Sarcopenic Obesity (n = 51) | Non-Sarcopenic Obesity (n = 31) | p | Analysis | |||||
---|---|---|---|---|---|---|---|---|---|
Age (years) | 63.5 | (50.8–72.3) | 64.0 | (51.0–73.0) | 61.0 | (48.0–69.0) | 0.494 | b | |
Sex, number of female participants | 15 | 18.3% | 5 | 9.8% | 10 | 32.3% | 0.011 | a | * |
Etiology, number with traumatic | 64 | 78.0% | 39 | 76.5% | 25 | 80.6% | 0.658 | a | |
Lesion level, number with tetraplegia | 51 | 62.2% | 30 | 58.8% | 21 | 67.7% | 0.419 | a | |
Severity of injury, number with complete injury | 39 | 47.6% | 31 | 60.8% | 8 | 25.8% | 0.002 | a | * |
Number with sarcopenia | 63 | 76.8% | ― | ― | 12 | 38.7% | ― | ||
Number with obesity | 67 | 81.7% | ― | ― | 16 | 51.6% | ― | ||
Duration of injury (days) | 1698.5 | (369.8–4123.5) | 1729.0 | (366.0–5113.0) | 1668.0 | (493.0–3636.0) | 0.989 | b | |
CCI | 2 | (2.0–3.0) | 2.0 | (2.0–2.0) | 2.0 | (2.0–3.0) | 0.195 | b | |
Anthropometrics | |||||||||
Body height (cm) | 167.3 | (160.8–170.0) | 166.8 | ±6.8 | 164.2 | ±9.4 | 0.154 | c | |
Body weight (kg) | 62.8 | (57.2–73.1) | 62.7 | ±9.8 | 68.3 | ±15.1 | 0.072 | d | |
BMI (kg/m2) | 22.8 | (20.7–26.5) | 22.5 | ±2.8 | 25.3 | ±5.1 | 0.007 | d | * |
Body composition | |||||||||
Lean tissue mass (kg) | 42.1 | ±7.9 | 40.6 | ±6.6 | 44.6 | ±9.2 | 0.038 | d | * |
SMI (kg/m2) | 5.8 | ±1.1 | 5.4 | ±0.9 | 6.5 | ±1.2 | <0.001 | d | * |
Fat tissue mass (kg) | 19.2 | (16.1–24.1) | 19.0 | (16.8–23.1) | 21.2 | (14.4–26.7) | 0.966 | b | |
%BF (%) | 31.8 | ±6.2 | 31.1 | (28.2–35.4) | 30.2 | (23.7–37.8) | 0.278 | b | |
VAT (cm2) | 126.4 | (85.4–160.8) | 131.2 | (92.2–157.4) | 110.5 | (77.5–167.2) | 0.295 | b |
Total (n = 82) | Sarcopenic Obesity (n = 51) | Non-Sarcopenic Obesity (n = 31) | p | |||||
---|---|---|---|---|---|---|---|---|
Motor score | 60.5 | (34.8–71.3) | 54.0 | (28.0–70.0) | 69.0 | (47.0–80.0) | 0.006 | * |
Cognition score | 35.0 | (35.0–35.0) | 35.0 | (35.0–35.0) | 35.0 | (34.0–35.0) | 0.707 | |
Total score | 95.5 | (69.8–106.3) | 89.0 | (62.0–105.0) | 104.0 | (82.0–115.0) | 0.007 | * |
Model 1 | Model 2 | Model 3 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Motor Score | Cognition Score | Total Score | ||||||||||
β | p | VIF | β | p | VIF | β | p | VIF | ||||
(Constant) | 0.010 | * | <0.001 | * | <0.001 | * | ||||||
Sex (female/male) | −0.368 | 0.003 | * | 1.791 | −0.218 | 0.109 | 1.791 | −0.375 | 0.002 | * | 1.791 | |
Age (years) | −0.132 | 0.177 | 1.193 | −0.308 | 0.006 | * | 1.193 | −0.153 | 0.117 | 1.193 | ||
Lesion level (tetraplegia/paraplegia) | 0.281 | 0.006 | * | 1.265 | 0.102 | 0.367 | 1.265 | 0.280 | 0.006 | * | 1.265 | |
Severity of injury (complete/incomplete) | 0.179 | 0.137 | 1.813 | −0.129 | 0.342 | 1.813 | 0.162 | 0.179 | 1.813 | |||
CCI | −0.061 | 0.523 | 1.138 | −0.143 | 0.184 | 1.138 | −0.071 | 0.456 | 1.138 | |||
Duration of injury (days) | 0.072 | 0.458 | 1.181 | 0.247 | 0.026 | * | 1.181 | 0.090 | 0.350 | 1.181 | ||
SMI | 0.416 | <0.001 | * | 1.640 | 0.224 | 0.084 | 1.640 | 0.421 | <0.001 | * | 1.640 | |
%BF | −0.325 | 0.009 | * | 1.870 | 0.010 | 0.940 | 1.870 | −0.313 | 0.012 | * | 1.870 |
Model 1 | Model 2 | Model 3 | |
---|---|---|---|
Adjusted R-square (R2) | 0.367 | 0.188 | 0.365 |
Effect size (f2) | 0.580 | 0.232 | 0.575 |
Power | 100.0% | 85.9% | 99.9% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ishimoto, R.; Mutsuzaki, H.; Shimizu, Y.; Takeuchi, R.; Matsumoto, S.; Hada, Y. Association Between Sarcopenic Obesity and Activities of Daily Living in Individuals with Spinal Cord Injury. J. Clin. Med. 2024, 13, 7071. https://doi.org/10.3390/jcm13237071
Ishimoto R, Mutsuzaki H, Shimizu Y, Takeuchi R, Matsumoto S, Hada Y. Association Between Sarcopenic Obesity and Activities of Daily Living in Individuals with Spinal Cord Injury. Journal of Clinical Medicine. 2024; 13(23):7071. https://doi.org/10.3390/jcm13237071
Chicago/Turabian StyleIshimoto, Ryu, Hirotaka Mutsuzaki, Yukiyo Shimizu, Ryoko Takeuchi, Shuji Matsumoto, and Yasushi Hada. 2024. "Association Between Sarcopenic Obesity and Activities of Daily Living in Individuals with Spinal Cord Injury" Journal of Clinical Medicine 13, no. 23: 7071. https://doi.org/10.3390/jcm13237071
APA StyleIshimoto, R., Mutsuzaki, H., Shimizu, Y., Takeuchi, R., Matsumoto, S., & Hada, Y. (2024). Association Between Sarcopenic Obesity and Activities of Daily Living in Individuals with Spinal Cord Injury. Journal of Clinical Medicine, 13(23), 7071. https://doi.org/10.3390/jcm13237071