The Clinical Usefulness of Evaluating the Lens and Intraocular Lenses Using Optical Coherence Tomography: An Updated Literature Review
Abstract
:1. Introduction
2. Methods
3. Results
3.1. Optical Coherence Tomography (OCT)
3.2. Clinical Usefulness of OCT in Lens Examination
3.3. Evaluation of Lens Morphology (Lens Biometry)
3.3.1. Lens Biometry
3.3.2. Lens Positioning (i.e., Decentration, Tilt, Dislocations, Etc.)
3.4. Age-Related and Accommodation-Related Changes
3.5. OCT in Cataracts
3.5.1. Cataract Grade Classification
3.5.2. Correlation of Cataract Severity Degree with Surgical Parameters
3.5.3. The Role of Artificial Intelligence in Cataract Classification
3.5.4. Intraoperative OCT for Lens Evaluation
3.6. Clinical Utility of OCT in Different Lens-Related Pathologies
3.6.1. Traumatic Cataracts
3.6.2. Lifebuoy Ring Cataract
3.6.3. Pseudoexfoliation Syndrome
3.6.4. Lens Abscess
3.6.5. Assessment of the Posterior Capsule of the Lens Concerning Intravitreal Injections
3.6.6. Anterior and Posterior Lenticonus
3.7. Clinical Usefulness of OCT in Study of Pseudophakic IOLs
3.8. OCT in the Evaluation of IOL Glistening
3.9. OCT in the Evaluation of IOL Opacity
3.10. OCT in the Evaluation of Capsular Distension Syndrome
3.11. OCT in the Evaluation of Toric IOLs
3.12. OCT in the Evaluation of IOL Decentration and Tilting
3.13. Effective Lens Position Using OCT
3.14. Negative Dysphotopsia
3.15. Limitations of OCT in the Evaluation of the Crystalline Lens and Pseudophakic IOLs
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fernández, J.; Rodríguez-Vallejo, M.; Martínez, J.; Tauste, A.; Piñero, D.P. From Presbyopia to Cataracts: A Critical Review on Dysfunctional Lens Syndrome. J. Ophthalmol. 2018, 2018, 4318405. [Google Scholar] [CrossRef] [PubMed]
- Mackenbrock, L.H.B.; Labuz, G.; Baur, I.D.; Yildirim, T.M.; Auffarth, G.U.; Khoramnia, R. Cataract Classification Systems: A Review. Klin. Monbl Augenheilkd. 2022, 241, 75–83. [Google Scholar] [CrossRef] [PubMed]
- Song, J.S.; Yoon, D.Y.; Hyon, J.Y.; Jeon, H.S. Comparison of Ocular Biometry and Refractive Outcomes Using IOL Master 500, IOL Master 700, and Lenstar LS900. Korean J. Ophthalmol. 2020, 34, 126–132. [Google Scholar] [CrossRef] [PubMed]
- Mackool, R.J.; Colin, J. Limitations of Scheimpflug Photography in Quantifying Glistenings. J. Cataract. Refract. Surg. 2009, 35, 1480–1481. [Google Scholar] [CrossRef]
- Biwer, H.; Schuber, E.; Honig, M.; Spratte, B.; Baumeister, M.; Kohnen, T. Objective Classification of Glistenings in Implanted Intraocular Lenses Using Scheimpflug Tomography. J. Cataract. Refract. Surg. 2015, 41, 2644–2651. [Google Scholar] [CrossRef]
- Ang, M.; Baskaran, M.; Werkmeister, R.M.; Chua, J.; Schmidl, D.; Aranha dos Santos, V.; Garhöfer, G.; Mehta, J.S.; Schmetterer, L. Anterior Segment Optical Coherence Tomography. Prog. Retin. Eye Res. 2018, 66, 132–156. [Google Scholar] [CrossRef]
- Kanclerz, P.; Hecht, I.; Tuuminen, R. Technical Failure Rates for Biometry between Swept-Source and Older-Generation Optical Coherence Methods: A Review and Meta-Analysis. BMC Ophthalmol. 2023, 23, 182. [Google Scholar] [CrossRef]
- Nishida, S.; Inomata, Y.; Hirata, A. Risk Factors for Postoperative Refractive Error in New-Generation Intraocular Lens Calculation Formulas. Clin. Ophthalmol. 2024, 18, 2253–2259. [Google Scholar] [CrossRef]
- Hamzeh, N.; Moghimi, S.; Latifi, G.; Mohammadi, M.; Khatibi, N.; Lin, S.C. Lens Thickness Assessment: Anterior Segment Optical Coherence Tomography versus A-Scan Ultrasonography. Int. J. Ophthalmol. 2015, 8, 1151–1155. [Google Scholar] [CrossRef]
- Wang, X.; Dong, J.; Wang, X.; Wu, Q. IOL Tilt and Decentration Estimation from 3 Dimensional Reconstruction of OCT Image. PLoS ONE 2013, 8, e59109. [Google Scholar] [CrossRef]
- Dong, J.; Wang, X.L.; Deng, M.; Wang, X.G. Three-Dimensional Reconstruction and Swept-Source Optical Coherence Tomography for Crystalline Lens Tilt and Decentration Relative to the Corneal Vertex. Transl. Vis. Sci. Technol. 2021, 10, 13. [Google Scholar] [CrossRef] [PubMed]
- Qin, M.; Ji, M.; Zhou, T.; Yuan, Y.; Luo, J.; Li, P.; Wang, Y.; Chen, X.; Chen, W.; Guan, H. Influence of Angle Alpha on Visual Quality after Implantation of Extended Depth of Focus Intraocular Lenses. BMC Ophthalmol. 2022, 22, 82. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Kou, J.; Chen, D.; Wang, D.; Zhao, Y.; Hu, M.; Lin, X.; Dai, Q.; Li, J.; Zhao, Y.-E. Influence of Angle Kappa and Angle Alpha on Visual Quality after Implantation of Multifocal Intraocular Lenses. J. Cataract. Refract. Surg. 2019, 45, 1258–1264. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Zhu, Z.; Li, X.; Meng, Z.; Qu, W.; Zhao, Y. Age-Related Changes in Crystalline Lens Tilt and Decentration: Swept-Source OCT Study. J. Cataract. Refract. Surg. 2021, 47, 1290–1295. [Google Scholar] [CrossRef]
- Tang, Y.; Gao, Y.; Yu, X.; Zhong, H.; Gong, G.; Mei, F.; Fan, Z.; Shi, Y. Novel Diagnostic Indicators for Acute Angle Closure Secondary to Lens Subluxation Based on Anterior Segment and Lens Parameters. Heliyon 2024, 10, e25164. [Google Scholar] [CrossRef]
- Xing, X.; Huang, L.; Tian, F.; Zhang, Y.; Lv, Y.; Liu, W.; Liu, A. Biometric Indicators of Eyes with Occult Lens Subluxation Inducing Secondary Acute Angle Closure. BMC Ophthalmol. 2020, 20, 87. [Google Scholar] [CrossRef]
- Shao, Y.; Tao, A.; Jiang, H.; Mao, X.; Zhong, J.; Shen, M.; Lu, F.; Xu, Z.; Karp, C.L.; Wang, J. Age-Related Changes in the Anterior Segment Biometry during Accommodation. Invest. Ophthalmol. Vis. Sci. 2015, 56, 3522–3530. [Google Scholar] [CrossRef]
- Richdale, K.; Bullimore, M.A.; Sinnott, L.T.; Zadnik, K. The Effect of Age, Accommodation, and Refractive Error on the Adult Human Eye. Optom. Vis. Sci. 2016, 93, 3–11. [Google Scholar] [CrossRef]
- Waring, G.O.; Chang, D.H.; Rocha, K.M.; Gouvea, L.; Penatti, R. Correlation of Intraoperative Optical Coherence Tomography of Crystalline Lens Diameter, Thickness, and Volume with Biometry and Age. Am. J. Ophthalmol. 2021, 225, 147–156. [Google Scholar] [CrossRef]
- Neri, A.; Ruggeri, M.; Protti, A.; Leaci, R.; Gandolfi, S.A.; Macaluso, C. Dynamic Imaging of Accommodation by Swept-Source Anterior Segment Optical Coherence Tomography. J. Cataract. Refract. Surg. 2015, 41, 501–510. [Google Scholar] [CrossRef]
- Faria-Correia, F.; Ramos, I.; Lopes, B.; Monteiro, T.; Franqueira, N.; Ambrósio, R. Comparison of Dysfunctional Lens Index and Scheimpflug Lens Densitometry in the Evaluation of Age-Related Nuclear Cataracts. J. Refract. Surg. 2016, 32, 244–248. [Google Scholar] [CrossRef] [PubMed]
- Pan, A.-P.; Wang, Q.-M.; Huang, F.; Huang, J.-H.; Bao, F.-J.; Yu, A.-Y. Correlation among Lens Opacities Classification System III Grading, Visual Function Index-14, Pentacam Nucleus Staging, and Objective Scatter Index for Cataract Assessment. Am. J. Ophthalmol. 2015, 159, 241–247.e2. [Google Scholar] [CrossRef] [PubMed]
- Cabot, F.; Saad, A.; McAlinden, C.; Haddad, N.M.; Grise-Dulac, A.; Gatinel, D. Objective Assessment of Crystalline Lens Opacity Level by Measuring Ocular Light Scattering with a Double-Pass System. Am. J. Ophthalmol. 2013, 155, 629–635.e2. [Google Scholar] [CrossRef] [PubMed]
- Grewal, D.S.; Brar, G.S.; Grewal, S.P.S. Correlation of Nuclear Cataract Lens Density Using Scheimpflug Images with Lens Opacities Classification System III and Visual Function. Ophthalmology 2009, 116, 1436–1443. [Google Scholar] [CrossRef]
- Kim, J.-S.; Chung, S.-H.; Joo, C.-K. Clinical Application of a Scheimpflug System for Lens Density Measurements in Phacoemulsification. J. Cataract. Refract. Surg. 2009, 35, 1204–1209. [Google Scholar] [CrossRef]
- Gupta, M.; Ram, J.; Jain, A.; Sukhija, J.; Chaudhary, M. Correlation of Nuclear Density Using the Lens Opacity Classification System III versus Scheimpflug Imaging with Phacoemulsification Parameters. J. Cataract. Refract. Surg. 2013, 39, 1818–1823. [Google Scholar] [CrossRef]
- Pei, X.; Bao, Y.; Chen, Y.; Li, X. Correlation of Lens Density Measured Using the Pentacam Scheimpflug System with the Lens Opacities Classification System III Grading Score and Visual Acuity in Age-Related Nuclear Cataract. Br. J. Ophthalmol. 2008, 92, 1471–1475. [Google Scholar] [CrossRef]
- Faria-Correia, F.; Ramos, I.; Lopes, B.; Monteiro, T.; Franqueira, N.; Ambrósio, R. Correlations of Objective Metrics for Quantifying Dysfunctional Lens Syndrome with Visual Acuity and Phacodynamics. J. Refract. Surg. 2017, 33, 79–83. [Google Scholar] [CrossRef]
- Artal, P.; Benito, A.; Pérez, G.M.; Alcón, E.; De Casas, A.; Pujol, J.; Marín, J.M. An Objective Scatter Index Based on Double-Pass Retinal Images of a Point Source to Classify Cataracts. PLoS ONE 2011, 6, e16823. [Google Scholar] [CrossRef]
- Nixon, D.R. Preoperative Cataract Grading by Scheimpflug Imaging and Effect on Operative Fluidics and Phacoemulsification Energy. J. Cataract. Refract. Surg. 2010, 36, 242–246. [Google Scholar] [CrossRef]
- Mackenbrock, L.H.B.; Łabuz, G.; Yildirim, T.M.; Auffarth, G.U.; Khoramnia, R. Automatic Quantitative Assessment of Lens Opacities Using Two Anterior Segment Imaging Techniques: Correlation with Functional and Surgical Metrics. Diagnostics 2022, 12, 2406. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.N.; Park, J.H.; Tchah, H. Quantitative Analysis of Lens Nuclear Density Using Optical Coherence Tomography (OCT) with a Liquid Optics Interface: Correlation between OCT Images and LOCS III Grading. J. Ophthalmol. 2016, 2016, 3025413. [Google Scholar] [CrossRef] [PubMed]
- Makhotkina, N.Y.; Berendschot, T.T.J.M.; van den Biggelaar, F.J.H.M.; Weik, A.R.H.; Nuijts, R.M.M.A. Comparability of Subjective and Objective Measurements of Nuclear Density in Cataract Patients. Acta Ophthalmol. 2018, 96, 356–363. [Google Scholar] [CrossRef]
- Wong, A.L.; Leung, C.K.-S.; Weinreb, R.N.; Cheng, A.K.C.; Cheung, C.Y.L.; Lam, P.T.-H.; Pang, C.P.; Lam, D.S.C. Quantitative Assessment of Lens Opacities with Anterior Segment Optical Coherence Tomography. Br. J. Ophthalmol. 2009, 93, 61–65. [Google Scholar] [CrossRef]
- Chen, D.; Li, Z.; Huang, J.; Yu, L.; Liu, S.; Zhao, Y.-E. Lens Nuclear Opacity Quantitation with Long-Range Swept-Source Optical Coherence Tomography: Correlation to LOCS III and a Scheimpflug Imaging-Based Grading System. Br. J. Ophthalmol. 2019, 103, 1048–1053. [Google Scholar] [CrossRef]
- Wu, X.; Chen, L.; Li, Z.; Zhao, Y.-E. Correlation Between Lens Density Measured by Swept-Source Optical Coherence Tomography and Phacodynamic Parameters of Centurion Phacoemulsification. Curr. Eye Res. 2023, 48, 651–659. [Google Scholar] [CrossRef]
- Panthier, C.; de Wazieres, A.; Rouger, H.; Moran, S.; Saad, A.; Gatinel, D. Average Lens Density Quantification with Swept-Source Optical Coherence Tomography: Optimized, Automated Cataract Grading Technique. J. Cataract. Refract. Surg. 2019, 45, 1746–1752. [Google Scholar] [CrossRef]
- Brás, J.E.G.; Sickenberger, W.; Hirnschall, N.; Findl, O. Cataract Quantification Using Swept-Source Optical Coherence Tomography. J. Cataract. Refract. Surg. 2018, 44, 1478–1481. [Google Scholar] [CrossRef]
- de Castro, A.; Benito, A.; Manzanera, S.; Mompeán, J.; Cañizares, B.; Martínez, D.; Marín, J.M.; Grulkowski, I.; Artal, P. Three-Dimensional Cataract Crystalline Lens Imaging with Swept-Source Optical Coherence Tomography. Invest. Ophthalmol. Vis. Sci. 2018, 59, 897–903. [Google Scholar] [CrossRef]
- Kling, S.; Frigelli, M.; Aydemir, M.E.; Tahsini, V.; Torres-Netto, E.A.; Kollros, L.; Hafezi, F. Optical Coherence Tomography Quantifies Gradient Refractive Index and Mechanical Stiffness Gradient across the Human Lens. Commun. Med. 2024, 4, 162. [Google Scholar] [CrossRef]
- Heyworth, P.; Thompson, G.M.; Tabandeh, H.; McGuigan, S. The Relationship between Clinical Classification of Cataract and Lens Hardness. Eye 1993, 7 Pt 6, 726–730. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Niu, K.; Xiong, Y.; Yang, W.; He, Z.; Song, H. Automatic Cataract Grading Methods Based on Deep Learning. Comput. Methods Programs Biomed. 2019, 182, 104978. [Google Scholar] [CrossRef] [PubMed]
- Keenan, T.D.L.; Chen, Q.; Agrón, E.; Tham, Y.-C.; Goh, J.H.L.; Lei, X.; Ng, Y.P.; Liu, Y.; Xu, X.; Cheng, C.-Y.; et al. DeepLensNet: Deep Learning Automated Diagnosis and Quantitative Classification of Cataract Type and Severity. Ophthalmology 2022, 129, 571–584. [Google Scholar] [CrossRef] [PubMed]
- Zéboulon, P.; Panthier, C.; Rouger, H.; Bijon, J.; Ghazal, W.; Gatinel, D. Development and Validation of a Pixel Wise Deep Learning Model to Detect Cataract on Swept-Source Optical Coherence Tomography Images. J. Optom. 2022, 15, S43–S49. [Google Scholar] [CrossRef]
- Zhang, X.; Xiao, Z.; Higashita, R.; Hu, Y.; Chen, W.; Yuan, J.; Liu, J. Adaptive Feature Squeeze Network for Nuclear Cataract Classification in AS-OCT Image. J. Biomed. Inform. 2022, 128, 104037. [Google Scholar] [CrossRef]
- Xiao, Z.; Zhang, X.; Zheng, B.; Guo, Y.; Higashita, R.; Liu, J. Multi-Style Spatial Attention Module for Cortical Cataract Classification in AS-OCT Image with Supervised Contrastive Learning. Comput. Methods Programs Biomed. 2024, 244, 107958. [Google Scholar] [CrossRef]
- Odden, J.L.; Davis, A.A.; Shazly, T.A.; Nischal, K.K. Use of Integrated Intraoperative Ocular Coherence Tomography in Pediatric Cataract Surgery: Thinking Outside the Box. Dev. Ophthalmol. 2021, 61, 46–52. [Google Scholar] [CrossRef]
- Tassignon, M.-J.; Van Os, L. Current Knowledge about the Anterior Interface in Children Operated for Congenital Cataract. Dev. Ophthalmol. 2021, 61, 8–14. [Google Scholar] [CrossRef]
- Chen, W.; Lin, Z.; Zhu, Q.; Lin, D.; Chen, H.; Wang, J.; Chen, J.; Wang, Q.; Wu, X.; Lin, Z.; et al. Intraoperative OCT for the Assessment of Posterior Capsular Integrity in Pediatric Cataract Surgery. J. Cataract. Refract. Surg. 2022, 48, 261–266. [Google Scholar] [CrossRef]
- Pujari, A.; Sharma, N.; Bafna, R.K.; Agarwal, D. Study 3: Assessment of Events during Surgery on Posterior Polar Cataracts Using Intraoperative Optical Coherence Tomography. Indian. J. Ophthalmol. 2021, 69, 594–597. [Google Scholar] [CrossRef]
- Titiyal, J.S.; Kaur, M.; Shaikh, F.; Goel, S.; Bageshwar, L.M.S. Real-Time Intraoperative Dynamics of White Cataract-Intraoperative Optical Coherence Tomography-Guided Classification and Management. J. Cataract. Refract. Surg. 2020, 46, 598–605. [Google Scholar] [CrossRef] [PubMed]
- Soleimani, M.; Cheraqpour, K.; Salari, F.; Fadakar, K.; Habeel, S.; Baharnoori, S.M.; Banz, S.; Tabatabaei, S.A.; Woreta, F.A.; Djalilian, A.R. All about Traumatic Cataracts: Narrative Review. J. Cataract. Refract. Surg. 2024, 50, 760–766. [Google Scholar] [CrossRef] [PubMed]
- Tabatabaei, A.; Hasanlou, N.; Kheirkhah, A.; Mansouri, M.; Faghihi, H.; Jafari, H.; Arefzadeh, A.; Moghimi, S. Accuracy of 3 Imaging Modalities for Evaluation of the Posterior Lens Capsule in Traumatic Cataract. J. Cataract. Refract. Surg. 2014, 40, 1092–1096. [Google Scholar] [CrossRef]
- Koshiishi, Y.; Nagata, M.; Matsushima, H.; Ito, S.; Suzuki, S.; Matsumoto, H.; Okayasu, A.; Senoo, T. Unilateral Lifebuoy Cataract: A Case Report. Medicine 2024, 103, e39359. [Google Scholar] [CrossRef]
- Fernández-Vigo, J.I.; de-Pablo Gómez de Liaño, L.; Sánchez-Guillen, I.; Macarro-Merino, A.; Fernández-Vigo, C.; García-Feijóo, J.; Fernández-Vigo, J.A. Pseudoexfoliation Signs in the Anterior Segment Assessed by Optical Coherence Tomography and Scheimpflug Device. Arch. Soc. Esp. Oftalmol. 2017, 93, 53–59. [Google Scholar] [CrossRef]
- Kaur, K.; Gurnani, B. Lens Abscess. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar] [PubMed]
- Clemens, C.R.; Alten, F.; Eter, N.; Helbig, H.; Märker, D.A. Lens Injury as a Complication of Intravitreal Medication Injection. Die Ophthalmol. 2024, 121, 385–390. [Google Scholar] [CrossRef]
- Sargazi, M.; Dehghani, S.; Dahmardeh, M.; Mohammadi, S.O. Ocular Manifestations of Alport Syndrome: Report and Comparison of Two Cases. Cureus 2023, 15, e47373. [Google Scholar] [CrossRef]
- Fernández-Vigo, J.I.; Serrano González-Peramato, M.T.; Nunila Gómez-de-Liaño, C.; Sánchez-Guillén, I.; Fernández-Vigo, J.Á.; Macarro-Merino, A. Glistening on Intraocular Lenses: A Review. Arch. Soc. Esp. Oftalmol. 2023, 98, 493–506. [Google Scholar] [CrossRef]
- Fernández-Vigo, J.I.; Burgos-Blasco, B.; De-Pablo-Gómez-de-Liaño, L.; Sánchez-Guillén, I.; Albitre-Barca, V.; Fernández-Aragón, S.; Fernández-Vigo, J.Á.; Macarro-Merino, A. Objective Classification of Glistening in Implanted Intraocular Lenses Using Optical Coherence Tomography: Proposal for a New Classification and Grading System. J. Clin. Med. 2023, 12, 2351. [Google Scholar] [CrossRef]
- Fernández-Vigo, J.I.; Macarro-Merino, A.; De Moura-Ramos, J.J.; Alvarez-Rodriguez, L.; Burgos-Blasco, B.; Novo-Bujan, J.; Ortega-Hortas, M.; Fernández-Vigo, J.Á. Comparative Study of the Glistening between Four Intraocular Lens Models Assessed by OCT and Deep Learning. J. Cataract. Refract. Surg. 2024, 50, 37–42. [Google Scholar] [CrossRef]
- Yildirim, T.M.; Łabuz, G.; Hammer, M.; Son, H.-S.; Schickhardt, S.K.; Auffarth, G.U.; Khoramnia, R. A Novel Approach for Assessing Visual Impairment Caused by Intraocular Lens Opacification: High-Resolution Optical Coherence Tomography. Am. J. Ophthalmol. 2021, 226, 108–116. [Google Scholar] [CrossRef] [PubMed]
- Kanclerz, P.; Wang, X. Postoperative Capsular Bag Distension Syndrome–Risk Factors and Treatment. Semin. Ophthalmol. 2019, 34, 409–419. [Google Scholar] [CrossRef] [PubMed]
- Kanclerz, P.; Yildirim, T.M.; Khoramnia, R. A Review of Late Intraocular Lens Opacifications. Curr. Opin. Ophthalmol. 2021, 32, 31–44. [Google Scholar] [CrossRef]
- Lucisano, A.; Ferrise, M.; Balestrieri, M.; Busin, M.; Scorcia, V. Evaluation of Postoperative Toric Intraocular Lens Alignment with Anterior Segment Optical Coherence Tomography. J. Cataract. Refract. Surg. 2017, 43, 1007–1009. [Google Scholar] [CrossRef]
- Waser, K.; Honeder, A.; Hirnschall, N.; Khalil, H.; Pomberger, L.; Laubichler, P.; Mariacher, S.; Bolz, M. Predicting Intraocular Lens Tilt Using a Machine Learning Concept. J. Cataract. Refract. Surg. 2024, 50, 805–809. [Google Scholar] [CrossRef]
- Langenbucher, A.; Szentmáry, N.; Cayless, A.; Wendelstein, J.; Hoffmann, P. Prediction of IOL Decentration, Tilt and Axial Position Using Anterior Segment OCT Data. Graefes Arch. Clin. Exp. Ophthalmol. 2024, 262, 835–846. [Google Scholar] [CrossRef]
- Gouvea, L.; Haddad, J.S.; Kapeles, M.; Waring, G.O.; Jammal, A.A.; Chamon, W.; Rocha, K.M. Spectral-Domain OCT Lens Meridian Position as a Metric to Estimate Postoperative Anatomical Lens Position. J. Refract. Surg. 2023, 39, 165–170. [Google Scholar] [CrossRef]
- João, M.D.; Costa, J.V.; Monteiro, T.; Franqueira, N.; Faria Correia, F.; Vaz, F. Intraocular Lens Position and Anterior Chamber Parameters Evaluation After Nd:YAG Laser Posterior Capsulotomy for Posterior Capsular Opacification Using Anterior Segment Swept-Source Optical Coherence Tomography. Clin. Ophthalmol. 2022, 16, 153–159. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, S.; Zhong, Y.; Bian, A.; Zhang, Y.; Wang, Z. Prediction of Effective Lens Position Using Anterior Segment Optical Coherence Tomography in Chinese Subjects with Angle Closure. BMC Ophthalmol. 2021, 21, 454. [Google Scholar] [CrossRef]
- Yoo, Y.-S.; Whang, W.-J.; Kim, H.-S.; Joo, C.-K.; Yoon, G. New IOL Formula Using Anterior Segment Three-Dimensional Optical Coherence Tomography. PLoS ONE 2020, 15, e0236137. [Google Scholar] [CrossRef]
- Ding, X.; Wang, Q.; Xiang, L.; Chang, P.; Huang, S.; Zhao, Y.-E. Three-Dimensional Assessments of Intraocular Lens Stability with High-Speed Swept-Source Optical Coherence Tomography. J. Refract. Surg. 2020, 36, 388–394. [Google Scholar] [CrossRef] [PubMed]
- Masket, S.; Fram, N.R. Pseudophakic Dysphotopsia: Review of Incidence, Cause, and Treatment of Positive and Negative Dysphotopsia. Ophthalmology 2021, 128, e195–e205. [Google Scholar] [CrossRef] [PubMed]
- Vámosi, P.; Csákány, B.; Németh, J. Intraocular Lens Exchange in Patients with Negative Dysphotopsia Symptoms. J. Cataract. Refract. Surg. 2010, 36, 418–424. [Google Scholar] [CrossRef] [PubMed]
Crystalline Lens Evaluation by OCT |
Morphology, positioning, and size of the lens |
Changes with age and accommodation |
Assessment of the degree of cataract: degree of reflectivity and density of the different components of the lens (cortical, nuclear, subcapsular, polar, etc.) |
Assessment of complex cataracts: white or intumescent cataract, brunescent or hypermature cataract, traumatic cataract |
Assessment of the cataract hardness (since it correlates with surgical time and energy) |
Detecting the presence of pseudoexfoliative material |
Assessment in other clinical situations: integrity of the posterior capsule after intravitreal injections, anterior and posterior lenticonus, lens abscess, etc. |
Pseudophakic IOL Evaluation by OCT |
Shape, positioning (centering), and tilting of IOLs |
Relationship of the IOL to the anterior and posterior capsule, anterior hyaloid, and iris |
Presence of posterior capsular opacity, mass remnants, capsular block syndrome, or late capsular distension syndrome |
Presence of glistening or IOL opacities |
ELP assessment |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernández-Vigo, J.I.; De-Pablo-Gómez-de-Liaño, L.; Almorín-Fernández-Vigo, I.; De-Pablo-Gómez-de-Liaño, B.; Macarro-Merino, A.; García-Feijóo, J.; Fernández-Vigo, J.Á. The Clinical Usefulness of Evaluating the Lens and Intraocular Lenses Using Optical Coherence Tomography: An Updated Literature Review. J. Clin. Med. 2024, 13, 7070. https://doi.org/10.3390/jcm13237070
Fernández-Vigo JI, De-Pablo-Gómez-de-Liaño L, Almorín-Fernández-Vigo I, De-Pablo-Gómez-de-Liaño B, Macarro-Merino A, García-Feijóo J, Fernández-Vigo JÁ. The Clinical Usefulness of Evaluating the Lens and Intraocular Lenses Using Optical Coherence Tomography: An Updated Literature Review. Journal of Clinical Medicine. 2024; 13(23):7070. https://doi.org/10.3390/jcm13237070
Chicago/Turabian StyleFernández-Vigo, José Ignacio, Lucía De-Pablo-Gómez-de-Liaño, Ignacio Almorín-Fernández-Vigo, Beatriz De-Pablo-Gómez-de-Liaño, Ana Macarro-Merino, Julián García-Feijóo, and José Ángel Fernández-Vigo. 2024. "The Clinical Usefulness of Evaluating the Lens and Intraocular Lenses Using Optical Coherence Tomography: An Updated Literature Review" Journal of Clinical Medicine 13, no. 23: 7070. https://doi.org/10.3390/jcm13237070
APA StyleFernández-Vigo, J. I., De-Pablo-Gómez-de-Liaño, L., Almorín-Fernández-Vigo, I., De-Pablo-Gómez-de-Liaño, B., Macarro-Merino, A., García-Feijóo, J., & Fernández-Vigo, J. Á. (2024). The Clinical Usefulness of Evaluating the Lens and Intraocular Lenses Using Optical Coherence Tomography: An Updated Literature Review. Journal of Clinical Medicine, 13(23), 7070. https://doi.org/10.3390/jcm13237070