Metabolic Outcomes in Pediatric Patients One-Year Post-Total Pancreatectomy with Islet Autotransplantation after Early Pump Initiation
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chinnakotla, S.; Bellin, M.D.; Schwarzenberg, S.J.; Radosevich, D.M.; Cook, M.; Dunn, T.B.; Beilman, G.J.; Freeman, M.L.; Balamurugan, A.N.; Wilhelm, J.; et al. Total Pancreatectomy and Islet Autotransplantation in Children for Chronic Pancreatitis: Indication, surgical techniques, postoperative management, and long-term outcomes. Ann. Surg. 2014, 260, 56–64. [Google Scholar] [CrossRef]
- Bondoc, A.J.; Abu-El-Haija, M.; Nathan, J.D. Pediatric pancreas transplantation, including total pancreatectomy with islet autotransplantation. Semin. Pediatr. Surg. 2017, 26, 250–256. [Google Scholar] [CrossRef]
- Bellin, M.D.; Sutherland, D.E.R. Pediatric Islet Autotransplantation: Indication, Technique, and Outcome. Curr. Diabetes Rep. 2010, 10, 326–331. [Google Scholar] [CrossRef]
- Swauger, S.E.; Hornung, L.N.; Elder, D.A.; Balamurugan, A.N.; Vitale, D.S.; Lin, T.K.; Nathan, J.D.; Abu-El-Haija, M. Predictors of Glycemic Outcomes at 1 Year Following Pediatric Total Pancreatectomy with Islet Autotransplantation. Diabetes Care 2022, 45, 295–302. [Google Scholar] [CrossRef]
- Forlenza, G.P.; Chinnakotla, S.; Schwarzenberg, S.J.; Cook, M.; Radosevich, D.M.; Manchester, C.; Gupta, S.; Nathan, B.; Bellin, M.D. Near-Euglycemia Can Be Achieved Safely in Pediatric Total Pancreatectomy Islet Autotransplant Recipients Using an Adapted Intravenous Insulin Infusion Protocol. Diabetes Technol. Ther. 2014, 16, 706–713. [Google Scholar] [CrossRef]
- Tellez, S.E.; Hornung, L.N.; Courter, J.D.; Abu-El-Haija, M.; Nathan, J.D.; Lawson, S.A.; Elder, D.A. Improved Glycemic Outcomes with Early Initiation of Insulin Pump Therapy in Pediatric Postoperative Total Pancreatectomy with Islet Autotransplantation. J. Clin. Med. 2021, 10, 2242. [Google Scholar] [CrossRef]
- Balamurugan, A.N.; Elder, D.A.; Abu-El-Haija, M.; Nathan, J.D. Islet cell transplantation in children. Semin. Pediatr. Surg. 2020, 29, 150925. [Google Scholar] [CrossRef]
- Landstra, C.P.; Andres, A.; Chetboun, M.; Conte, C.; Kelly, Y.; Berney, T.; de Koning, E.J.P.; Piemonti, L.; Stock, P.G.; Pattou, F.; et al. Examination of the Igls Criteria for Defining Functional Outcomes of β-cell Replacement Therapy: IPITA Symposium Report. J. Clin. Endocrinol. Metab. 2021, 106, 3049–3059. [Google Scholar] [CrossRef]
- Forbes, S.; Oram, R.; Smith, A.; Lam, A.; Olateju, T.; Imes, S.; Malcolm, A.; Shapiro, A.; Senior, P. Validation of the BETA-2 Score: An Improved Tool to Estimate Beta Cell Function After Clinical Islet Transplantation Using a Single Fasting Blood Sample. Am. J. Transplant. 2016, 16, 2704–2713. [Google Scholar] [CrossRef]
- Gołębiewska, J.E.; Bachul, P.J.; Fillman, N.; Basto, L.; Kijek, M.R.; Gołąb, K.; Wang, L.-J.; Tibudan, M.; Thomas, C.; Dębska-Ślizień, A.; et al. Assessment of simple indices based on a single fasting blood sample as a tool to estimate beta-cell function after total pancreatectomy with islet autotransplantation—A prospective study. Transpl. Int. 2018, 32, 280–290. [Google Scholar] [CrossRef]
- Yeckel, C.W.; Weiss, R.; Dziura, J.; Taksali, S.E.; Dufour, S.; Burgert, T.S.; Tamborlane, W.V.; Caprio, S. Validation of Insulin Sensitivity Indices from Oral Glucose Tolerance Test Parameters in Obese Children and Adolescents. J. Clin. Endocrinol. Metab. 2004, 89, 1096–1101. [Google Scholar] [CrossRef] [PubMed]
- Palmer, J.P.; Fleming, G.A.; Greenbaum, C.J.; Herold, K.C.; Jansa, L.D.; Kolb, H.; Lachin, J.M.; Polonsky, K.S.; Pozzilli, P.; Skyler, J.S.; et al. C-Peptide Is the Appropriate Outcome Measure for Type 1 Diabetes Clinical Trials to Preserve β-Cell Function. Diabetes 2004, 53, 250–264. [Google Scholar] [CrossRef] [PubMed]
- Meier, J.J.; Menge, B.A.; Breuer, T.G.; Müller, C.A.; Tannapfel, A.; Uhl, W.; Schmidt, W.E.; Schrader, H. Functional Assessment of Pancreatic β-Cell Area in Humans. Diabetes 2009, 58, 1595–1603. [Google Scholar] [CrossRef] [PubMed]
- Segev, N.; Hornung, L.N.; Tellez, S.E.; Courter, J.D.; Lawson, S.A.; Nathan, J.D.; Abu-El-Haija, M.; Elder, D.A. Continuous Glucose Monitoring in the Intensive Care Unit Following Total Pancreatectomy with Islet Autotransplantation in Children: Establishing Accuracy of the Dexcom G6 Model. J. Clin. Med. 2021, 10, 1893. [Google Scholar] [CrossRef] [PubMed]
- Tellez, S.E.; Hornung, L.N.; Courter, J.D.; Abu-El-Haija, M.; Nathan, J.D.; Lawson, S.A.; Elder, D.A. Inaccurate Glucose Sensor Values After Hydroxyurea Administration. Diabetes Technol. Ther. 2020, 23, 443–451. [Google Scholar] [CrossRef]
- Elder, D.A.; Jiminez-Vega, J.M.; Hornung, L.N.; Chima, R.S.; Abu-El-Haija, M.; Lin, T.K.; Palermo, J.J.; Nathan, J.D. Continuous glucose monitoring following pancreatectomy with islet autotransplantation in children. Pediatr. Transplant. 2017, 21, e12998. [Google Scholar] [CrossRef]
- Bellin, M.D.; Beilman, G.J.; Sutherland, D.E.; Ali, H.; Petersen, A.; Mongin, S.; Kirchner, V.; Schwarzenberg, S.J.; Trikudanathan, G.; Freeman, M.L.; et al. How Durable Is Total Pancreatectomy and Intraportal Islet Cell Transplantation for Treatment of Chronic Pancreatitis? J. Am. Coll. Surg. 2019, 228, 329–339. [Google Scholar] [CrossRef]
- Wilson, G.C.M.; Turner, K.M.; Delman, A.M.; Wahab, S.; Ofosu, A.; Smith, M.T.; Choe, K.A.; Patel, S.H.M.F.; Ahmad, S.A.M. Long-Term Survival Outcomes after Operative Management of Chronic Pancreatitis: Two Decades of Experience. J. Am. Coll. Surg. 2023, 236, 601–610. [Google Scholar] [CrossRef]
- ElSayed, N.A.; Aleppo, G.; Aroda, V.R.; Bannuru, R.R.; Brown, F.M.; Bruemmer, D.; Collins, B.S.; Hilliard, M.E.; Isaacs, D.; Johnson, E.L.; et al. 7. Diabetes Technology: Standards of Care in Diabetes—2023. Diabetes Care 2022, 46, S111–S127. [Google Scholar] [CrossRef]
- Šoupal, J.; Petruželková, L.; Grunberger, G.; Hásková, A.; Flekač, M.; Matoulek, M.; Mikeš, O.; Pelcl, T.; Škrha, J.; Horová, E.; et al. Glycemic Outcomes in Adults with T1D Are Impacted More by Continuous Glucose Monitoring Than by Insulin Delivery Method: 3 Years of Follow-Up from the COMISAIR Study. Diabetes Care 2019, 43, 37–43. [Google Scholar] [CrossRef]
- Bergenstal, R.M.; Tamborlane, W.V.; Ahmann, A.; Buse, J.B.; Dailey, G.; Davis, S.N.; Joyce, C.; Peoples, T.; Perkins, B.A.; Welsh, J.B.; et al. Effectiveness of Sensor-Augmented Insulin-Pump Therapy in Type 1 Diabetes. N. Engl. J. Med. 2010, 363, 311–320. [Google Scholar] [CrossRef] [PubMed]
- Hermanides, J.; Norgaard, K.; Diem, P.; Wentholt, I.M.E.; Hoekstra, J.B.L.; Bruttomesso, D.; Mathieu, C.; Frid, A.; Dayan, C.M.; Fermon, C.; et al. Sensor-augmented pump therapy lowers HbA1c in suboptimally controlled Type 1 diabetes; a randomized controlled trial. Diabet. Med. 2011, 28, 1158–1167. [Google Scholar] [CrossRef] [PubMed]
- Tumminia, A.; Sciacca, L.; Frittitta, L.; Squatrito, S.; Vigneri, R.; Le Moli, R.; Tomaselli, L. Integrated insulin pump therapy with continuous glucose monitoring for improved adherence: Technology update. Patient Prefer. Adherence 2015, 9, 1263–1270. [Google Scholar] [CrossRef] [PubMed]
- Johnson, S.R.; Cooper, M.N.; Jones, T.W.; Davis, E.A. Long-term outcome of insulin pump therapy in children with type 1 diabetes assessed in a large population-based case–control study. Diabetologia 2013, 56, 2392–2400. [Google Scholar] [CrossRef] [PubMed]
- Brown, S.A.; Kovatchev, B.P.; Raghinaru, D.; Lum, J.W.; Buckingham, B.A.; Kudva, Y.C.; Laffel, L.M.; Levy, C.J.; Pinsker, J.E.; Wadwa, R.P.; et al. Six-Month Randomized, Multicenter Trial of Closed-Loop Control in Type 1 Diabetes. N. Engl. J. Med. 2019, 381, 1707–1717. [Google Scholar] [CrossRef] [PubMed]
- Tauschmann, M.; Thabit, H.; Bally, L.; Allen, J.M.; Hartnell, S.; Wilinska, M.E.; Ruan, Y.; Sibayan, J.; Kollman, C.; Cheng, P.; et al. Closed-loop insulin delivery in suboptimally controlled type 1 diabetes: A multicentre, 12-week randomised trial. Lancet 2018, 392, 1321–1329. [Google Scholar] [CrossRef]
- Isganaitis, E.; Raghinaru, D.; Ambler-Osborn, L.; Pinsker, J.E.; Buckingham, B.A.; Wadwa, R.P.; Ekhlaspour, L.; Kudva, Y.C.; Levy, C.J.; Forlenza, G.P.; et al. Closed-Loop Insulin Therapy Improves Glycemic Control in Adolescents and Young Adults: Outcomes from the International Diabetes Closed-Loop Trial. Diabetes Technol. Ther. 2021, 23, 342–349. [Google Scholar] [CrossRef]
MDI Users n = 15 | Pump Users n = 25 | p-Value | |
---|---|---|---|
ICU duration (days) | 10.0 (9.0–12.0) | 7.0 (7.0–8.0) | <0.0001 |
IV insulin treatment duration (days) | 9.0 (8.0–11.0) | 7.0 (7.0–8.0) | 0.001 |
SQ insulin duration (days) | 5.0 (4.0–9.0) | - |
All n = 40 | MDI Users n = 15 | Pump Users n = 25 | p-Value * | |
---|---|---|---|---|
TPIAT age (years) | 13.1 (8.4–15.9) | 12.4 (8.9–14.8) | 13.34 (7.4–16.5) | 0.48 |
Sex (female) | 27 (68%) | 10 (67%) | 17 (68%) | 1.00 |
Diagnosis | 1.00 | |||
ARP | 3 (7.5%) | 1 (7%) | 2 (8%) | |
CP | 37 (92.5%) | 14 (93%) | 23 (92%) | |
BMI percentile | 70.4 (44.3–93.2) | 84.0 (63.2–90.3) | 66.8 (42.3–93.4) | 0.45 |
IEQ/kg | 6328 (4298–8346) | 6485 (5659–8441) | 6211 (3462–7999) | 0.34 |
Genetic testing positive | 30 (75%) | 13 (87%) | 17 (68%) | 0.27 |
PRSS1 | 11/39 (28%) | 4/14 (31%) | 7/25 (27%) | |
SPINK1 | 10/38 (26%) | 4/14 (31%) | 6/24 (24%) | |
CFTR | 14/38 (37%) | 5/14 (38%) | 9/24 (36%) | |
CTRC | 0/33 (0%) | 0/11 (0%) | 0/22 (0%) | |
CPA1 | 2/21 (10%) | 1/5 (20%) | 1/16 (6%) | |
Islet Antibodies (+IAA) | 1/38 (3%) | 0/13 (0%) | 1 (4%) | 1.00 |
Sweat Chloride test (CF) | 0.58 | |||
Negative | 25/30 (83%) | 9/10 (90%) | 16/20 (80%) | |
Indeterminate (30–60) | 3/30 (10%) | 0/10 (0%) | 3/20 (15%) | |
Positive (>60) | 2/30 (7%) | 1/10 (10%) | 1/20 (5%) | |
Endocrine insufficiency (impaired fasting glucose/insulin resistance) | 4 (10%) | 2 (13%) | 2 (8%) | 0.62 |
MDI Users n = 15 | Pump Users n = 25 | p-Value | |
---|---|---|---|
HbA1c % | 5.2 (4.8–5.4) | 5.1 (4.9–5.4) | 0.89 |
Fasting glucose (mg/dL) | 89.0 (86.0–95.0) | 91.0 (84.0–93.0) | 0.75 |
Fasting C-peptide (ng/mL) | 1.3 (0.6–2.1) | 1.3 (0.8–2.0) | 0.87 |
Peak C-peptide (ng/mL) | 5.0 (1.9–7.6) | 4.1 (3.0–6.5) | 0.93 |
AUC C-peptide (ng/mL/min) | 303.0 (172.5–367.5) n = 13 | 268.5 (148.5–374.3) n = 20 | 1.00 |
AUC insulin (uIU/mL/min) | 2876 (2082–4916) n = 13 | 1688 (1160–4904) n = 21 | 0.52 |
Insulinogenic Index | 1.3 (0.5–3.2) n = 11 | 2.0 (0.9–3.7) n = 20 | 0.35 |
C-peptide Secretion Index | 0.09 (0.04–0.15) n = 11 | 0.12 (0.09–0.22) n = 20 | 0.14 |
BMI Percentile | 84.0 (63.2–90.3) | 66.8 (42.3–93.4) | 0.45 |
MDI Users n = 15 | Pump Users n = 25 | p-Value | |
---|---|---|---|
HbA1c % | 6.7 (5.9–7.8) | 6.2 (5.6–7.4) n = 22 | 0.40 |
Fasting glucose (mg/dL) | 122.0 (101.0–163.0) n = 14 | 97.0 (87.0–110.0) n = 21 | 0.003 |
Fasting C-peptide (ng/mL) | 0.8 (0.5–1.0) n = 14 | 0.7 (0.5–0.8) n = 21 | 0.71 |
Peak C-peptide (ng/mL) | 1.8 (1.2–2.2) n = 14 | 1.9 (1.6–2.4) n = 21 | 0.39 |
AUC C-peptide (ng/mL/min) | 50.3 (27.0–76.5) n = 12 | 57.0 (42.0–118.5) n = 21 | 0.14 |
AUC insulin (uIU/mL/min) | 1104 (476–1227) n = 11 | 1029 (611–1332) n = 19 | 0.67 |
Insulinogenic Index | 0.16 (0.04–0.58) n = 14 | 0.19 (0.05–0.42) n = 21 | 0.91 |
C-peptide Secretion Index | 0.01 (0.00–0.01) n = 14 | 0.01 (0.00–0.02) n = 21 | 0.72 |
BMI percentile | 71.1 (59.7–93.6) | 63.5 (24.3–77.8) n = 24 | 0.07 |
β-Cell Graft Functional Status | HbA1c % | Severe Hypoglycemia | Insulin Requirements | C-Peptide (ng/mL) | Treatment Success | MDI Users n = 15 | Pump Users n = 25 |
---|---|---|---|---|---|---|---|
Optimal | ≤ 6.5 | None | None | Detected (>0.5) | Yes | 2/14 (14%) | 10/21 (48%) |
Good | < 7.0 | None | Yes | Detected (>0.5) | Yes | 3/14 (21%) | 5/21 (24%) |
Marginal | ≥ 7.0 | None | Yes | Detected (>0.5) | No | 6/14 (43%) | 6/21 (29%) |
Failure | ≥ 7.0 | None | Yes | Undetected | No | 3/14 (21%) | 0/21 (0%) |
MDI Users n = 14 | Early Pump Users n = 21 | p-Value | |
---|---|---|---|
BETA-2 Score | 8.0 (5.1–11.5) | 13.7 (10.7–16.5) | 0.06 |
Insulin Requirement | All n = 40 | MDI Users n = 15 | Pump Users n = 25 | p-Value |
---|---|---|---|---|
Off | 12/37 (32%) | 2 (13%) | 10/22 (45%) | 0.07 * |
On | 25/37 (68%) | 13 (87%) | 12/22 (55%) | |
<0.5 TDD/kg | 19/37 (51%) | 9 (60%) | 10/22 (45%) | |
≥0.5 TDD/kg | 6/37 (16%) | 4 (27%) | 2/22 (9%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tellez, S.; Hornung, L.; Abu-El-Haija, M.; Elder, D. Metabolic Outcomes in Pediatric Patients One-Year Post-Total Pancreatectomy with Islet Autotransplantation after Early Pump Initiation. J. Clin. Med. 2023, 12, 3319. https://doi.org/10.3390/jcm12093319
Tellez S, Hornung L, Abu-El-Haija M, Elder D. Metabolic Outcomes in Pediatric Patients One-Year Post-Total Pancreatectomy with Islet Autotransplantation after Early Pump Initiation. Journal of Clinical Medicine. 2023; 12(9):3319. https://doi.org/10.3390/jcm12093319
Chicago/Turabian StyleTellez, Siobhan, Lindsey Hornung, Maisam Abu-El-Haija, and Deborah Elder. 2023. "Metabolic Outcomes in Pediatric Patients One-Year Post-Total Pancreatectomy with Islet Autotransplantation after Early Pump Initiation" Journal of Clinical Medicine 12, no. 9: 3319. https://doi.org/10.3390/jcm12093319
APA StyleTellez, S., Hornung, L., Abu-El-Haija, M., & Elder, D. (2023). Metabolic Outcomes in Pediatric Patients One-Year Post-Total Pancreatectomy with Islet Autotransplantation after Early Pump Initiation. Journal of Clinical Medicine, 12(9), 3319. https://doi.org/10.3390/jcm12093319