Metabolic Outcomes in Pediatric Patients One-Year Post-Total Pancreatectomy with Islet Autotransplantation after Early Pump Initiation
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chinnakotla, S.; Bellin, M.D.; Schwarzenberg, S.J.; Radosevich, D.M.; Cook, M.; Dunn, T.B.; Beilman, G.J.; Freeman, M.L.; Balamurugan, A.N.; Wilhelm, J.; et al. Total Pancreatectomy and Islet Autotransplantation in Children for Chronic Pancreatitis: Indication, surgical techniques, postoperative management, and long-term outcomes. Ann. Surg. 2014, 260, 56–64. [Google Scholar] [CrossRef]
- Bondoc, A.J.; Abu-El-Haija, M.; Nathan, J.D. Pediatric pancreas transplantation, including total pancreatectomy with islet autotransplantation. Semin. Pediatr. Surg. 2017, 26, 250–256. [Google Scholar] [CrossRef]
- Bellin, M.D.; Sutherland, D.E.R. Pediatric Islet Autotransplantation: Indication, Technique, and Outcome. Curr. Diabetes Rep. 2010, 10, 326–331. [Google Scholar] [CrossRef]
- Swauger, S.E.; Hornung, L.N.; Elder, D.A.; Balamurugan, A.N.; Vitale, D.S.; Lin, T.K.; Nathan, J.D.; Abu-El-Haija, M. Predictors of Glycemic Outcomes at 1 Year Following Pediatric Total Pancreatectomy with Islet Autotransplantation. Diabetes Care 2022, 45, 295–302. [Google Scholar] [CrossRef]
- Forlenza, G.P.; Chinnakotla, S.; Schwarzenberg, S.J.; Cook, M.; Radosevich, D.M.; Manchester, C.; Gupta, S.; Nathan, B.; Bellin, M.D. Near-Euglycemia Can Be Achieved Safely in Pediatric Total Pancreatectomy Islet Autotransplant Recipients Using an Adapted Intravenous Insulin Infusion Protocol. Diabetes Technol. Ther. 2014, 16, 706–713. [Google Scholar] [CrossRef]
- Tellez, S.E.; Hornung, L.N.; Courter, J.D.; Abu-El-Haija, M.; Nathan, J.D.; Lawson, S.A.; Elder, D.A. Improved Glycemic Outcomes with Early Initiation of Insulin Pump Therapy in Pediatric Postoperative Total Pancreatectomy with Islet Autotransplantation. J. Clin. Med. 2021, 10, 2242. [Google Scholar] [CrossRef]
- Balamurugan, A.N.; Elder, D.A.; Abu-El-Haija, M.; Nathan, J.D. Islet cell transplantation in children. Semin. Pediatr. Surg. 2020, 29, 150925. [Google Scholar] [CrossRef]
- Landstra, C.P.; Andres, A.; Chetboun, M.; Conte, C.; Kelly, Y.; Berney, T.; de Koning, E.J.P.; Piemonti, L.; Stock, P.G.; Pattou, F.; et al. Examination of the Igls Criteria for Defining Functional Outcomes of β-cell Replacement Therapy: IPITA Symposium Report. J. Clin. Endocrinol. Metab. 2021, 106, 3049–3059. [Google Scholar] [CrossRef]
- Forbes, S.; Oram, R.; Smith, A.; Lam, A.; Olateju, T.; Imes, S.; Malcolm, A.; Shapiro, A.; Senior, P. Validation of the BETA-2 Score: An Improved Tool to Estimate Beta Cell Function After Clinical Islet Transplantation Using a Single Fasting Blood Sample. Am. J. Transplant. 2016, 16, 2704–2713. [Google Scholar] [CrossRef]
- Gołębiewska, J.E.; Bachul, P.J.; Fillman, N.; Basto, L.; Kijek, M.R.; Gołąb, K.; Wang, L.-J.; Tibudan, M.; Thomas, C.; Dębska-Ślizień, A.; et al. Assessment of simple indices based on a single fasting blood sample as a tool to estimate beta-cell function after total pancreatectomy with islet autotransplantation—A prospective study. Transpl. Int. 2018, 32, 280–290. [Google Scholar] [CrossRef]
- Yeckel, C.W.; Weiss, R.; Dziura, J.; Taksali, S.E.; Dufour, S.; Burgert, T.S.; Tamborlane, W.V.; Caprio, S. Validation of Insulin Sensitivity Indices from Oral Glucose Tolerance Test Parameters in Obese Children and Adolescents. J. Clin. Endocrinol. Metab. 2004, 89, 1096–1101. [Google Scholar] [CrossRef] [PubMed]
- Palmer, J.P.; Fleming, G.A.; Greenbaum, C.J.; Herold, K.C.; Jansa, L.D.; Kolb, H.; Lachin, J.M.; Polonsky, K.S.; Pozzilli, P.; Skyler, J.S.; et al. C-Peptide Is the Appropriate Outcome Measure for Type 1 Diabetes Clinical Trials to Preserve β-Cell Function. Diabetes 2004, 53, 250–264. [Google Scholar] [CrossRef] [PubMed]
- Meier, J.J.; Menge, B.A.; Breuer, T.G.; Müller, C.A.; Tannapfel, A.; Uhl, W.; Schmidt, W.E.; Schrader, H. Functional Assessment of Pancreatic β-Cell Area in Humans. Diabetes 2009, 58, 1595–1603. [Google Scholar] [CrossRef] [PubMed]
- Segev, N.; Hornung, L.N.; Tellez, S.E.; Courter, J.D.; Lawson, S.A.; Nathan, J.D.; Abu-El-Haija, M.; Elder, D.A. Continuous Glucose Monitoring in the Intensive Care Unit Following Total Pancreatectomy with Islet Autotransplantation in Children: Establishing Accuracy of the Dexcom G6 Model. J. Clin. Med. 2021, 10, 1893. [Google Scholar] [CrossRef] [PubMed]
- Tellez, S.E.; Hornung, L.N.; Courter, J.D.; Abu-El-Haija, M.; Nathan, J.D.; Lawson, S.A.; Elder, D.A. Inaccurate Glucose Sensor Values After Hydroxyurea Administration. Diabetes Technol. Ther. 2020, 23, 443–451. [Google Scholar] [CrossRef]
- Elder, D.A.; Jiminez-Vega, J.M.; Hornung, L.N.; Chima, R.S.; Abu-El-Haija, M.; Lin, T.K.; Palermo, J.J.; Nathan, J.D. Continuous glucose monitoring following pancreatectomy with islet autotransplantation in children. Pediatr. Transplant. 2017, 21, e12998. [Google Scholar] [CrossRef]
- Bellin, M.D.; Beilman, G.J.; Sutherland, D.E.; Ali, H.; Petersen, A.; Mongin, S.; Kirchner, V.; Schwarzenberg, S.J.; Trikudanathan, G.; Freeman, M.L.; et al. How Durable Is Total Pancreatectomy and Intraportal Islet Cell Transplantation for Treatment of Chronic Pancreatitis? J. Am. Coll. Surg. 2019, 228, 329–339. [Google Scholar] [CrossRef]
- Wilson, G.C.M.; Turner, K.M.; Delman, A.M.; Wahab, S.; Ofosu, A.; Smith, M.T.; Choe, K.A.; Patel, S.H.M.F.; Ahmad, S.A.M. Long-Term Survival Outcomes after Operative Management of Chronic Pancreatitis: Two Decades of Experience. J. Am. Coll. Surg. 2023, 236, 601–610. [Google Scholar] [CrossRef]
- ElSayed, N.A.; Aleppo, G.; Aroda, V.R.; Bannuru, R.R.; Brown, F.M.; Bruemmer, D.; Collins, B.S.; Hilliard, M.E.; Isaacs, D.; Johnson, E.L.; et al. 7. Diabetes Technology: Standards of Care in Diabetes—2023. Diabetes Care 2022, 46, S111–S127. [Google Scholar] [CrossRef]
- Šoupal, J.; Petruželková, L.; Grunberger, G.; Hásková, A.; Flekač, M.; Matoulek, M.; Mikeš, O.; Pelcl, T.; Škrha, J.; Horová, E.; et al. Glycemic Outcomes in Adults with T1D Are Impacted More by Continuous Glucose Monitoring Than by Insulin Delivery Method: 3 Years of Follow-Up from the COMISAIR Study. Diabetes Care 2019, 43, 37–43. [Google Scholar] [CrossRef]
- Bergenstal, R.M.; Tamborlane, W.V.; Ahmann, A.; Buse, J.B.; Dailey, G.; Davis, S.N.; Joyce, C.; Peoples, T.; Perkins, B.A.; Welsh, J.B.; et al. Effectiveness of Sensor-Augmented Insulin-Pump Therapy in Type 1 Diabetes. N. Engl. J. Med. 2010, 363, 311–320. [Google Scholar] [CrossRef] [PubMed]
- Hermanides, J.; Norgaard, K.; Diem, P.; Wentholt, I.M.E.; Hoekstra, J.B.L.; Bruttomesso, D.; Mathieu, C.; Frid, A.; Dayan, C.M.; Fermon, C.; et al. Sensor-augmented pump therapy lowers HbA1c in suboptimally controlled Type 1 diabetes; a randomized controlled trial. Diabet. Med. 2011, 28, 1158–1167. [Google Scholar] [CrossRef] [PubMed]
- Tumminia, A.; Sciacca, L.; Frittitta, L.; Squatrito, S.; Vigneri, R.; Le Moli, R.; Tomaselli, L. Integrated insulin pump therapy with continuous glucose monitoring for improved adherence: Technology update. Patient Prefer. Adherence 2015, 9, 1263–1270. [Google Scholar] [CrossRef] [PubMed]
- Johnson, S.R.; Cooper, M.N.; Jones, T.W.; Davis, E.A. Long-term outcome of insulin pump therapy in children with type 1 diabetes assessed in a large population-based case–control study. Diabetologia 2013, 56, 2392–2400. [Google Scholar] [CrossRef] [PubMed]
- Brown, S.A.; Kovatchev, B.P.; Raghinaru, D.; Lum, J.W.; Buckingham, B.A.; Kudva, Y.C.; Laffel, L.M.; Levy, C.J.; Pinsker, J.E.; Wadwa, R.P.; et al. Six-Month Randomized, Multicenter Trial of Closed-Loop Control in Type 1 Diabetes. N. Engl. J. Med. 2019, 381, 1707–1717. [Google Scholar] [CrossRef] [PubMed]
- Tauschmann, M.; Thabit, H.; Bally, L.; Allen, J.M.; Hartnell, S.; Wilinska, M.E.; Ruan, Y.; Sibayan, J.; Kollman, C.; Cheng, P.; et al. Closed-loop insulin delivery in suboptimally controlled type 1 diabetes: A multicentre, 12-week randomised trial. Lancet 2018, 392, 1321–1329. [Google Scholar] [CrossRef]
- Isganaitis, E.; Raghinaru, D.; Ambler-Osborn, L.; Pinsker, J.E.; Buckingham, B.A.; Wadwa, R.P.; Ekhlaspour, L.; Kudva, Y.C.; Levy, C.J.; Forlenza, G.P.; et al. Closed-Loop Insulin Therapy Improves Glycemic Control in Adolescents and Young Adults: Outcomes from the International Diabetes Closed-Loop Trial. Diabetes Technol. Ther. 2021, 23, 342–349. [Google Scholar] [CrossRef]
MDI Users n = 15 | Pump Users n = 25 | p-Value | |
---|---|---|---|
ICU duration (days) | 10.0 (9.0–12.0) | 7.0 (7.0–8.0) | <0.0001 |
IV insulin treatment duration (days) | 9.0 (8.0–11.0) | 7.0 (7.0–8.0) | 0.001 |
SQ insulin duration (days) | 5.0 (4.0–9.0) | - |
All n = 40 | MDI Users n = 15 | Pump Users n = 25 | p-Value * | |
---|---|---|---|---|
TPIAT age (years) | 13.1 (8.4–15.9) | 12.4 (8.9–14.8) | 13.34 (7.4–16.5) | 0.48 |
Sex (female) | 27 (68%) | 10 (67%) | 17 (68%) | 1.00 |
Diagnosis | 1.00 | |||
ARP | 3 (7.5%) | 1 (7%) | 2 (8%) | |
CP | 37 (92.5%) | 14 (93%) | 23 (92%) | |
BMI percentile | 70.4 (44.3–93.2) | 84.0 (63.2–90.3) | 66.8 (42.3–93.4) | 0.45 |
IEQ/kg | 6328 (4298–8346) | 6485 (5659–8441) | 6211 (3462–7999) | 0.34 |
Genetic testing positive | 30 (75%) | 13 (87%) | 17 (68%) | 0.27 |
PRSS1 | 11/39 (28%) | 4/14 (31%) | 7/25 (27%) | |
SPINK1 | 10/38 (26%) | 4/14 (31%) | 6/24 (24%) | |
CFTR | 14/38 (37%) | 5/14 (38%) | 9/24 (36%) | |
CTRC | 0/33 (0%) | 0/11 (0%) | 0/22 (0%) | |
CPA1 | 2/21 (10%) | 1/5 (20%) | 1/16 (6%) | |
Islet Antibodies (+IAA) | 1/38 (3%) | 0/13 (0%) | 1 (4%) | 1.00 |
Sweat Chloride test (CF) | 0.58 | |||
Negative | 25/30 (83%) | 9/10 (90%) | 16/20 (80%) | |
Indeterminate (30–60) | 3/30 (10%) | 0/10 (0%) | 3/20 (15%) | |
Positive (>60) | 2/30 (7%) | 1/10 (10%) | 1/20 (5%) | |
Endocrine insufficiency (impaired fasting glucose/insulin resistance) | 4 (10%) | 2 (13%) | 2 (8%) | 0.62 |
MDI Users n = 15 | Pump Users n = 25 | p-Value | |
---|---|---|---|
HbA1c % | 5.2 (4.8–5.4) | 5.1 (4.9–5.4) | 0.89 |
Fasting glucose (mg/dL) | 89.0 (86.0–95.0) | 91.0 (84.0–93.0) | 0.75 |
Fasting C-peptide (ng/mL) | 1.3 (0.6–2.1) | 1.3 (0.8–2.0) | 0.87 |
Peak C-peptide (ng/mL) | 5.0 (1.9–7.6) | 4.1 (3.0–6.5) | 0.93 |
AUC C-peptide (ng/mL/min) | 303.0 (172.5–367.5) n = 13 | 268.5 (148.5–374.3) n = 20 | 1.00 |
AUC insulin (uIU/mL/min) | 2876 (2082–4916) n = 13 | 1688 (1160–4904) n = 21 | 0.52 |
Insulinogenic Index | 1.3 (0.5–3.2) n = 11 | 2.0 (0.9–3.7) n = 20 | 0.35 |
C-peptide Secretion Index | 0.09 (0.04–0.15) n = 11 | 0.12 (0.09–0.22) n = 20 | 0.14 |
BMI Percentile | 84.0 (63.2–90.3) | 66.8 (42.3–93.4) | 0.45 |
MDI Users n = 15 | Pump Users n = 25 | p-Value | |
---|---|---|---|
HbA1c % | 6.7 (5.9–7.8) | 6.2 (5.6–7.4) n = 22 | 0.40 |
Fasting glucose (mg/dL) | 122.0 (101.0–163.0) n = 14 | 97.0 (87.0–110.0) n = 21 | 0.003 |
Fasting C-peptide (ng/mL) | 0.8 (0.5–1.0) n = 14 | 0.7 (0.5–0.8) n = 21 | 0.71 |
Peak C-peptide (ng/mL) | 1.8 (1.2–2.2) n = 14 | 1.9 (1.6–2.4) n = 21 | 0.39 |
AUC C-peptide (ng/mL/min) | 50.3 (27.0–76.5) n = 12 | 57.0 (42.0–118.5) n = 21 | 0.14 |
AUC insulin (uIU/mL/min) | 1104 (476–1227) n = 11 | 1029 (611–1332) n = 19 | 0.67 |
Insulinogenic Index | 0.16 (0.04–0.58) n = 14 | 0.19 (0.05–0.42) n = 21 | 0.91 |
C-peptide Secretion Index | 0.01 (0.00–0.01) n = 14 | 0.01 (0.00–0.02) n = 21 | 0.72 |
BMI percentile | 71.1 (59.7–93.6) | 63.5 (24.3–77.8) n = 24 | 0.07 |
β-Cell Graft Functional Status | HbA1c % | Severe Hypoglycemia | Insulin Requirements | C-Peptide (ng/mL) | Treatment Success | MDI Users n = 15 | Pump Users n = 25 |
---|---|---|---|---|---|---|---|
Optimal | ≤ 6.5 | None | None | Detected (>0.5) | Yes | 2/14 (14%) | 10/21 (48%) |
Good | < 7.0 | None | Yes | Detected (>0.5) | Yes | 3/14 (21%) | 5/21 (24%) |
Marginal | ≥ 7.0 | None | Yes | Detected (>0.5) | No | 6/14 (43%) | 6/21 (29%) |
Failure | ≥ 7.0 | None | Yes | Undetected | No | 3/14 (21%) | 0/21 (0%) |
MDI Users n = 14 | Early Pump Users n = 21 | p-Value | |
---|---|---|---|
BETA-2 Score | 8.0 (5.1–11.5) | 13.7 (10.7–16.5) | 0.06 |
Insulin Requirement | All n = 40 | MDI Users n = 15 | Pump Users n = 25 | p-Value |
---|---|---|---|---|
Off | 12/37 (32%) | 2 (13%) | 10/22 (45%) | 0.07 * |
On | 25/37 (68%) | 13 (87%) | 12/22 (55%) | |
<0.5 TDD/kg | 19/37 (51%) | 9 (60%) | 10/22 (45%) | |
≥0.5 TDD/kg | 6/37 (16%) | 4 (27%) | 2/22 (9%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tellez, S.; Hornung, L.; Abu-El-Haija, M.; Elder, D. Metabolic Outcomes in Pediatric Patients One-Year Post-Total Pancreatectomy with Islet Autotransplantation after Early Pump Initiation. J. Clin. Med. 2023, 12, 3319. https://doi.org/10.3390/jcm12093319
Tellez S, Hornung L, Abu-El-Haija M, Elder D. Metabolic Outcomes in Pediatric Patients One-Year Post-Total Pancreatectomy with Islet Autotransplantation after Early Pump Initiation. Journal of Clinical Medicine. 2023; 12(9):3319. https://doi.org/10.3390/jcm12093319
Chicago/Turabian StyleTellez, Siobhan, Lindsey Hornung, Maisam Abu-El-Haija, and Deborah Elder. 2023. "Metabolic Outcomes in Pediatric Patients One-Year Post-Total Pancreatectomy with Islet Autotransplantation after Early Pump Initiation" Journal of Clinical Medicine 12, no. 9: 3319. https://doi.org/10.3390/jcm12093319
APA StyleTellez, S., Hornung, L., Abu-El-Haija, M., & Elder, D. (2023). Metabolic Outcomes in Pediatric Patients One-Year Post-Total Pancreatectomy with Islet Autotransplantation after Early Pump Initiation. Journal of Clinical Medicine, 12(9), 3319. https://doi.org/10.3390/jcm12093319