Hypertensive Heart Disease—The Imaging Perspective
Abstract
:1. Introduction
2. History and Examination
3. Investigations
4. Echocardiography
5. Cardiovascular Magnetic Resonance
6. CMR Strain
7. CMR Stress Perfusion
8. Tissue Characterisation with CMR
9. Tissue Characterisation with Late Gadolinium Enhancement
10. Tissue Characterisation with T1 and Extracellular Volume (ECV) Mapping
11. Phenocopies and Differential Diagnosis of Hypertensive Heart Disease
12. Cardiac Amyloid
13. Hypertrophic Cardiomyopathy
14. Fabry’s Disease
15. Danon Disease
16. Cardiac Sarcoidosis
17. Athlete’s Heart
18. Calcium Score and Computed Tomography Coronary Angiography in HHD
19. Nuclear Cardiology in HHD
20. Extracardiac Imaging for Identification of Secondary Hypertension and Sequelae of Long-Standing Hypertension
21. Limits and Caveats in Imaging
22. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CMR | Cardiovascular Magnetic Resonance |
GLS | Global Longitudinal Strain |
HFpEF | Heart Failure with preserved Ejection Fraction |
HFrEF | Heart Failure with reduced Ejection Fraction |
HHD | Hypertensive Heart Disease |
LA | Left Atrium/Atrial |
LAVI | Left Atrial Volume Index |
LGE | Late Gadolinium Enhancement |
LV | Left Ventricle/Ventricular |
LVDD | Left Ventricular Diastolic Dysfunction |
LVEF | Left Ventricular Ejection Fraction |
LVH | Left Ventricular Hypertrophy |
LVM | Left Ventricular Mass |
LVMI | Left Ventricular Mass Index |
TTE | Transthoracic Echocardiography |
References
- NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in hypertension prevalence and progress in treatment and control from 1990 to 2019: A pooled analysis of 1201 population-representative studies with 104 million participants. Lancet 2021, 398, 957–980. [Google Scholar] [CrossRef] [PubMed]
- Schumann, C.L.; Jaeger, N.R.; Kramer, C.M. Recent Advances in Imaging of Hypertensive Heart Disease. Curr. Hypertens. Rep. 2019, 21, 3. [Google Scholar] [CrossRef] [PubMed]
- Drazner, M.H. The progression of hypertensive heart disease. Circulation 2011, 123, 327–334. [Google Scholar] [CrossRef]
- Nadruz, W. Myocardial remodeling in hypertension. J. Hum. Hypertens. 2015, 29, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Messerli, F.H.; Rimoldi, S.F.; Bangalore, S. The Transition From Hypertension to Heart Failure: Contemporary Update. JACC Heart Fail. 2017, 5, 543–551. [Google Scholar] [CrossRef]
- Tadic, M.; Cuspidi, C.; Plein, S.; Milivojevic, I.G.; Wang, D.W.; Grassi, G.; Mancia, G. Comprehensive assessment of hypertensive heart disease: Cardiac magnetic resonance in focus. Heart Fail. Rev. 2021, 26, 1383–1390. [Google Scholar] [CrossRef]
- Mensah, G.A. Commentary: Hypertension Phenotypes: The Many Faces of a Silent Killer. Ethn. Dis. 2019, 29, 545–548. [Google Scholar] [CrossRef]
- Williams, B.; Mancia, G.; Spiering, W.; Agabiti Rosei, E.; Azizi, M.; Burnier, M.; Clement, D.; Coca, A.; De Simone, G.; Dominiczak, A.; et al. 2018 Practice Guidelines for the management of arterial hypertension of the European Society of Hypertension and the European Society of Cardiology: ESH/ESC Task Force for the Management of Arterial Hypertension. J. Hypertens. 2018, 36, 2284–2309. [Google Scholar] [CrossRef]
- Verdecchia, P.; Carini, G.; Circo, A.; Dovellini, E.; Giovannini, E.; Lombardo, M.; Solinas, P.; Gorini, M.; Maggioni, A.P. Left ventricular mass and cardiovascular morbidity in essential hypertension: The MAVI study. J. Am. Coll. Cardiol. 2001, 38, 1829–1835. [Google Scholar] [CrossRef]
- Kane, G.C.; Karon, B.L.; Mahoney, D.W.; Redfield, M.M.; Roger, V.L.; Burnett, J.C.; Jacobsen, S.J.; Rodeheffer, R.J. Progression of left ventricular diastolic dysfunction and risk of heart failure. JAMA 2011, 306, 856–863. [Google Scholar] [CrossRef]
- Saito, M.; Khan, F.; Stoklosa, T.; Iannaccone, A.; Negishi, K.; Marwick, T.H. Prognostic Implications of LV Strain Risk Score in Asymptomatic Patients with Hypertensive Heart Disease. JACC Cardiovasc. Imaging 2016, 9, 911–921. [Google Scholar] [CrossRef]
- Lang, R.M.; Badano, L.P.; Mor-Avi, V.; Afilalo, J.; Armstrong, A.; Ernande, L.; Flachskampf, F.A.; Foster, E.; Goldstein, S.A.; Kuznetsova, T.; et al. Recommendations for cardiac chamber quantification by echocardiography in adults: An update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur. Heart J. Cardiovasc. Imaging 2015, 16, 233–270. [Google Scholar] [CrossRef]
- Armstrong, A.C.; Gjesdal, O.; Almeida, A.; Nacif, M.; Wu, C.; Bluemke, D.A.; Brumback, L.; Lima, J.A.C. Left ventricular mass and hypertrophy by echocardiography and cardiac magnetic resonance: The multi-ethnic study of atherosclerosis. Echocardiogr. Mt. Kisco. N. 2014, 31, 12–20. [Google Scholar] [CrossRef]
- Takeuchi, M.; Nishikage, T.; Mor-Avi, V.; Sugeng, L.; Weinert, L.; Nakai, H.; Salgo, I.S.; Gerard, O.; Lang, R.M. Measurement of left ventricular mass by real-time three-dimensional echocardiography: Validation against magnetic resonance and comparison with two-dimensional and m-mode measurements. J. Am. Soc. Echocardiogr. Off Publ. Am. Soc. Echocardiogr. 2008, 21, 1001–1005. [Google Scholar] [CrossRef]
- Chirinos, J.A.; Segers, P.; De Buyzere, M.L.; Kronmal, R.A.; Raja, M.W.; De Bacquer, D.; Claessens, T.; Gillebert, T.C.; St John-Sutton, M.; Rietzschel, E.R.; et al. Left ventricular mass: Allometric scaling, normative values, effect of obesity, and prognostic performance. Hypertension 2010, 56, 91–98. [Google Scholar] [CrossRef]
- Tromp, J.; Bauer, D.; Claggett, B.L.; Frost, M.; Iversen, M.B.; Prasad, N.; Petrie, M.C.; Larson, M.G.; Ezekowitz, J.A.; Solomon, S.D.; et al. A formal validation of a deep learning-based automated workflow for the interpretation of the echocardiogram. Nat. Commun. 2022, 13, 6776. [Google Scholar] [CrossRef]
- Edwards, N.C.; Moody, W.E.; Yuan, M.; Weale, P.; Neal, D.; Townend, J.N.; Steeds, R.P. Quantification of left ventricular interstitial fibrosis in asymptomatic chronic primary degenerative mitral regurgitation. Circ. Cardiovasc. Imaging 2014, 7, 946–953. [Google Scholar] [CrossRef]
- Kalam, K.; Otahal, P.; Marwick, T.H. Prognostic implications of global LV dysfunction: A systematic review and meta-analysis of global longitudinal strain and ejection fraction. Heart 2014, 100, 1673–1680. [Google Scholar] [CrossRef]
- Cameli, M.; Lisi, M.; Righini, F.M.; Massoni, A.; Mondillo, S. Left ventricular remodeling and torsion dynamics in hypertensive patients. Int. J. Cardiovasc. Imaging 2013, 29, 79–86. [Google Scholar] [CrossRef]
- Nagueh, S.F.; Smiseth, O.A.; Appleton, C.P.; Byrd, B.F.; Dokainish, H.; Edvardsen, T.; Flachskampf, F.A.; Gillebert, T.C.; Klein, A.L.; Lancellotti, P.; et al. Recommendations for the Evaluation of Left Ventricular Diastolic Function by Echocardiography: An Update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur. Heart J. Cardiovasc. Imaging 2016, 17, 1321–1360. [Google Scholar] [CrossRef]
- Andersen, O.S.; Smiseth, O.A.; Dokainish, H.; Abudiab, M.M.; Schutt, R.C.; Kumar, A.; Sato, K.; Harb, S.; Gude, E.; Remme, E.W.; et al. Estimating Left Ventricular Filling Pressure by Echocardiography. J. Am. Coll. Cardiol. 2017, 69, 1937–1948. [Google Scholar] [CrossRef]
- Grant, A.D.M.; Negishi, K.; Negishi, T.; Collier, P.; Kapadia, S.R.; Thomas, J.D.; Marwick, T.H.; Griffin, B.P.; Popović, Z.B. Grading diastolic function by echocardiography: Hemodynamic validation of existing guidelines. Cardiovasc. Ultrasound 2015, 13, 28. [Google Scholar] [CrossRef]
- Patel, D.A.; Lavie, C.J.; Milani, R.V.; Ventura, H.O. Left atrial volume index predictive of mortality independent of left ventricular geometry in a large clinical cohort with preserved ejection fraction. Mayo Clin. Proc. 2011, 86, 730–737. [Google Scholar] [CrossRef] [PubMed]
- Tadic, M.; Cuspidi, C.; Pencic-Popovic, B.; Celic, V.; Mancia, G. The relationship between nighttime hypertension and left atrial function. J. Clin. Hypertens. 2017, 19, 1096–1104. [Google Scholar] [CrossRef] [PubMed]
- Perrone-Filardi, P.; Coca, A.; Galderisi, M.; Paolillo, S.; Alpendurada, F.; de Simone, G.; Donal, E.; Kahan, T.; Mancia, G.; Redon, J.; et al. Non-invasive cardiovascular imaging for evaluating subclinical target organ damage in hypertensive patients: A consensus paper from the European Association of Cardiovascular Imaging (EACVI), the European Society of Cardiology Council on Hypertension, and the European Society of Hypertension (ESH). Eur. Heart J. Cardiovasc. Imaging 2017, 18, 945–960. [Google Scholar]
- Ismail, T.F.; Strugnell, W.; Coletti, C.; Božić-Iven, M.; Weingärtner, S.; Hammernik, K.; Correia, T.; Küstner, T. Cardiac MR: From Theory to Practice. Front. Cardiovasc. Med. 2022, 9, 826283. [Google Scholar] [CrossRef] [PubMed]
- Greupner, J.; Zimmermann, E.; Grohmann, A.; Dübel, H.P.; Althoff, T.F.; Borges, A.C.; Rutsch, W.; Schlattmann, P.; Hamm, B.; Dewey, M. Head-to-head comparison of left ventricular function assessment with 64-row computed tomography, biplane left cineventriculography, and both 2- and 3-dimensional transthoracic echocardiography: Comparison with magnetic resonance imaging as the reference standard. J. Am. Coll. Cardiol. 2012, 59, 1897–1907. [Google Scholar]
- Parsai, C.; O’Hanlon, R.; Prasad, S.K.; Mohiaddin, R.H. Diagnostic and prognostic value of cardiovascular magnetic resonance in non-ischaemic cardiomyopathies. J. Cardiovasc. Magn. Reson. 2012, 14, 54. [Google Scholar] [CrossRef]
- Burnhope, E.; Polcaro, A.; Runge, J.H.; Granlund, I.; Bosio, F.; Troelstra, M.A.; Villa, A.D.M.; Chiribiri, A.; Carr-White, G.; Webb, J.; et al. Assessment of Myocardial Stiffness in Patients with Left Ventricular Hypertrophy: CMR Elastography Using Intrinsic Actuation. JACC Cardiovasc. Imaging 2022, 15, 1163–1165. [Google Scholar] [CrossRef]
- Zdravkovic, M.; Klasnja, S.; Popovic, M.; Djuran, P.; Mrda, D.; Ivankovic, T.; Manojlovic, A.; Koracevic, G.; Lovic, D.; Popadic, V. Cardiac Magnetic Resonance in Hypertensive Heart Disease: Time for a New Chapter. Diagnostics 2023, 13, 137. [Google Scholar] [CrossRef]
- Raman, S.V. The hypertensive heart. An integrated understanding informed by imaging. J. Am. Coll. Cardiol. 2010, 55, 91–96. [Google Scholar] [CrossRef]
- Pezel, T.; Venkatesh, B.A.; De Vasconcellos, H.D.; Kato, Y.; Shabani, M.; Xie, E.; Heckbert, S.R.; Post, W.S.; Shea, S.J.; Allen, N.B.; et al. Left Atrioventricular Coupling Index as a Prognostic Marker of Cardiovascular Events: The MESA Study. Hypertension 2021, 78, 661–671. [Google Scholar] [CrossRef]
- Rathod, R.H.; Powell, A.J.; Geva, T. Myocardial Fibrosis in Congenital Heart Disease. Circ. J. 2016, 80, 1300–1307. [Google Scholar] [CrossRef]
- Liu, H.; Wang, J.; Pan, Y.; Ge, Y.; Guo, Z.; Zhao, S. Early and Quantitative Assessment of Myocardial Deformation in Essential Hypertension Patients by Using Cardiovascular Magnetic Resonance Feature Tracking. Sci. Rep. 2020, 10, 3582. [Google Scholar] [CrossRef]
- Pichler, G.; Redon, J.; Martínez, F.; Solaz, E.; Calaforra, O.; Andrés, M.S.; Lopez, B.; Díez, J.; Oberbauer, R.; Adlbrecht, C.; et al. Cardiac magnetic resonance-derived fibrosis, strain and molecular biomarkers of fibrosis in hypertensive heart disease. J. Hypertens. 2020, 38, 2036–2042. [Google Scholar] [CrossRef]
- Del Buono, M.G.; Montone, R.A.; Camilli, M.; Carbone, S.; Narula, J.; Lavie, C.J.; Niccoli, G.; Crea, F. Coronary Microvascular Dysfunction Across the Spectrum of Cardiovascular Diseases: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2021, 78, 1352–1371. [Google Scholar] [CrossRef]
- Knuuti, J.; Ballo, H.; Juarez-Orozco, L.E.; Saraste, A.; Kolh, P.; Rutjes, A.W.S.; Jüni, P.; Windecker, S.; Bax, J.J.; Wijns, W. The performance of non-invasive tests to rule-in and rule-out significant coronary artery stenosis in patients with stable angina: A meta-analysis focused on post-test disease probability. Eur. Heart J. 2018, 39, 3322–3330. [Google Scholar] [CrossRef]
- Heitner, J.F.; Kim, R.J.; Kim, H.W.; Klem, I.; Shah, D.J.; Debs, D.; Farzaneh-Far, A.; Polsani, V.; Kim, J.; Weinsaft, J.; et al. Prognostic Value of Vasodilator Stress Cardiac Magnetic Resonance Imaging: A Multicenter Study with 48,000 Patient-Years of Follow-up. JAMA Cardiol. 2019, 4, 256–264. [Google Scholar] [CrossRef]
- Sammut, E.C.; Villa, A.D.M.; Di Giovine, G.; Dancy, L.; Bosio, F.; Gibbs, T.; Jeyabraba, S.; Schwenke, S.; Williams, S.E.; Marber, M.; et al. Prognostic Value of Quantitative Stress Perfusion Cardiac Magnetic Resonance. JACC Cardiovasc. Imaging 2018, 11, 686–694. [Google Scholar] [CrossRef]
- Haaf, P.; Garg, P.; Messroghli, D.R.; Broadbent, D.A.; Greenwood, J.P.; Plein, S. Cardiac T1 Mapping and Extracellular Volume (ECV) in clinical practice: A comprehensive review. J. Cardiovasc. Magn. Reson. 2016, 18, 89. [Google Scholar] [CrossRef]
- Ismail, T.F.; Hua, A.; Plein, S.; D’Cruz, D.P.; Fernando, M.M.A.; Friedrich, M.G.; Zellweger, M.J.; Giorgetti, A.; Caobelli, F.; Haaf, P. The role of cardiovascular magnetic resonance in the evaluation of acute myocarditis and inflammatory cardiomyopathies in clinical practice—A comprehensive review. Eur. Heart J. Cardiovasc. Imaging 2022, 23, 450–464. [Google Scholar] [CrossRef]
- Rudolph, A.; Abdel-Aty, H.; Bohl, S.; Boyé, P.; Zagrosek, A.; Dietz, R.; Schulz-Menger, J. Noninvasive detection of fibrosis applying contrast-enhanced cardiac magnetic resonance in different forms of left ventricular hypertrophy relation to remodeling. J. Am. Coll. Cardiol. 2009, 53, 284–291. [Google Scholar] [CrossRef] [PubMed]
- Sado, D.M.; Flett, A.S.; Banypersad, S.M.; White, S.K.; Maestrini, V.; Quarta, G.; Lachmann, R.H.; Murphy, E.; Mehta, A.; Hughes, D.A.; et al. Cardiovascular magnetic resonance measurement of myocardial extracellular volume in health and disease. Heart 2012, 98, 1436–1441. [Google Scholar] [CrossRef] [PubMed]
- Rosmini, S.; Bulluck, H.; Captur, G.; Treibel, T.A.; Abdel-Gadir, A.; Bhuva, A.N.; Culotta, V.; Merghani, A.; Fontana, M.; Maestrini, V.; et al. Myocardial native T1 and extracellular volume with healthy ageing and gender. Eur. Heart J. Cardiovasc. Imaging 2018, 19, 615–621. [Google Scholar] [CrossRef]
- Gyongyosi, M.; Winkler, J.; Ramos, I.; Do, Q.T.; Firat, H.; McDonald, K.; Gonzalez, A.; Thum, T.; Diez, J.; Jaisser, F.; et al. Myocardial fibrosis: Biomedical research from bench to bedside. Eur. J. Heart Fail 2017, 19, 177–191. [Google Scholar] [CrossRef]
- Iyer, N.R.; Le, T.T.; Kui, M.S.L.; Tang, H.C.; Chin, C.T.; Phua, S.K.; Bryant, J.A.; Pua, C.J.; Ang, B.; Toh, D.F.; et al. Markers of Focal and Diffuse Nonischemic Myocardial Fibrosis Are Associated with Adverse Cardiac Remodeling and Prognosis in Patients with Hypertension: The REMODEL Study. Hypertension 2022, 79, 1804–1813. [Google Scholar] [CrossRef] [PubMed]
- Maceira, A.M.; Mohiaddin, R.H. Cardiovascular magnetic resonance in systemic hypertension. J. Cardiovasc. Magn. Reson. 2012, 14, 28. [Google Scholar] [CrossRef]
- Scully, P.R.; Patel, K.P.; Treibel, T.A.; Thornton, G.D.; Hughes, R.K.; Chadalavada, S.; Katsoulis, M.; Hartman, N.; Fontana, M.; Pugliese, F.; et al. Prevalence and outcome of dual aortic stenosis and cardiac amyloid pathology in patients referred for transcatheter aortic valve implantation. Eur. Heart J. 2020, 41, 2759–2767. [Google Scholar] [CrossRef] [PubMed]
- Maceira, A.M.; Joshi, J.; Prasad, S.K.; Moon, J.C.; Perugini, E.; Harding, I.; Sheppard, M.N.; Poole-Wilson, P.A.; Hawkins, P.N.; Pennell, D.J.; et al. Cardiovascular magnetic resonance in cardiac amyloidosis. Circulation 2005, 111, 186–193. [Google Scholar] [CrossRef]
- Martinez-Naharro, A.; Treibel, T.A.; Abdel-Gadir, A.; Bulluck, H.; Zumbo, G.; Knight, D.S.; Kotecha, T.; Francis, R.; Hutt, D.F.; Rezk, T.; et al. Magnetic Resonance in Transthyretin Cardiac Amyloidosis. J. Am. Coll. Cardiol. 2017, 70, 466–477. [Google Scholar] [CrossRef]
- Dungu, J.N.; Valencia, O.; Pinney, J.H.; Gibbs, S.D.J.; Rowczenio, D.; Gilbertson, J.A.; Lachmann, H.J.; Wechalekar, A.; Gillmore, J.D.; Whelan, C.J.; et al. CMR-based differentiation of AL and ATTR cardiac amyloidosis. JACC Cardiovasc. Imaging 2014, 7, 133–142. [Google Scholar] [CrossRef]
- Gillmore, J.D.; Maurer, M.S.; Falk, R.H.; Merlini, G.; Damy, T.; Dispenzieri, A.; Wechalekar, A.D.; Berk, J.L.; Quarta, C.C.; Grogan, M.; et al. Nonbiopsy Diagnosis of Cardiac Transthyretin Amyloidosis. Circulation 2016, 133, 2404–2412. [Google Scholar] [CrossRef]
- Genovesi, D.; Vergaro, G.; Giorgetti, A.; Marzullo, P.; Scipioni, M.; Santarelli, M.F.; Pucci, A.; Buda, G.; Volpi, E.; Emdin, M. [18F]-Florbetaben PET/CT for Differential Diagnosis Among Cardiac Immunoglobulin Light Chain, Transthyretin Amyloidosis, and Mimicking Conditions. JACC Cardiovasc. Imaging 2021, 14, 246–255. [Google Scholar] [CrossRef]
- Maron, M.S. Clinical utility of cardiovascular magnetic resonance in hypertrophic cardiomyopathy. J. Cardiovasc. Magn. Reson. 2012, 14, 13. [Google Scholar] [CrossRef]
- Rodrigues, J.C.L.; Rohan, S.; Ghosh Dastidar, A.; Harries, I.; Lawton, C.B.; Ratcliffe, L.E.; Burchell, A.E.; Hart, E.C.; Hamilton, M.C.K.; Paton, J.F.R.; et al. Hypertensive heart disease versus hypertrophic cardiomyopathy: Multi-parametric cardiovascular magnetic resonance discriminators when end-diastolic wall thickness ≥ 15 mm. Eur. Radiol. 2017, 27, 1125–1135. [Google Scholar] [CrossRef] [PubMed]
- Flett, A.S.; Maestrini, V.; Milliken, D.; Fontana, M.; Treibel, T.A.; Harb, R.; Sado, D.M.; Quarta, G.; Herrey, A.; Sneddon, J.; et al. Diagnosis of apical hypertrophic cardiomyopathy: T-wave inversion and relative but not absolute apical left ventricular hypertrophy. Int. J. Cardiol. 2015, 183, 143–148. [Google Scholar] [CrossRef]
- Reant, P.; Captur, G.; Mirabel, M.; Nasis, A.; Sado, M.D.; Maestrini, V.; Castelletti, S.; Manisty, C.; Herrey, A.S.; Syrris, P.; et al. Abnormal septal convexity into the left ventricle occurs in subclinical hypertrophic cardiomyopathy. J. Cardiovasc. Magn. Reson. 2015, 17, 64. [Google Scholar] [CrossRef] [PubMed]
- Maron, M.S.; Olivotto, I.; Harrigan, C.; Appelbaum, E.; Gibson, C.M.; Lesser, J.R.; Haas, T.S.; Udelson, J.E.; Manning, W.J.; Maron, B.J. Mitral valve abnormalities identified by cardiovascular magnetic resonance represent a primary phenotypic expression of hypertrophic cardiomyopathy. Circulation 2011, 124, 40–47. [Google Scholar] [CrossRef]
- Captur, G.; Lopes, L.R.; Mohun, T.J.; Patel, V.; Li, C.; Bassett, P.; Finocchiaro, G.; Ferreira, V.M.; Esteban, M.T.; Muthurangu, V.; et al. Prediction of sarcomere mutations in subclinical hypertrophic cardiomyopathy. Circ. Cardiovasc. Imaging 2014, 7, 863–871. [Google Scholar] [CrossRef] [PubMed]
- Petryka, J.; Baksi, A.J.; Prasad, S.K.; Pennell, D.J.; Kilner, P.J. Prevalence of inferobasal myocardial crypts among patients referred for cardiovascular magnetic resonance. Circ. Cardiovasc. Imaging 2014, 7, 259–264. [Google Scholar] [CrossRef]
- Gruner, C.; Chan, R.H.; Crean, A.; Rakowski, H.; Rowin, E.J.; Care, M.; Deva, D.; Williams, L.; Appelbaum, E.; Gibson, C.M.; et al. Significance of left ventricular apical-basal muscle bundle identified by cardiovascular magnetic resonance imaging in patients with hypertrophic cardiomyopathy. Eur. Heart J. 2014, 35, 2706–2713. [Google Scholar] [CrossRef] [PubMed]
- Klues, H.G.; Maron, B.J.; Dollar, A.L.; Roberts, W.C. Diversity of structural mitral valve alterations in hypertrophic cardiomyopathy. Circulation 1992, 85, 1651–1660. [Google Scholar] [CrossRef]
- Ranasinghe, I.; Ayoub, C.; Cheruvu, C.; Freedman, S.B.; Yiannikas, J. Isolated hypertrophy of the basal ventricular septum: Characteristics of patients with and without outflow tract obstruction. Int. J. Cardiol. 2014, 173, 487–493. [Google Scholar] [CrossRef]
- Ismail, T.F.; Jabbour, A.; Gulati, A.; Mallorie, A.; Raza, S.; Cowling, T.E.; Das, B.; Khwaja, J.; Alpendurada, F.D.; Wage, R.; et al. Role of late gadolinium enhancement cardiovascular magnetic resonance in the risk stratification of hypertrophic cardiomyopathy. Heart 2014, 100, 1851–1858. [Google Scholar] [CrossRef]
- Ismail, T.F.; Prasad, S.K.; Pennell, D.J. Prognostic importance of late gadolinium enhancement cardiovascular magnetic resonance in cardiomyopathy. Heart Br. Card Soc. 2012, 98, 438–442. [Google Scholar] [CrossRef]
- Nordin, S.; Kozor, R.; Medina-Menacho, K.; Abdel-Gadir, A.; Baig, S.; Sado, D.M.; Lobascio, I.; Murphy, E.; Lachmann, R.H.; Mehta, A.; et al. Proposed Stages of Myocardial Phenotype Development in Fabry Disease. JACC Cardiovasc. Imaging 2019, 12, 1673–1683. [Google Scholar] [CrossRef] [PubMed]
- Vardarli, I.; Rischpler, C.; Herrmann, K.; Weidemann, F. Diagnosis and Screening of Patients with Fabry Disease. Ther. Clin. Risk Manag. 2020, 16, 551–558. [Google Scholar] [CrossRef]
- Rigolli, M.; Kahn, A.M.; Brambatti, M.; Contijoch, F.J.; Adler, E.D. Cardiac Magnetic Resonance Imaging in Danon Disease Cardiomyopathy. JACC Cardiovasc. Imaging 2021, 14, 514–516. [Google Scholar] [CrossRef]
- Birnie, D.H.; Kandolin, R.; Nery, P.B.; Kupari, M. Cardiac manifestations of sarcoidosis: Diagnosis and management. Eur. Heart J. 2017, 38, 2663–2670. [Google Scholar] [CrossRef] [PubMed]
- Angell, P.J.; Ismail, T.F.; Jabbour, A.; Smith, G.; Dahl, A.; Wage, R.; Whyte, G.; Green, D.J.; Prasad, S.; George, K. Ventricular structure, function, and focal fibrosis in anabolic steroid users: A CMR study. Eur. J. Appl. Physiol. 2014, 114, 921–928. [Google Scholar] [CrossRef]
- Swoboda, P.P.; McDiarmid, A.K.; Erhayiem, B.; Broadbent, D.A.; Dobson, L.E.; Garg, P.; Ferguson, C.; Page, S.P.; Greenwood, J.P.; Plein, S. Assessing Myocardial Extracellular Volume by T1 Mapping to Distinguish Hypertrophic Cardiomyopathy From Athlete’s Heart. J. Am. Coll. Cardiol. 2016, 67, 2189–2190. [Google Scholar] [CrossRef]
- Im, T.S.; Chun, E.J.; Lee, M.S.; Adla, T.; Kim, J.A.; Choi, S.I. Grade-response relationship between blood pressure and severity of coronary atherosclerosis in asymptomatic adults: Assessment with coronary CT angiography. Int. J. Cardiovasc. Imaging 2014, 30, 105–112. [Google Scholar] [CrossRef] [PubMed]
- Ciurică, S.; Lopez-Sublet, M.; Loeys, B.L.; Radhouani, I.; Natarajan, N.; Vikkula, M.; Maas, A.H.E.M.; Adlam, D.; Persu, A. Arterial Tortuosity. Hypertension 2019, 73, 951–960. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Shen, C.; Ji, Y.; Feng, Y.; Ma, G.; Liu, N. Clinical implication of coronary tortuosity in patients with coronary artery disease. PLoS ONE 2011, 6, e24232. [Google Scholar] [CrossRef]
- Rojulpote, C.; Mehdizadeh Seraj, S.; Zirakchian Zadeh, M.; Yadav, D.; Raynor, W.Y.; Kothekar, E.; Al-Zaghal, A.; Werner, T.J.; Gerke, O.; Høilund-Carlsen, P.F.; et al. Role of FDG-PET/CT in Assessing the Correlation between Blood Pressure and Myocardial Metabolic Uptake. Asia Ocean. J. Nucl. Med. Biol. 2020, 8, 36–45. [Google Scholar] [PubMed]
- Gaudieri, V.; Mannarino, T.; Zampella, E.; Assante, R.; D’Antonio, A.; Nappi, C.; Cantoni, V.; Green, R.; Petretta, M.; Arumugam, P.; et al. Prognostic value of coronary vascular dysfunction assessed by rubidium-82 PET/CT imaging in patients with resistant hypertension without overt coronary artery disease. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 3162–3171. [Google Scholar] [CrossRef]
- Rimoldi, S.F.; Scherrer, U.; Messerli, F.H. Secondary arterial hypertension: When, who, and how to screen? Eur. Heart J. 2014, 35, 1245–1254. [Google Scholar] [CrossRef]
- Siddiqui, M.A.; Mittal, P.K.; Little, B.P.; Miller, F.H.; Akduman, E.I.; Ali, K.; Sartaj, S.; Moreno, C.C. Secondary Hypertension and Complications: Diagnosis and Role of Imaging. Radiogr. Rev. Publ. Radiol. Soc. N. Am. Inc. 2019, 39, 1036–1055. [Google Scholar] [CrossRef]
- Johnson, P.T.; Horton, K.M.; Fishman, E.K. Adrenal mass imaging with multidetector CT: Pathologic conditions, pearls, and pitfalls. Radiogr. Rev. Publ. Radiol. Soc. N. Am. Inc. 2009, 29, 1333–1351. [Google Scholar] [CrossRef]
- Elsayes, K.M.; Mukundan, G.; Narra, V.R.; Lewis, J.S.; Shirkhoda, A.; Farooki, A.; Brown, J.J. Adrenal masses: MR imaging features with pathologic correlation. Radiogr. Rev. Publ. Radiol. Soc. N. Am. Inc. 2004, 24, S73–S86. [Google Scholar] [CrossRef]
- Blake, M.A.; Kalra, M.K.; Maher, M.M.; Sahani, D.V.; Sweeney, A.T.; Mueller, P.R.; Hahn, P.F.; Boland, G.W. Pheochromocytoma: An imaging chameleon. Radiogr. Rev. Publ. Radiol. Soc. N. Am. Inc. 2004, 24, S87–S99. [Google Scholar] [CrossRef] [PubMed]
- Prisant, L.M.; Mawulawde, K.; Kapoor, D.; Joe, C. Coarctation of the aorta: A secondary cause of hypertension. J. Clin. Hypertens. 2004, 6, 347–350+352. [Google Scholar] [CrossRef] [PubMed]
- Varennes, L.; Tahon, F.; Kastler, A.; Grand, S.; Thony, F.; Baguet, J.P.; Detante, O.; Touzé, E.; Krainik, A. Fibromuscular dysplasia: What the radiologist should know: A pictorial review. Insights Imaging 2015, 6, 295–307. [Google Scholar] [CrossRef] [PubMed]
Symptoms/Review of Systems | Rationale |
---|---|
Renal disease | Cause/complication of hypertension |
Coarctation of the aorta | Cause of secondary hypertension |
Endocrinopathies -Conn’s syndrome; Cushing’s disease/syndrome; Phaeochromocytoma; Primary hyperparathyroidism; Acromegaly | Cause of hypertension |
Fibromuscular dysplasia | Cause of hypertension |
Vascular Risk Factors | Risk factors for complications |
Obesity | Cause for hypertension and risk factor for complications |
Hyperuricaemia/gout | Part of metabolic syndrome |
Diabetes | Risk factor; part of the metabolic syndrome |
Past history of TIA or stroke | End-organ damage |
Obstetric History (for female patients)–gestational hypertension; pre-eclampsia | Risk factors for developing hypertension |
Past history of migraine with aura | Vascular risk factor but may also influence choice of drug therapy |
Social History/Risk factors for developing hypertension | |
Occupation | Sedentary versus manual work; night-shift work/sleep hygiene–risk factors for hypertension and complications |
Smoking history | Risk factor for complications |
Alcohol | Cause of hypertension |
Illicit Drug Misuse - Cocaine, amphetamines, anabolic steroids, growth hormone | Cause of hypertension |
Exercise and Diet history | Physical inactivity as a risk factor and modifying dietary intake of salt or saturated fat to modify cardiovascular risk |
Family History | |
History of hypertension | May suggest familial hypertension or tendency to metabolic syndrome |
History of heritable syndromes associated with hypertension, e.g., multiple endocrine neoplasia; polycystic kidney/heritable renal disease, Fabry’s disease; congenital heart disease; hypertrophic cardiomyopathy (as a cause of LVH) | To guide investigations/diagnostic testing and to inform the need for wider family screening |
Drug History | |
Sympathomimetics (e.g., phenylephrine, ephedra alkaloids); Corticosteroids; Anabolic Steroids; Growth Hormone; Liquorice; Oral contraceptive Pill; NSAIDs; Erythropoietin | Potentially addressable causes |
Inspection | Rationale |
---|---|
Cushingoid facies, acromegalic facies, centripetal obesity, tendon xanthomata/stigmata of hyperlipidaemia | Markers for secondary causes of hypertension and increased cardiovascular risk |
Height/weight/Waist circumference | To calculate body mass index; assess centripetal obesity |
Palpation | |
Peripheral pulses | Atrial fibrillation (as a complication of chronic hypertension); to screen for peripheral vascular disease |
Radio-femoral delay | Coarctation |
Jugular Venous Pressure | Signs of heart failure/elevated systemic venous pressures |
BP pressure measurement Ankle Brachial Pressure Index | To diagnose hypertension and to screen for peripheral vascular disease. Should be done after at least 5 min at rest in a sitting position with the arm supported and using an appropriately sized cuff and oscillotonometric equipment. On first attempt, should be done in both arms to document any difference present. |
Apical rate, rhythm, position, and character (? heaving apex beat) | Indicative of a pressure loaded hypertrophied left ventricle; apical displacement may suggest LV dilatation |
Auscultation | |
Heart for heart sounds/murmurs, great vessels for bruits, chest for coarse inspiratory crackles indicative of left ventricular failure) | To screen for 4th heart sound (indicative of LVH), and 3rd heart sound (which may suggest LV dysfunction). To screen for valvular heart disease (? Ejection click and systolic murmur associated with bicuspid valve; ejection sound associated with coarctation); pansystolic murmur in the mitral area associated with functional MR. |
Fundoscopy | To assess for features of hypertensive retinopathy and background changes which may suggest comorbid diabetes). |
CMR Imaging Protocol for Hypertensive Heart Disease and Differential Diagnosis | |||
---|---|---|---|
CMR Sequence | Possible Findings | Examples | |
Localisers/Scout Images 3′ | Extracardiac findings
| ||
Aneurysm ascending aorta (52 × 52 mm) | Phaeochromocytoma | ||
Long axis cine (4Ch, 2Ch, 3Ch) 3′ | Anatomy and Function
| ||
Concentric LV hypertrophy with sigmoid shaped basal septum | |||
Native T1 maps 5′ | Tissue characterization
| ||
Mildly elevated T1 values in basal inferior/inferolateral segment | |||
Vasodilator stress perfusion 5–8′ | Ischaemia
| ||
Microvascular dysfunction | |||
Cine imaging (short axis stack) 10′ | Anatomy and Function
| ||
Concentric hypertrophy with wall thickness 13–14 mm | |||
Rest perfusion 4′ | Ischaemia and Scar
| ||
No artefacts detected on rest perfusion (same patient as above) | |||
LGE imaging 10′ | Tissue characterisation
| ||
Subtle patchy, non-ischaemic LGE in basal septal and inferolateral segments | |||
Post-contrast T1/extracellular volume (ECV) mapping 5′ | Tissue characterisation
| ||
Borderline ECV |
A: 4 chamber cine from a patient with hereditary ATTR cardiac amyloidosis. Note the marked thickening/infiltration of the atrial walls and interatrial septum (white arrow) and the diffuse left ventricular thickening. There are also significant bilateral pleural effusions indicating a degree of cardiac decompensation. | ||
B: Late gadolinium enhancement sequence (mid-ventricular short axis) from a patient with diffuse myocardial infiltration with sarcoid (proven on cardiac biopsy). There is marked septal hypertrophy and there are multiple distinct predominantly epicardial or mid-wall foci of enhancement in keeping with granulomatous infiltration. | ||
C: Late gadolinium enhancement sequence (basal short axis) showing abnormal gadolinium kinetics with subendocardial enhancement involving the LV sub-endocardium and the RV aspect of the septum (“zebra sign”). | ||
D: Late gadolinium enhancement sequence (4 chamber) in a patient with mitochondrial disease (a concentric hypertrophic cardiomyopathy phenocopy). There is very feint diffuse septal mid-wall enhancement on a background of concentric left ventricular hypertrophy. There is also an associated moderate pericardial effusion. | ||
E: Four chamber cine from a patient with sarcomeric hypertrophic cardiomyopathy. There is loss of normal septal concavity (reverse septal curvature morphology). | ||
F: Late gadolinium enhancement sequence for patient in E above. There is patchy mid-wall fibrosis in the hypertrophied septum (large arrow). Hypertrophy at the mid-ventricular level has given rise to mid-cavity gradient which in turn has caused sub-endocardial injury/fibrosis of the apical segments (small arrows). | ||
G: Two chamber cine from a patient with a family history of hypertrophic cardiomyopathy who is a carrier of a pathogenic sarcomere mutation. There are multiple inferior crypts (arrows) but the LV walls are of normal wall thickness or even thin. The patient is otherwise phenotype negative for hypertrophic cardiomyopathy. | ||
H: Three chamber cine sequence from a patient with sarcomeric hypertrophic cardiomyopathy. There is asymmetrical septal hypertrophy with an associated apico-septal muscle bundle (arrow). | ||
I: Four chamber late gadolinium enhancement sequence in a patient with hypertensive heart disease. There is septal hypertrophy and diffuse mid-wall fibrosis (small arrow). In addition, there is a small focal septal infarct (large arrow), the consequence of an embolic event due to paroxysmal atrial fibrillation, a common complication of chronic hypertension. Note also the enlarged left atrium. | ||
J: Late gadolinium enhancement sequence (mid-ventricular short axis) from a patient with “burned out” or advanced hypertrophic cardiomyopathy. The onset of even mild LV dysfunction and this phenotype can be a harbinger for increased risk of malignant ventricular arrhythmias and heightened risk of progression to advanced heart failure. | ||
K: Late gadolinium enhancement sequence (3 chamber long-axis) showing focal mid-wall fibrosis in the basal inferolateral wall. This is typical of cardiac involvement in Fabry’s cardiomyopathy. | ||
L: Late gadolinium enhancement sequence (mid-ventricular short axis) showing septal hypertrophy, and dense almost circumferential subendocardial enhancement in a non-coronary pattern typical of that seen in Danon disease. There is also dense enhancement of the anterior and inferior LV/RV insertion points. | ||
M: Tortuous “corkscrew” appearance of coronary arteries in a patient with hypertensvie heart diasease (3D multiplanar reconstruction of computed tomography coronary angiography) | ||
N: Patient with post-ductal coarctation of the aorta (blue arrow) and long-standing arterial hypertension | ||
O: Patient with known fibromuscular dyplasia (FMD). Magnetic resonance angiography (left-sided images) and invasive angioraphy (right-sided images) of the left (upper row) and right (lower row) renal artery demonstrate typical “string-of-beads” appearance (blue arrows) of FMD. |
Differential Diagnosis in LV Hypertrophy (LVH) In Most Cases, LVH May Be Attributable to Hypertension, Valve Disease (Aortic Stenosis), or Obesity. | |||||
---|---|---|---|---|---|
Hypertensive Heart Disease | Hypertrophic CMP (1:500) | Cardiac Amyloidosis | Anderson-Fabry Disease (1:20,000–40,000) | Athlete’s Heart | |
Pathological LVH | Physiological LVH | ||||
History | Long-lasting hypertension | Positive family history Symptomatic LVOT obstruction (syncope, dyspnoea, chest pain) Palpitations (SV/V arrhythmias) | Multiorgan disease Heart failure (Natriuretic peptides↑) Age > 50–60 years | Multi-system lysosomal storage disease X-linked (men > women) Palpitations (SV/V arrhythmias) | High level athletic activity |
ECG | High voltage QRS | High voltage QRS “Giant negative T waves” in apical HCM | Peripheral low voltage QRS Heart block | Young age: Short PR (no delta wave) Older age: AV block Widened, high voltage QRS | Bradycardia, AV block I High voltage QRS Early repolarisation |
Echo/ CMR | Wall thickness <15 mm (Black <15–20 mm) LVH↓ with OMT for hypertension | Wall thickness ≥ 15 mm, ≥13 mm (in familial HCM) Diastolic dysfunction, large atria ~60%: asymmetrical septal HCM → SAM/MR (inferolateral jet); HCM vs. HOCM ~25–30%: symmetrical concentric HCM ~10%: apical HCM ~5% mid-cavity HCM → apical pouch/LGE | Longitudinal contraction↓ Diastolic dysfunction, large atria Global LV (and RV) concentric thickening Pericardial and pleural effusions | Diastolic dysfunction, large atria Concentric LVH Patterns of hypertrophy often indistinguishable from HCM. | Symmetrical chamber dilatation and LVH Mild atrial enlargement but normal diastology Max. wall thickness ≤ 12 mm (top athletes < 14–16 mm) LVH↓ after deconditioning |
CMR Tissue characterisation | Diffuse LGE in non-specific pattern possible in up to 50% with HHD | Patchy LGE of RV hinge points LGE/ECV↑ in areas of maximum hypertrophy CMR ICD/SCD risk factors: (I) LVEF < 50%; (II) LGE extent > 15%; (III) apical aneurysm | ECV ≥ 40% (amyloid burden) Difficulty in nulling Global subendocardial distribution (non-coronary pattern) DPD bone scintigraphy for ATTR CA | Low native T1 (early phase lipid accumulation) Basal inferolateral LGE (late phase) Genetic testing/enzyme replacement therapy | Usually no LGE |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ismail, T.F.; Frey, S.; Kaufmann, B.A.; Winkel, D.J.; Boll, D.T.; Zellweger, M.J.; Haaf, P. Hypertensive Heart Disease—The Imaging Perspective. J. Clin. Med. 2023, 12, 3122. https://doi.org/10.3390/jcm12093122
Ismail TF, Frey S, Kaufmann BA, Winkel DJ, Boll DT, Zellweger MJ, Haaf P. Hypertensive Heart Disease—The Imaging Perspective. Journal of Clinical Medicine. 2023; 12(9):3122. https://doi.org/10.3390/jcm12093122
Chicago/Turabian StyleIsmail, Tevfik F., Simon Frey, Beat A. Kaufmann, David J. Winkel, Daniel T. Boll, Michael J. Zellweger, and Philip Haaf. 2023. "Hypertensive Heart Disease—The Imaging Perspective" Journal of Clinical Medicine 12, no. 9: 3122. https://doi.org/10.3390/jcm12093122
APA StyleIsmail, T. F., Frey, S., Kaufmann, B. A., Winkel, D. J., Boll, D. T., Zellweger, M. J., & Haaf, P. (2023). Hypertensive Heart Disease—The Imaging Perspective. Journal of Clinical Medicine, 12(9), 3122. https://doi.org/10.3390/jcm12093122