Cognitive Deficits in the Acute Phase of COVID-19: A Review and Meta-Analysis
Abstract
1. Introduction
2. Materials and Methods
2.1. Eligibility Criteria
2.2. Information Sources
2.3. Search Strategy
2.4. Identification and Data Collection Process
2.5. Data
2.6. Statistical Analysis
2.6.1. Proportional Meta-Analysis
2.6.2. Logistic Regression for Severity
2.7. Data Availability
3. Results
3.1. Study Identification
3.2. Proportional Meta-Analysis
| Article | Mean or Median Age (in Years) ± SD | Inclusion Criteria | Severity | Mean or Median Time (in Days) ± SD since Disease Onset | Scale Used | Cut-Off Used | Cognitive Deficits according to MoCA or MMSE (n/N) | Proportion (%) | 95% CI Lower Limit | 95% CI Upper Limit | Fixed Weight (%) | Random Weight (%) |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Ermis et al. [18] | 61 ± 13.3 | Confirmed cases of COVID-19 that required hospitalization | Intermed. | Inpatients * | MoCA | 26 | 8/13 | 61.54 | 31.58 | 86.14 | 1.45 | 4.05 |
| Martillo et al. [19] | 54 ± 12.9 | Confirmed cases of COVID-19 that required ICU | Severe | 30 | MoCA | 19 | 24/30 | 80 | 61.43 | 92.29 | 3.21 | 4.47 |
| Heyns et al. [20] | na | Confirmed cases of COVID-19 that required hospitalization | Intermed. | Inpatients * | MoCA | 26 | 21/38 | 55.26 | 38.30 | 71.38 | 4.03 | 4.55 |
| Hosp et al. [21] | 65 ± 14.4 | Confirmed cases of COVID-19 with at least one neurological symptom | Intermed. | 18.4 ± 2.3 | MoCA | 26 | 18/26 | 69.23 | 48.21 | 85.67 | 2.79 | 4.41 |
| Pistarini et al. [22] | 64 ± 11.9 | Confirmed cases of COVID-19 admitted to a rehabilitation unit | Intermed. | Inpatients * | MoCA | 26 | 29/40 | 72.5 | 56.11 | 85.40 | 4.24 | 4.56 |
| Rousseau et al. [23] | 62 (IQR 49–68) | Confirmed cases of COVID-19 that required ICU | Severe | 94 (IQR 90–101) | MoCA | 26 | 14/32 | 43.75 | 26.36 | 62.33 | 3.41 | 4.49 |
| Patel et al. [24] | 62 ± 15.7 | Confirmed cases of COVID-19 admitted to a rehabilitation unit | Severe | Inpatients * | MoCA | 26 | 62/77 | 80.51 | 69.91 | 88.66 | 8.07 | 4.71 |
| Solaro et al. [25] | 54 ± 4.8 | Confirmed cases of COVID-19 with no neurological comorbidity and no delirium episode | Intermed. | Inpatients * | MoCA | 23 | 13/32 | 40.62 | 23.70 | 59.35 | 3.41 | 4.49 |
| Imamura et al. [26] | 54 ± 13.3 | Confirmed cases of COVID-19 admitted to rehabilitation post ICU | Severe | Inpatients * | MoCA | 26 | 1/27 | 3.7 | 0.09 | 18.97 | 2.90 | 4.43 |
| Jain et al. [27] | na | Confirmed cases of COVID-19 admitted to a rehabilitation unit | Intermed. | Inpatients * | MoCA | 26 | 10/16 | 62.5 | 35.44 | 84.80 | 1.76 | 4.17 |
| Monti et al. [28] | 56 ± 10.5 | Confirmed cases of COVID-19 that required ICU with at least one day of mechanical ventilation | Severe | 61 (IQR 51–71) | MMSE & | NI | 1/37 | 2.7 | 0.07 | 14.16 | 3.93 | 4.54 |
| Bayrak & Çadirci [29] | 73 (IQR 65–90) | Confirmed cases of COVID-19 older than 64 years that required hospitalization | Intermed. | Inpatients * | MMSE | 24 | 27/122 | 22.1 | 15.12 | 30.54 | 12.72 | 4.77 |
| Tomasoni et al. [30] | na | Confirmed cases of COVID-19 that required hospitalization | Intermed.; Severe | ~46 (IQR 43–48) | MMSE | 18 | 10/21 | 47.6 | 25.71 | 70.22 | 2.28 | 4.32 |
| Alemanno et al. [8] | 67 ± 12.2 | Confirmed cases of COVID-19 admitted to a rehabilitation unit | Intermed.; Severe | Inpatients * | MoCA/MMSE | NI | 70/87 | 80.5 | 70.57 | 88.19 | 9.10 | 4.73 |
| Raman et al. [31] | 55 ± 13 | Confirmed cases of COVID-19 that required hospitalization | Intermed.; Severe | 69 (IQR 62–76) | MoCA | 26 | 16/58 | 27.6 | 16.66 | 40.90 | 6.10 | 4.66 |
| Kas et al. [32] | 57 ± 9.2 | Confirmed cases of COVID-19 with a related encephalopathy | Intermed.; Severe | Inpatients * | MMSE | 24 | 2/2 | 100 | 15.81 | 100 | 0.31 | 2.48 |
| Groiss et al. [33] | 60 ± 20.4 | Confirmed cases of COVID-19 that required mechanical ventilation | Severe | Inpatients * | MoCA/MMSE | 26/24 | 4/4 | 100 | 39.76 | 100 | 0.52 | 3.09 |
| Beaud et al. [34] | 65 ± 7.6 | Confirmed cases of COVID-19 that required mechanical ventilation | Severe | Inpatients * | MoCA | 26 | 9/13 | 69.23 | 38.57 | 90.91 | 1.45 | 4.05 |
| De Lorenzo et al. [35] | 57 (IQR 48–67) | Confirmed cases of COVID-19 | Mild; Intermed.; Severe | 23 # (IQR 20–29) | MoCA | 24 | 47/185 | 25.4 | 19.30 | 32.31 | 19.23 | 4.81 |
| Negrini et al. [36] | 60 ± 15.4 | Confirmed cases of COVID-19 that required hospitalization with no neurological complications such as stroke | Intermed.; Severe | At least 30 | MMSE | 24 | 3/9 | 33.33 | 7.49 | 70.07 | 1.03 | 3.79 |
| Delorme et al. [37] | 69 ± 4.2 | Confirmed cases of COVID-19 with a related encephalopathy | Intermed.; Severe | 9 ± 3.5 | MMSE | 24 | 1/2 | 50 | 1.26 | 98.74 | 0.31 | 2.48 |
| Di Pietro et al. [38] | 60 ± 12.1 | Confirmed cases of COVID-19 admitted to a rehabilitation unit | Severe | 57 ± 20.7 | MMSE | 24 | 1/8 | 12.5 | 0.32 | 52.65 | 0.93 | 3.70 |
| Jaywant et al. [39] | 65 ± 13.9 | Confirmed cases of COVID-19 admitted to a rehabilitation unit | Intermed.; Severe | 43 ± 19.2 | BMET | NI | 46/57 | 80.7 | 68.09 | 89.95 | 6.00 | 4.65 |
| Pirker-Kees et al. [40] | 79 ± 8.4 | Confirmed cases of COVID-19 that required hospitalization without history of neurological disease | Intermed. | 15 ± 6.2 | MoCA | 23–25 | 6/7 | 85.7 | 42.13 | 99.64 | 0.83 | 3.59 |
| Total (fixed effects) | 443/943 | 46.51 | 43.33 | 49.71 | 100 | 100 | ||||||
| Total (random effects) | 443/943 | 52.31 | 39.66 | 64.81 | 100 | 100 |
3.3. Logistic Regression for Severity
4. Geographical Distribution of Articles
5. Literature Review
6. Discussion
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Niazkar, H.R.; Zibaee, B.; Nasimi, A.; Bahri, N. The neurological manifestations of COVID-19: A review article. Neurol. Sci. 2020, 41, 1667–1671. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. A Clinical Case Definition of POSt COVID-19 cONdition by a Delphi Consensus, 6 October 2021; World Health Organization: Geneva, Switzerland, 2021.
- Rogers, J.P.; Watson, C.J.; Badenoch, J.; Cross, B.; Butler, M.; Song, J.; Hafeez, D.; Morrin, H.; Rengasamy, E.R.; Thomas, L.; et al. Neurology and neuropsychiatry of COVID-19: A systematic review and meta-analysis of the early literature reveals frequent CNS manifestations and key emerging narratives. J. Neurol. Neurosurg. Psychiatry 2021, 92, 932–941. [Google Scholar] [CrossRef] [PubMed]
- Badenoch, J.B.; Rengasamy, E.R.; Watson, C.; Jansen, K.; Chakraborty, S.; Sundaram, R.D.; Hafeez, D.; Burchill, E.; Saini, A.; Thomas, L.; et al. Persistent neuropsychiatric symptoms after COVID-19: A systematic review and meta-analysis. Brain Commun. 2021, 4, fcab297. [Google Scholar] [CrossRef]
- Paterson, R.W.; Brown, R.L.; Benjamin, L.; Nortley, R.; Wiethoff, S.; Bharucha, T.; Jayaseelan, D.L.; Kumar, G.; Raftopoulos, R.E.; Zambreanu, L.; et al. The emerging spectrum of COVID-19 neurology: Clinical, radiological and laboratory findings. Brain 2020, 143, 3104–3120. [Google Scholar] [CrossRef]
- Whiteside, D.M.; Oleynick, V.; Holker, E.; Waldron, E.J.; Porter, J.; Kasprzak, M. Neurocognitive deficits in severe COVID-19 infection: Case series and proposed model. Clin. Neuropsychol. 2021, 35, 799–818. [Google Scholar] [CrossRef] [PubMed]
- Townsend, L.; Dyer, A.H.; Jones, K.; Dunne, J.; Mooney, A.; Gaffney, F.; O’Connor, L.; Leavy, D.; O’Brien, K.; Dowds, J. Persistent fatigue following SARS-CoV-2 infection is common and independent of severity of initial infection. PLoS ONE 2020, 15, e0240784. [Google Scholar] [CrossRef]
- Alemanno, F.; Houdayer, E.; Parma, A.; Spina, A.; Del Forno, A.; Scatolini, A.; Angelone, S.; Brugliera, L.; Tettamanti, A.; Beretta, L.; et al. COVID-19 cognitive deficits after respiratory assistance in the subacute phase: A COVID-rehabilitation unit experience. PLoS ONE 2021, 16, e0246590. [Google Scholar] [CrossRef]
- Pašić, Z.; Smajlović, D.; Ibrahimagić, O.; Selmanovic, S. The Effect of Fatigue Syndrome on Cognitive Functioning and Quality of Life of a Patient after an Ischemic Stroke. Acta Med. Salin. 2017, 46, 22. [Google Scholar] [CrossRef]
- Wilcox, M.E.; Brummel, N.E.; Archer, K.; Ely, E.W.; Jackson, J.C.; Hopkins, R.O. Cognitive dysfunction in ICU patients: Risk factors, predictors, and rehabilitation interventions. Crit. Care Med. 2013, 41, S81–S98. [Google Scholar] [CrossRef]
- Gallo Marin, B.; Aghagoli, G.; Lavine, K.; Yang, L.; Siff, E.J.; Chiang, S.S.; Salazar-Mather, T.P.; Dumenco, L.; Savaria, M.C.; Aung, S.N. Predictors of COVID-19 severity: A literature review. Rev. Med. Virol. 2021, 31, 1–10. [Google Scholar] [CrossRef]
- Daroische, R.; Hemminghyth, M.S.; Eilertsen, T.H.; Breitve, M.H.; Chwiszczuk, L.J. Cognitive impairment after COVID-19—A review on objective test data. Front. Neurol. 2021, 12, 699582. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Freeman, M.F.; Tukey, J.W. Transformations related to the angular and the square root. Ann. Math. Stat. 1950, 21, 607–611. [Google Scholar] [CrossRef]
- Barendregt, J.J.; Doi, S.A.; Lee, Y.Y.; Norman, R.E.; Vos, T. Meta-analysis of prevalence. J. Epidemiol. Community Health 2013, 67, 974–978. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Xu, C. Arcsine-based transformations for meta-analysis of proportions: Pros, cons, and alternatives. Health Sci. Rep. 2020, 3, e178. [Google Scholar] [CrossRef]
- DerSimonian, R.; Laird, N. Meta-analysis in clinical trials. Control. Clin. Trials 1986, 7, 177–188. [Google Scholar] [CrossRef]
- Ermis, U.; Rust, M.I.; Bungenberg, J.; Costa, A.; Dreher, M.; Balfanz, P.; Marx, G.; Wiesmann, M.; Reetz, K.; Tauber, S.C.; et al. Neurological symptoms in COVID-19: A cross-sectional monocentric study of hospitalized patients. Neurol. Res. Pract. 2021, 3, 1–12. [Google Scholar] [CrossRef]
- Martillo, M.A.; Dangayach, N.S.; Tabacof, L.; Spielman, L.A.; Dams-O’Connor, K.; Chan, C.C.; Kohli-Seth, R.; Cortes, M.; Escalon, M.X. Postintensive care syndrome in survivors of critical illness related to coronavirus disease 2019: Cohort study from a New York City Critical Care Recovery Clinic. Crit. Care Med. 2021, 49, 1427–1438. [Google Scholar] [CrossRef]
- Heyns, A.; Dupont, J.; Gielen, E.; Flamaing, J.; Peers, K.; Gosselink, R.; Vrijsen, B.; Lorent, N.; Everaerts, S.; Janssens, W.; et al. Impact of COVID-19: Urging a need for multi-domain assessment of COVID-19 inpatients. Eur. Geriatr. Med. 2021, 12, 741–748. [Google Scholar] [CrossRef]
- Hosp, J.A.; Dressing, A.; Blazhenets, G.; Bormann, T.; Rau, A.; Schwabenland, M.; Thurow, J.; Wagner, D.; Waller, C.; Niesen, W.D.; et al. Cognitive impairment and altered cerebral glucose metabolism in the subacute stage of COVID-19. Brain 2021, 144, 1263–1276. [Google Scholar] [CrossRef]
- Pistarini, C.; Fiabane, E.; Houdayer, E.; Vassallo, C.; Manera, M.R.; Alemanno, F. Cognitive and Emotional Disturbances Due to COVID-19: An Exploratory Study in the Rehabilitation Setting. Front. Neurol. 2021, 12, 643646. [Google Scholar] [CrossRef] [PubMed]
- Rousseau, A.-F.; Minguet, P.; Colson, C.; Kellens, I.; Chaabane, S.; Delanaye, P.; Cavalier, E.; Chase, J.G.; Lambermont, B.; Misset, B. Post-intensive care syndrome after a critical COVID-19: Cohort study from a Belgian follow-up clinic. Ann. Intensive Care 2021, 11, 118. [Google Scholar] [CrossRef] [PubMed]
- Patel, R.; Savrides, I.; Cahalan, C.; Doulatani, G.; O’Dell, M.W.; Toglia, J.; Jaywant, A. Cognitive impairment and functional change in COVID-19 patients undergoing inpatient rehabilitation. Int. J. Rehabil. Res. 2021, 44, 285–288. [Google Scholar] [CrossRef] [PubMed]
- Solaro, C.; Gamberini, G.; Masuccio, F.G. Cognitive impairment in young COVID-19 patients: The tip of the iceberg? Neurol. Sci. 2021, 42, 4865–4866. [Google Scholar] [CrossRef]
- Imamura, M.; Mirisola, A.R.; Ribeiro, F.D.Q.; De Pretto, L.R.; Alfieri, F.M.; Delgado, V.R.; Battistella, L.R. Rehabilitation of patients after COVID-19 recovery: An experience at the Physical and Rehabilitation Medicine Institute and Lucy Montoro Rehabilitation Institute. Clinics 2021, 76, e2804. [Google Scholar] [CrossRef]
- Jain, E.; Harmon, E.Y.; Do, M.B.S. Functional outcomes and post-discharge care sought by patients with COVID-19 compared to matched controls after completing inpatient acute rehabilitation. PM&R 2021, 13, 618–625. [Google Scholar] [CrossRef]
- Monti, G.; Leggieri, C.; Fominskiy, E.; Scandroglio, A.M.; Colombo, S.; Tozzi, M.; Moizo, E.; Mucci, M.; Crivellari, M.; Pieri, M. Two-months quality of life of COVID-19 invasively ventilated survivors; an Italian single-center study. Acta Anaesthesiol. Scand. 2021, 65, 912–920. [Google Scholar] [CrossRef]
- Bayrak, M.; Çadirci, K. The associations of life quality, depression, and cognitive impairment with mortality in older adults with COVID-19: A prospective, observational study. Acta Clin. Belg. 2021, 77, 588–595. [Google Scholar] [CrossRef]
- Tomasoni, D.; Bai, F.; Castoldi, R.; Barbanotti, D.; Falcinella, C.; Mulè, G.; Mondatore, D.; Tavelli, A.; Vegni, E.; Marchetti, G. Anxiety and depression symptoms after virological clearance of COVID-19: A cross-sectional study in Milan, Italy. J. Med. Virol. 2021, 93, 1175–1179. [Google Scholar] [CrossRef]
- Raman, B.; Cassar, M.P.; Tunnicliffe, E.M.; Filippini, N.; Griffanti, L.; Alfaro-Almagro, F.; Okell, T.; Sheerin, F.; Xie, C.; Mahmod, M. Medium-term effects of SARS-CoV-2 infection on multiple vital organs, exercise capacity, cognition, quality of life and mental health, post-hospital discharge. EClinicalMedicine 2021, 31, 100683. [Google Scholar] [CrossRef]
- Kas, A.; Soret, M.; Pyatigoskaya, N.; Habert, M.-O.; Hesters, A.; Le Guennec, L.; Paccoud, O.; Bombois, S.; Delorme, C. The cerebral network of COVID-19-related encephalopathy: A longitudinal voxel-based 18F-FDG-PET study. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 2543–2557. [Google Scholar] [CrossRef] [PubMed]
- Groiss, S.J.; Balloff, C.; Elben, S.; Brandenburger, T.; Müttel, T.; Kindgen-Milles, D.; Vollmer, C.; Feldt, T.; Kunstein, A.; Jensen, B.-E.O. Prolonged Neuropsychological Deficits, Central Nervous System Involvement, and Brain Stem Affection After COVID-19—A Case Series. Front. Neurol. 2020, 11, 574004. [Google Scholar] [CrossRef] [PubMed]
- Beaud, V.; Crottaz-Herbette, S.; Dunet, V.; Vaucher, J.; Bernard-Valnet, R.; Du Pasquier, R.; Bart, P.-A.; Clarke, S. Pattern of cognitive deficits in severe COVID-19. J. Neurol. Neurosurg. Psychiatry 2021, 92, 567–568. [Google Scholar] [CrossRef] [PubMed]
- De Lorenzo, R.; Conte, C.; Lanzani, C.; Benedetti, F.; Roveri, L.; Mazza, M.G.; Brioni, E.; Giacalone, G.; Canti, V.; Sofia, V.; et al. Residual clinical damage after COVID-19: A retrospective and prospective observational cohort study. PLoS ONE 2020, 15, e0239570. [Google Scholar] [CrossRef] [PubMed]
- Negrini, F.; Ferrario, I.; Mazziotti, D.; Berchicci, M.; Bonazzi, M.; de Sire, A.; Negrini, S.; Zapparoli, L. Neuropsychological Features of Severe Hospitalized Coronavirus Disease 2019 Patients at Clinical Stability and Clues for Postacute Rehabilitation. Arch. Phys. Med. Rehabil. 2021, 102, 155–158. [Google Scholar] [CrossRef] [PubMed]
- Delorme, C.; Paccoud, O.; Kas, A.; Hesters, A.; Bombois, S.; Shambrook, P.; Boullet, A.; Doukhi, D.; Le Guennec, L.; Godefroy, N. COVID-19-related encephalopathy: A case series with brain FDG-positron-emission tomography/computed tomography findings. Eur. J. Neurol. 2020, 27, 2651–2657. [Google Scholar] [CrossRef]
- Di Pietro, D.; Comini, L.; Gazzi, L.; Luisa, A.; Vitacca, M. Neuropsychological Pattern in a Series of Post-Acute COVID-19 Patients in a Rehabilitation Unit: Retrospective Analysis and Correlation with Functional Outcomes. Int. J. Environ. Res. Public Health 2021, 18, 5917. [Google Scholar] [CrossRef]
- Jaywant, A.; Vanderlind, W.M.; Alexopoulos, G.S.; Fridman, C.B.; Perlis, R.H.; Gunning, F.M. Frequency and profile of objective cognitive deficits in hospitalized patients recovering from COVID-19. Neuropsychopharmacology 2021, 46, 2235–2240. [Google Scholar] [CrossRef]
- Pirker-Kees, A.; Platho-Elwischger, K.; Hafner, S.; Redlich, K.; Baumgartner, C. Hyposmia Is Associated with Reduced Cognitive Function in COVID-19: First Preliminary Results. Dement. Geriatr. Cogn. Disord. 2021, 50, 68–73. [Google Scholar] [CrossRef]
- Folstein, M.F.; Folstein, S.E.; McHugh, P.R. “Mini-Mental State”. A Practical Method for Grading the Cognitive State of Patients for the Clinician. J. Psychiatr. Res. 1975, 12, 189–198. [Google Scholar] [CrossRef]
- Nasreddine, Z.S.; Phillips, N.A.; Bédirian, V.; Charbonneau, S.; Whitehead, V.; Collin, I.; Cummings, J.L.; Chertkow, H. The Montreal Cognitive Assessment, MoCA: A Brief Screening Tool for Mild Cognitive Impairment. J. Am. Geriatr. Soc. 2005, 53, 695–699. [Google Scholar] [CrossRef] [PubMed]
- Linacre, J.M.; Heinemann, A.W.; Wright, B.D.; Granger, C.V.; Hamilton, B.B. The structure and stability of the functional independence measure. Arch. Phys. Med. Rehabil. 1994, 75, 127–132. [Google Scholar] [CrossRef] [PubMed]
- Reisberg, B.; Ferris, S.H.; De Leon, M.J.; Crook, T. The Global Deterioration Scale for assessment of primary degenerative dementia. Am. J. Psychiatry 1982, 139, 1136–1139. [Google Scholar] [CrossRef] [PubMed]
- Brandt, J.; Spencer, M.; Folstein, M. The telephone interview for cognitive status. Neuropsychiatry Neuropsychol. Behav. Neurol. 1988, 1, 111–117. [Google Scholar]
- Mioshi, E.; Dawson, K.; Mitchell, J.; Arnold, R.; Hodges, J.R. The Addenbrooke’s Cognitive Examination Revised (ACE-R): A brief cognitive test battery for dementia screening. Int. J. Geriatr. Psychiatry A J. Psychiatry Late Life Allied Sci. 2006, 21, 1078–1085. [Google Scholar] [CrossRef]
- Dubois, B.; Slachevsky, A.; Litvan, I.; Pillon, B. The FAB: A frontal assessment battery at bedside. Neurology 2000, 55, 1621–1626. [Google Scholar] [CrossRef]
- Reitan, R.M. The relation of the Trail Making Test to organic brain damage. J. Consult. Psychol. 1955, 19, 393–394. [Google Scholar] [CrossRef]
- Miyake, A.; Friedman, N.P.; Emerson, M.J.; Witzki, A.H.; Howerter, A.; Wager, T.D. The Unity and Diversity of Executive Functions and Their Contributions to Complex “Frontal Lobe” Tasks: A Latent Variable Analysis. Cogn. Psychol. 2000, 41, 49–100. [Google Scholar] [CrossRef]
- Smith, A. Symbol Digit Modalities Test; Western Psychological Services: Los Angeles, CA, USA, 1973. [Google Scholar]
- Brookes, R.L.; Hannesdottir, K.; Lawrence, R.; Morris, R.G.; Markus, H.S. Brief Memory and Executive Test: Evaluation of a new screening test for cognitive impairment due to small vessel disease. Age Ageing 2012, 41, 212–218. [Google Scholar] [CrossRef]
- Brandt, J. The hopkins verbal learning test: Development of a new memory test with six equivalent forms. Clin. Neuropsychol. 1991, 5, 125–142. [Google Scholar] [CrossRef]
- Delis, D.C.; Freeland, J.; Kramer, J.H.; Kaplan, E. Integrating clinical assessment with cognitive neuroscience: Construct validation of the California Verbal Learning Test. J. Consult. Clin. Psychol. 1988, 56, 123. [Google Scholar] [CrossRef] [PubMed]
- Benedet, M.J.; Alejandre, M.Á. TAVEC: Test de Aprendizaje Verbal España-Complutense; TEA Ediciones, S.A.U.: Madrid, Spain, 1998. [Google Scholar]
- Beck, A.T.; Ward, C.H.; Mendelson, M.; Mock, J.; Erbaugh, J. An inventory for measuring depression. Arch. Gen. Psychiatry 1961, 4, 561–571. [Google Scholar] [CrossRef] [PubMed]
- Spielberger, C.D. State-Trait anxiety inventory. In The Corsini Encyclopedia of Psychology; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2010. [Google Scholar]
- Hamilton, M. The Hamilton rating scale for depression. In Assessment of Depression; Springer: Berlin/Heidelberg, Germany, 1986; pp. 143–152. [Google Scholar]
- Ware, J.E., Jr. SF-36 health survey. In The Use of Psychological Testing for Treatment Planning and Outcomes Assessment; Maruish, M.E., Ed.; Lawrence Erlbaum Associates: Mahwah, NJ, USA, 1999. [Google Scholar]
- Zigmond, A.S.; Snaith, R.P. The hospital anxiety and depression scale. Acta Psychiatry. Scand. 1983, 67, 361–370. [Google Scholar] [CrossRef]
- Zung, W.W.K. Zung Self-Rating Depression Scale and Depression Status Inventory. In Assessment of Depression; Springer: Berlin/Heidelberg, Germany, 1986; pp. 221–231. [Google Scholar] [CrossRef]
- Rabin, R.; de Charro, F. EQ-SD: A measure of health status from the EuroQol Group. Ann. Med. 2001, 33, 337–343. [Google Scholar] [CrossRef] [PubMed]
- Weiss, D.S. The impact of event scale: Revised. In Cross-Cultural Assessment of Psychological Trauma and PTSD; Springer: Berlin/Heidelberg, Germany, 2007; pp. 219–238. [Google Scholar]
- Spitzer, R.L.; Kroenke, K.; Williams, J.B.; Löwe, B. A brief measure for assessing generalized anxiety disorder: The GAD-7. Arch. Intern. Med. 2006, 166, 1092–1097. [Google Scholar] [CrossRef] [PubMed]
- Lovibond, P.F.; Lovibond, S.H. The structure of negative emotional states: Comparison of the Depression Anxiety Stress Scales (DASS) with the Beck Depression and Anxiety Inventories. Behav. Res. Ther. 1995, 33, 335–343. [Google Scholar] [CrossRef]
- Amalakanti, S.; Arepalli, K.V.R.; Jillella, J.P. Cognitive assessment in asymptomatic COVID-19 subjects. Virusdisease 2021, 32, 146–149. [Google Scholar] [CrossRef]
- Ciolac, D.; Crivorucica, I.; Zota, E.; Gorincioi, N.; Efremova, D.; Manea, D.; Crivorucica, V.; Ciocanu, M.; Groppa, S.A. Extensive cerebellar involvement and cognitive impairment in COVID-19-associated acute necrotizing encephalopathy. Ther. Adv. Neurol. Disord. 2021, 14, 1756286420985175. [Google Scholar] [CrossRef]
- Woo, M.S.; Malsy, J.; Pöttgen, J.; Zai, S.S.; Ufer, F.; Hadjilaou, A.; Schmiedel, S.; Addo, M.M.; Gerloff, C.; Heesen, C.; et al. Frequent neurocognitive deficits after recovery from mild COVID-19. Brain Commun. 2020, 2, fcaa205. [Google Scholar] [CrossRef]
- Ortelli, P.; Ferrazzoli, D.; Sebastianelli, L.; Engl, M.; Romanello, R.; Nardone, R.; Bonini, I.; Koch, G.; Saltuari, L.; Quartarone, A.; et al. Neuropsychological and neurophysiological correlates of fatigue in post-acute patients with neurological manifestations of COVID-19: Insights into a challenging symptom. J. Neurol. Sci. 2021, 420, 117271. [Google Scholar] [CrossRef]
- Van den Borst, B.; Peters, J.B.; Brink, M.; Schoon, Y.; Bleeker-Rovers, C.P.; Schers, H.; van Hees, H.W.H.; van Helvoort, H.; van den Boogaard, M.; van der Hoeven, H.; et al. Comprehensive Health Assessment 3 Months After Recovery from Acute Coronavirus Disease 2019 (COVID-19). Clin. Infect. Dis. 2021, 73, e1089–e1098. [Google Scholar] [CrossRef] [PubMed]
- Vallecillo, G.; Anguera, M.; Martin, N.; Robles, M.J. Effectiveness of an Acute Care for Elders unit at a long-term care facility for frail older patients with COVID-19. Geriatr. Nurs. 2021, 42, 544–547. [Google Scholar] [CrossRef] [PubMed]
- Almeria, M.; Cejudo, J.C.; Sotoca, J.; Deus, J.; Krupinski, J. Cognitive profile following COVID-19 infection: Clinical predictors leading to neuropsychological impairment. Brain Behav. Immun. Health 2020, 9, 100163. [Google Scholar] [CrossRef]
- Chia, K.X.; Polakhare, S.; Bruno, S.D. Possible affective cognitive cerebellar syndrome in a young patient with COVID-19 CNS vasculopathy and stroke. BMJ Case Rep. 2020, 13, e237926. [Google Scholar] [CrossRef]
- Priftis, K.; Algeri, L.; Villella, S.; Spada, M.S. COVID-19 presenting with agraphia and conduction aphasia in a patient with left-hemisphere ischemic stroke. Neurol. Sci. 2020, 41, 3381–3384. [Google Scholar] [CrossRef] [PubMed]
- Mcloughlin, B.C.; Miles, A.; Webb, T.E.; Knopp, P.; Eyres, C.; Fabbri, A.; Humphries, F.; Davis, D. Functional and cognitive outcomes after COVID-19 delirium. Eur. Geriatr. Med. 2020, 11, 857–862. [Google Scholar] [CrossRef]
- Varatharaj, A.; Thomas, N.; Ellul, M.A.; Davies, N.W.; Pollak, T.A.; Tenorio, E.L.; Sultan, M.; Easton, A.; Breen, G.; Zandi, M. Neurological and neuropsychiatric complications of COVID-19 in 153 patients: A UK-wide surveillance study. Lancet Psychiatry 2020, 7, 875–882. [Google Scholar] [CrossRef]
- Pinna, P.; Grewal, P.; Hall, J.P.; Tavarez, T.; Dafer, R.M.; Garg, R.; Osteraas, N.D.; Pellack, D.R.; Asthana, A.; Fegan, K.; et al. Neurological manifestations and COVID-19: Experiences from a tertiary care center at the Frontline. J. Neurol. Sci. 2020, 415, 116969. [Google Scholar] [CrossRef]
- Zambreanu, L.; Lightbody, S.; Bhandari, M.; Hoskote, C.; Kandil, H.; Houlihan, C.F.; Lunn, M.P. A case of limbic encephalitis associated with asymptomatic COVID-19 infection. J. Neurol. Neurosurg. Psychiatry 2020, 91, 1229–1230. [Google Scholar] [CrossRef]
- Rass, V.; Beer, R.; Schiefecker, A.J.; Kofler, M.; Lindner, A.; Mahlknecht, P.; Heim, B.; Limmert, V.; Sahanic, S.; Pizzini, A.; et al. Neurological outcome and quality of life 3 months after COVID-19: A prospective observational cohort study. Eur. J. Neurol. 2021, 28, 3348–3359. [Google Scholar] [CrossRef]
- Versace, V.; Sebastianelli, L.; Ferrazzoli, D.; Romanello, R.; Ortelli, P.; Saltuari, L.; D’Acunto, A.; Porrazzini, F.; Ajello, V.; Oliviero, A.; et al. Intracortical GABAergic dysfunction in patients with fatigue and dysexecutive syndrome after COVID-19. Clin. Neurophysiol. 2021, 132, 1138–1143. [Google Scholar] [CrossRef] [PubMed]
- Blazhenets, G.; Schröter, N.; Bormann, T.; Thurow, J.; Wagner, D.; Frings, L.; Weiller, C.; Meyer, P.T.; Dressing, A.; Hosp, J.A. Slow but evident recovery from neocortical dysfunction and cognitive impairment in a series of chronic COVID-19 patients. J. Nucl. Med. 2021, 62, 910–915. [Google Scholar] [CrossRef] [PubMed]
- Olezene, C.S.; Hansen, E.; Steere, H.K.; Giacino, J.T.; Polich, G.R.; Borg-Stein, J.; Zafonte, R.D.; Schneider, J.C. Functional outcomes in the inpatient rehabilitation setting following severe COVID-19 infection. PLoS ONE 2021, 16, e0248824. [Google Scholar] [CrossRef] [PubMed]
- Yesilkaya, U.H.; Sen, M.; Balcioglu, Y.H. COVID-19-related cognitive dysfunction may be associated with transient disruption in the DLPFC glutamatergic pathway. J. Clin. Neurosci. 2021, 87, 153–155. [Google Scholar] [CrossRef] [PubMed]
- Johnsen, S.; Sattler, S.M.; Miskowiak, K.W.; Kunalan, K.; Victor, A.; Pedersen, L.; Andreassen, H.F.; Jørgensen, B.J.; Heebøll, H.; Andersen, M.B.; et al. Descriptive analysis of long COVID sequela identified in a multidisciplinary clinic serving hospitalised and non-hospitalised patients. ERJ Open Res. 2021, 7, e00205-2021. [Google Scholar] [CrossRef] [PubMed]
- Mazza, M.G.; Palladini, M.; De Lorenzo, R.; Magnaghi, C.; Poletti, S.; Furlan, R.; Ciceri, F.; Rovere-Querini, P.; Benedetti, F.; The COVID-19 BioB Outpatient Clinic Study Group. Persistent psychopathology and neurocognitive impairment in COVID-19 survivors: Effect of inflammatory biomarkers at three-month follow-up. Brain Behav. Immun. 2021, 94, 138–147. [Google Scholar] [CrossRef]
- Udina, C.; Ars, J.; Morandi, A.; Vilaró, J.; Cáceres, C.; Inzitari, M. Rehabilitation in adult post-COVID-19 patients in post-acute care with Therapeutic Exercise. J. Frailty Aging 2021, 10, 297–300. [Google Scholar] [CrossRef]
- Greco, G.I.; Noale, M.; Trevisan, C.; Zatti, G.; Pozza, M.D.; Lazzarin, M.; Haxhiaj, L.; Ramon, R.; Imoscopi, A.; Bellon, S.; et al. Increase in Frailty in Nursing Home Survivors of Coronavirus Disease 2019: Comparison with Noninfected Residents. J. Am. Med. Dir. Assoc. 2021, 22, 943–947.e3. [Google Scholar] [CrossRef]
- Peters, J.; Alhasan, S.; Vogels, C.B.; Grubaugh, N.D.; Farhadian, S.; Longbrake, E.E. MOG-associated encephalitis following SARS-COV-2 infection. Mult. Scler. Relat. Disord. 2021, 50, 102857. [Google Scholar] [CrossRef]
- Julayanont, P.; Nasreddine, Z.S. Montreal Cognitive Assessment (MoCA): Concept and Clinical Review. In Cognitive Screening Instruments; Springer: Berlin/Heidelberg, Germany, 2017; pp. 139–195. [Google Scholar] [CrossRef]
- Hoops, S.; Nazem, S.; Siderowf, A.D.; Duda, J.E.; Xie, S.X.; Stern, M.B.; Weintraub, D. Validity of the MoCA and MMSE in the detection of MCI and dementia in Parkinson disease. Neurology 2009, 73, 1738–1745. [Google Scholar] [CrossRef]
- Mikkelsen, M.E.; Christie, J.D.; Lanken, P.N.; Biester, R.C.; Thompson, B.T.; Bellamy, S.L.; Localio, A.R.; Demissie, E.; Hopkins, R.O.; Angus, D.C. The adult respiratory distress syndrome cognitive outcomes study: Long-term neuropsychological function in survivors of acute lung injury. Am. J. Respir. Crit. Care Med. 2012, 185, 1307–1315. [Google Scholar] [CrossRef] [PubMed]
- Herridge, M.S.; Moss, M.; Hough, C.L.; Hopkins, R.O.; Rice, T.W.; Bienvenu, O.J.; Azoulay, E. Recovery and outcomes after the acute respiratory distress syndrome (ARDS) in patients and their family caregivers. Intensiv. Care Med. 2016, 42, 725–738. [Google Scholar] [CrossRef] [PubMed]
- Sakusic, A.; O’Horo, J.C.; Dziadzko, M.; Volha, D.; Ali, R.; Singh, T.D.; Kashyap, R.; Farrell, A.M.; Fryer, J.D.; Petersen, R.; et al. Potentially Modifiable Risk Factors for Long-Term Cognitive Impairment After Critical Illness: A Systematic Review. In Mayo Clinic Proceedings; Elsevier: Amsterdam, The Netherlands, 2018; Volume 93, pp. 68–82. [Google Scholar] [CrossRef]
- Garg, R.K.; Paliwal, V.K.; Gupta, A. Encephalopathy in patients with COVID-19: A review. J. Med Virol. 2021, 93, 206–222. [Google Scholar] [CrossRef] [PubMed]
- Yao, L.; Li, Y.; Yin, R.; Yang, L.; Ding, N.; Li, B.; Shen, X.; Zhang, Z. Incidence and influencing factors of post-intensive care cognitive impairment. Intensiv. Crit. Care Nurs. 2021, 67, 103106. [Google Scholar] [CrossRef] [PubMed]
- Baig, A.M.; Khaleeq, A.; Ali, U.; Syeda, H. Evidence of the COVID-19 virus targeting the CNS: Tissue distribution, host–virus interaction, and proposed neurotropic mechanisms. ACS Chem. Neurosci. 2020, 11, 995–998. [Google Scholar] [CrossRef]
- Almufarrij, I.; Munro, K.J. One year on: An updated systematic review of SARS-CoV-2, COVID-19 and audio-vestibular symptoms. Int. J. Audiol. 2021, 60, 935–945. [Google Scholar] [CrossRef]
- Azab, M.A.; Hasaneen, S.F.; Hanifa, H.; Azzam, A.Y. Optic neuritis post-COVID-19 infection. A case report with meta-analysis. Interdiscip. Neurosurg. 2021, 26, 101320. [Google Scholar] [CrossRef]
- Santangelo, G.; Baldassarre, I.; Barbaro, A.; Cavallo, N.D.; Cropano, M.; Maggi, G.; Nappo, R.; Trojano, L.; Raimo, S. Subjective cognitive failures and their psychological correlates in a large Italian sample during quarantine/self-isolation for COVID-19. Neurol. Sci. 2021, 42, 2625–2635. [Google Scholar] [CrossRef]



, color corresponds to geographical area).
, color corresponds to geographical area).
| Article | Demographic/Clinical | Cognition | Psychiatric | Imaging | Summary of Tests | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Age | Sex | Severity | Comorbidity | Global | Language | Executive | Memory | Other | Depression | Anxiety | MRI | PET | EEG | CT | ||
| Amalakanti et al. [65] | √ | √ | √ | √ | √ | MoCA | ||||||||||
| Ciolac et al. [66] | √ | √ | √ | √ | MoCA, BDI | |||||||||||
| Jaywant et al. [39] | √ | √ | √ | √ | √ | √ | √ | √ | BMET | |||||||
| Alemanno et al. [8] | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | HRSD, MMSE, MoCA | ||||
| Raman et al. [31] | √ | √ | √ | √ | √ | √ | √ | √ | MoCA, GAD-7 | |||||||
| Whiteside et al. [6] | √ | √ | √ | √ | √ | √ | √ | √ | √ | Clinical examination | ||||||
| Kas et al. [32] | √ | √ | √ | √ | √ | √ | √ | MMSE and clinical examination | ||||||||
| Woo et al. [67] | √ | √ | √ | √ | TICS | |||||||||||
| Ortelli et al. [68] | √ | √ | √ | √ | √ | √ | √ | MoCA, BDI, FAB | ||||||||
| Groiss et al. [33] | √ | √ | √ | √ | √ | √ | √ | MoCA, MMSE, SDMT | ||||||||
| Van den Borst et al. [69] | √ | √ | √ | √ | √ | √ | HADS, TICS, CFQ | |||||||||
| Beaud et al. [34] | √ | √ | √ | √ | √ | √ | √ | √ | MoCA, FAB | |||||||
| Vallecillo et al. [70] | √ | √ | √ | √ | √ | Brief | ||||||||||
| Almeria et al. [71] | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | HADS, TAVEC, WMS-IV, TMT, SDMT, BNT | |||||
| Chia et al. [72] | √ | √ | √ | √ | √ | √ | √ | √ | MoCA, FIM, FAM | |||||||
| De Lorenzo et al. [35] | √ | √ | √ | √ | √ | √ | STAI-Y, MoCA | |||||||||
| Negrini et al. [36] | √ | √ | √ | √ | √ | √ | √ | STAI, MMS | ||||||||
| Priftis et al. [73] | √ | √ | √ | √ | √ | √ | Graphic and language subtests | |||||||||
| Delorme et al. [37] | √ | √ | √ | √ | √ | √ | √ | √ | √ | MMSE, FAB | ||||||
| Mcloughlin et al. [74] | √ | √ | √ | √ | √ | TICS | ||||||||||
| Varatharaj et al. [75] | √ | √ | √ | Clinical examination | ||||||||||||
| Pinna et al. [76] | √ | √ | √ | √ | √ | √ | Clinical examination | |||||||||
| Zambreanu et al. [77] | √ | √ | √ | √ | √ | √ | ACE III | |||||||||
| Ermis et al. [18] | √ | √ | √ | √ | √ | √ | √ | √ | MoCA | |||||||
| Rass et al. [78] | √ | √ | √ | √ | √ | √ | SF-36, HADS, MoCA | |||||||||
| Martillo et al. [19] | √ | √ | √ | √ | √ | √ | √ | MoCA, EQ-5D-3L | ||||||||
| Versace et al. [79] | √ | √ | √ | √ | √ | √ | FAB | |||||||||
| Blazhenets et al. [80] | √ | √ | √ | √ | √ | MoCA | ||||||||||
| Olezene et al. [81] | √ | √ | √ | √ | √ | MoCA | ||||||||||
| Heyns et al. [20] | √ | √ | √ | √ | √ | HADS, MoCA | ||||||||||
| Hosp et al. [21] | √ | √ | √ | √ | √ | √ | √ | √ | √ | MoCA, TMT, HVLT | ||||||
| Yesilkaya et al. [82] | √ | √ | √ | √ | √ | √ | √ | √ | √ | GDS, FAB, CVLT | ||||||
| Pirker-Kees et al. [40] | √ | √ | √ | √ | MoCA | |||||||||||
| Pistarini et al. [22] | √ | √ | √ | √ | √ | MoCA | ||||||||||
| Di Pietro et al. [38] | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | MMSE, FAB, TMT, memory subtests | |||||
| Rousseau et al. [23] | √ | √ | √ | √ | √ | √ | √ | MoCA, EQ-5D-3L, HAD, IES-R | ||||||||
| Patel et al. [24] | √ | √ | √ | √ | √ | MoCA | ||||||||||
| Johnsen et al. [83] | √ | √ | √ | √ | √ | √ | SCIP, TMT | |||||||||
| Bayrak et al. [29] | √ | √ | √ | √ | √ | √ | GDS, MMSE | |||||||||
| Mazza et al. [84] | √ | √ | √ | √ | √ | √ | √ | ZSDS | ||||||||
| Solaro et al. [25] | √ | √ | √ | √ | √ | √ | √ | HADS, MoCA | ||||||||
| Imamura et al. [26] | √ | √ | √ | √ | √ | √ | √ | DASS-21, MoCA, FIM | ||||||||
| Udina et al. [85] | √ | √ | √ | √ | √ | √ | MoCA, SDMT | |||||||||
| Greco et al. [86] | √ | √ | √ | √ | MMSE | |||||||||||
| Monti et al. [28] | √ | √ | √ | √ | √ | √ | √ | HADS, MMSE, EQ-5D-3L | ||||||||
| Peters et al. [87] | √ | √ | √ | √ | √ | √ | MoCA | |||||||||
| Jain et al. [27] | √ | √ | √ | √ | √ | √ | √ | MoCA | ||||||||
| Tomasoni et al. [30] | √ | √ | √ | √ | √ | √ | √ | MMSE, HADS | ||||||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jacot de Alcântara, I.; Nuber-Champier, A.; Voruz, P.; Cionca, A.; Assal, F.; Péron, J.A. Cognitive Deficits in the Acute Phase of COVID-19: A Review and Meta-Analysis. J. Clin. Med. 2023, 12, 762. https://doi.org/10.3390/jcm12030762
Jacot de Alcântara I, Nuber-Champier A, Voruz P, Cionca A, Assal F, Péron JA. Cognitive Deficits in the Acute Phase of COVID-19: A Review and Meta-Analysis. Journal of Clinical Medicine. 2023; 12(3):762. https://doi.org/10.3390/jcm12030762
Chicago/Turabian StyleJacot de Alcântara, Isabele, Anthony Nuber-Champier, Philippe Voruz, Alexandre Cionca, Frederic Assal, and Julie A. Péron. 2023. "Cognitive Deficits in the Acute Phase of COVID-19: A Review and Meta-Analysis" Journal of Clinical Medicine 12, no. 3: 762. https://doi.org/10.3390/jcm12030762
APA StyleJacot de Alcântara, I., Nuber-Champier, A., Voruz, P., Cionca, A., Assal, F., & Péron, J. A. (2023). Cognitive Deficits in the Acute Phase of COVID-19: A Review and Meta-Analysis. Journal of Clinical Medicine, 12(3), 762. https://doi.org/10.3390/jcm12030762

