Which Biomarker(s) Augment the Diagnostic Value of the Positive Exercise Electrocardiography Test: Systemic Inflammatory Index, Plasma Atherogenic Index, or Monocyte/HDL-C Ratio?
Abstract
1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Authors/Task Force Members; ESC Committee for Practice Guidelines (CPG); ESC National Cardiac Societies. 2019 ESC/EAS guidelines for the management of dyslipidaemias: Lipid modification to reduce cardiovascular risk. Atherosclerosis 2019, 290, 140–205. [Google Scholar] [CrossRef] [PubMed]
- Knuuti, J.; Wijns, W.; Saraste, A.; Capodanno, D.; Barbato, E.; Funck-Brentano, C.; Prescott, E.; Storey, R.F.; Deaton, C.; Cuisset, T.; et al. 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes: The Task Force for the diagnosis and management of chronic coronary syndromes of the European Society of Cardiology (ESC). Eur. Heart J. 2020, 41, 407–477. [Google Scholar] [CrossRef] [PubMed]
- Gianrossi, R.; Detrano, R.; Mulvihill, D.; Lehmann, K.; Dubach, P.; Colombo, A.; McArthur, D.; Froelicher, V. Exercise-induced ST depression in the diagnosis of coronary artery disease. A meta-analysis. Circulation 1989, 80, 87–98. [Google Scholar] [CrossRef] [PubMed]
- Roifman, I.; Wijeysundera, H.C.; Austin, P.C.; Rezai, M.R.; Wright, G.A.; Tu, J.V. Comparison of Anatomic and Clinical Outcomes in Patients Undergoing Alternative Initial Noninvasive Testing Strategies for the Diagnosis of Stable Coronary Artery Disease. J. Am. Heart Assoc. 2017, 6, e005462. [Google Scholar] [CrossRef] [PubMed]
- Hu, B.; Yang, X.R.; Xu, Y.; Sun, Y.F.; Sun, C.; Guo, W.; Zhang, X.; Wang, W.M.; Qiu, S.J.; Zhou, J.; et al. Systemic immune-inflammation index predicts prognosis of patients after curative resection for hepatocellular carcinoma. Clin. Cancer Res. 2014, 20, 6212–6222. [Google Scholar] [CrossRef]
- Yang, Y.L.; Wu, C.H.; Hsu, P.F.; Chen, S.C.; Huang, S.S.; Chan, W.L.; Lin, S.J.; Chou, C.Y.; Chen, J.W.; Pan, J.P.; et al. Systemic immune-inflammation index (SII) predicted clinical outcome in patients with coronary artery disease. Eur. J. Clin. Investig. 2020, 50, e13230. [Google Scholar] [CrossRef]
- Gur, D.O.; Efe, M.M.; Alpsoy, S.; Akyüz, A.; Uslu, N.; Çelikkol, A.; Gur, O. Systemic Immune-Inflammatory Index as a Determinant of Atherosclerotic Burden and High-Risk Patients with Acute Coronary Syndromes. Arq. Bras. Cardiol. 2022, 119, 382–390. [Google Scholar] [CrossRef]
- Liu, Y.; Ye, T.; Chen, L.; Jin, T.; Sheng, Y.; Wu, G.; Zong, G. Systemic immune-inflammation index predicts the severity of coronary stenosis in patients with coronary heart disease. Coron. Artery Dis. 2021, 32, 715–720. [Google Scholar] [CrossRef]
- Dziedzic, E.A.; Gąsior, J.S.; Tuzimek, A.; Paleczny, J.; Junka, A.; Dąbrowski, M.; Jankowski, P. Investigation of the Associations of Novel Inflammatory Biomarkers-Systemic Inflammatory Index (SII) and Systemic Inflammatory Response Index (SIRI)-With the Severity of Coronary Artery Disease and Acute Coronary Syndrome Occurrence. Int. J. Mol. Sci. 2022, 23, 9553. [Google Scholar] [CrossRef]
- Han, S.H.; Nicholls, S.J.; Sakuma, I.; Zhao, D.; Koh, K.K. Hypertriglyceridemia and Cardiovascular Diseases: Revisited. Korean Circ. J. 2016, 46, 135–144. [Google Scholar] [CrossRef]
- Goldbourt, U.; Yaari, S.; Medalie, J.H. Isolated low HDL cholesterol as a risk factor for coronary heart disease mortality. A 21-year follow-up of 8000 men. Arterioscler. Thromb. Vasc. Biol. 1997, 17, 107–113. [Google Scholar] [CrossRef] [PubMed]
- Shen, S.; Lu, Y.; Qi, H.; Li, F.; Shen, Z.; Wu, L.; Yang, C.; Wang, L.; Shui, K.; Wang, Y.; et al. Association between ideal cardiovascular health and the atherogenic index of plasma. Medicine 2016, 95, e3866. [Google Scholar] [CrossRef] [PubMed]
- Niroumand, S.; Khajedaluee, M.; Khadem-Rezaiyan, M.; Abrishami, M.; Juya, M.; Khodaee, G.; Dadgarmoghaddam, M. Atherogenic Index of Plasma (AIP): A marker of cardiovascular disease. Med. J. Islam Repub. Iran. 2015, 29, 240. [Google Scholar] [PubMed]
- Fernández-Macías, J.C.; Ochoa-Martínez, A.C.; Varela-Silva, J.A.; Pérez-Maldonado, I.N. Atherogenic Index of Plasma: Novel Predictive Biomarker for Cardiovascular Illnesses. Arch. Med. Res. 2019, 50, 285–294. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Zhou, Q.; Wei, Z.; Wei, J.; Cui, M. Atherogenic Index of Plasma and Coronary Artery Disease in the Adult Population: A Meta-Analysis. Front. Cardiovasc. Med. 2021, 8, 817441, Erratum in: Front. Cardiovasc. Med. 2023, 10, 1153914. https://doi.org/10.3389/fcvm.2023.1153914. [Google Scholar] [CrossRef]
- Ulloque-Badaracco, J.R.; Hernandez-Bustamante, E.A.; Alarcon-Braga, E.A.; Mosquera-Rojas, M.D.; Campos-Aspajo, A.; Salazar-Valdivia, F.E.; Valdez-Cornejo, V.A.; Benites-Zapata, V.A.; Herrera-Añazco, P.; Valenzuela-Rodríguez, G.; et al. Atherogenic index of plasma and coronary artery disease: A systematic review. Open Med. 2022, 17, 1915–1926. [Google Scholar] [CrossRef]
- Jiang, M.; Yang, J.; Zou, H.; Li, M.; Sun, W.; Kong, X. Monocyte-to-high-density lipoprotein-cholesterol ratio (MHR) and the risk of all-cause and cardiovascular mortality: A nationwide cohort study in the United States. Lipids Health Dis. 2022, 21, 30. [Google Scholar] [CrossRef]
- Ganjali, S.; Gotto, A.M.; Ruscica, M., Jr.; Atkin, S.L.; Butler, A.E.; Banach, M.; Sahebkar, A. Monocyte-to-HDL-cholesterol ratio as a prognostic marker in cardiovascular diseases. Cell Physiol. 2018, 233, 9237–9246. [Google Scholar] [CrossRef]
- Akboga, M.K.; Balci, K.G.; Maden, O.; Ertem, A.G.; Kirbas, O.; Yayla, C.; Acar, B.; Aras, D.; Kisacik, H.; Aydogdu, S. Usefulness of monocyte to HDL-cholesterol ratio to predict high SYNTAX score in patients with stable coronary artery disease. Biomark Med. 2016, 10, 375–383. [Google Scholar] [CrossRef]
- Cetin, M.S.; Ozcan Cetin, E.H.; Kalender, E.; Aydin, S.; Topaloglu, S.; Kisacik, H.L.; Temizhan, A. Monocyte to HDL Cholesterol Ratio Predicts Coronary Artery Disease Severity and Future Major Cardiovascular Adverse Events in Acute Coronary Syndrome. Heart Lung Circ. 2016, 25, 1077–1086. [Google Scholar] [CrossRef]
- Liu, H.T.; Jiang, Z.H.; Yang, Z.B.; Quan, X.Q. Monocyte to high-density lipoprotein ratio predict long-term clinical outcomes in patients with coronary heart disease: A meta-analysis of 9 studies. Medicine 2022, 101, e30109. [Google Scholar] [CrossRef] [PubMed]
- Kanbay, M.; Solak, Y.; Unal, H.U.; Kurt, Y.G.; Gok, M.; Cetinkaya, H.; Karaman, M.; Oguz, Y.; Eyileten, T.; Vural, A.; et al. Monocyte count/HDL cholesterol ratio and cardiovascular events in patients with chronic kidney disease. Int. Urol. Nephrol. 2014, 46, 1619–1625. [Google Scholar] [CrossRef] [PubMed]
- Fletcher, G.F.; Ades, P.A.; Kligfield, P.; Arena, R.; Balady, G.J.; Bittner, V.A.; Coke, L.A.; Fleg, J.L.; Forman, D.E.; Gerber, T.C.; et al. Exercise standards for testing and training: A scientific statement from the American Heart Association. Circulation 2013, 128, 873–934. [Google Scholar] [CrossRef]
- Hansson, G.K. Inflammation, atherosclerosis, and coronary artery disease. N. Engl. J. Med. 2005, 352, 1685–1695. [Google Scholar] [CrossRef]
- Tani, S.; Matsumoto, M.; Anazawa, T.; Kawamata, H.; Furuya, S.; Takahashi, H.; Iida, K.; Washio, T.; Kumabe, N.; Kobori, M.; et al. Development of a model for prediction of coronary atherosclerotic regression: Evaluation of high-density lipoprotein cholesterol level and peripheral blood monocyte count. Heart Vessels 2012, 27, 143–150. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Li, P.; Ye, J. Lipid homeostasis and the formation of macrophage-derived foam cells in atherosclerosis. Protein Cell 2012, 3, 173–181. [Google Scholar] [CrossRef]
- Ghattas, A.; Griffiths, H.R.; Devitt, A.; Lip, G.Y.; Shantsila, E. Monocytes in coronary artery disease and atherosclerosis: Where are we now? J. Am. Coll. Cardiol. 2013, 62, 1541–1551. [Google Scholar] [CrossRef]
- Gratchev, A.; Sobenin, I.; Orekhov, A.; Kzhyshkowska, J. Monocytes as a diagnostic marker of cardiovascular diseases. Immunobiology 2012, 217, 476–482. [Google Scholar] [CrossRef]
- Toth, P.P.; Barter, P.J.; Rosenson, R.S.; Boden, W.E.; Chapman, M.J.; Cuchel, M.; D’Agostino, R.B.; Davidson, M.H., Sr.; Davidson, W.S.; Heinecke, J.W.; et al. High-density lipoproteins: A consensus statement from the National Lipid Association. J. Clin. Lipidol. 2013, 7, 484–525. [Google Scholar] [CrossRef]
- Tardif, J.C.; Grégoire, J.; L’Allier, P.L.; Ibrahim, R.; Lespérance, J.; Heinonen, T.M.; Kouz, S.; Berry, C.; Basser, R.; Lavoie, M.A.; et al. Effects of reconstituted high-density lipoprotein infusions on coronary atherosclerosis: A randomized controlled trial. JAMA 2007, 297, 1675–1682. [Google Scholar] [CrossRef]
- Emerging Risk Factors Collaboration; Di Angelantonio, E.; Sarwar, N.; Perry, P.; Kaptoge, S.; Ray, K.K.; Thompson, A.; Wood, A.M.; Lewington, S.; Sattar, N.; et al. Major lipids, apolipoproteins, and risk of vascular disease. JAMA 2009, 302, 1993–2000. [Google Scholar] [CrossRef] [PubMed]
- Murphy, A.J.; Chin-Dusting, J.P.; Sviridov, D.; Woollard, K.J. The anti inflammatory effects of high density lipoproteins. Curr. Med. Chem. 2009, 16, 667–675. [Google Scholar] [CrossRef] [PubMed]
- Murphy, A.J.; Woollard, K.J. High-density lipoprotein: A potent inhibitor of inflammation. Clin. Exp. Pharmacol. Physiol. 2010, 37, 710–718. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, L.; Jia, L.; Lu, B.; Gu, G.; Bai, L.; Cui, W. The Monocyte to High-Density Lipoprotein Cholesterol Ratio in the Prediction for Atherosclerosis: A Retrospective Study in Adult Chinese Participants. Lipids 2021, 56, 69–80. [Google Scholar] [CrossRef] [PubMed]
- Yan, S.; Sha, S.; Wang, D.; Li, S.; Jia, Y. Association between monocyte to high-density lipoprotein ratio and coronary heart disease in US adults in the National Health and Nutrition Examination Surveys 2009–2018. Coron. Artery Dis. 2023, 34, 111–118. [Google Scholar] [CrossRef]
- Kundi, H.; Kiziltunc, E.; Cetin, M.; Cicekcioglu, H.; Cetin, Z.G.; Cicek, G.; Ornek, E. Association of monocyte/HDL-C ratio with SYNTAX scores in patients with stable coronary artery disease. Zusammenhang des Monozyten-/HDL-C-Quotienten mit dem SYNTAX-Score bei Patienten mit stabiler koronarer Herzkrankheit. Herz 2016, 41, 523–529. [Google Scholar] [CrossRef] [PubMed]
- Candemir, M.; Kiziltunç, E.; Nurkoç, S.; Şahinarslan, A. Relationship Between Systemic Immune-Inflammation Index (SII) and the Severity of Stable Coronary Artery Disease. Angiology 2021, 72, 575–581. [Google Scholar] [CrossRef]
- Erdoğan, M.; Erdöl, M.A.; Öztürk, S.; Durmaz, T. Systemic immune-inflammation index is a novel marker to predict functionally significant coronary artery stenosis. Biomark Med. 2020, 14, 1553–1561. [Google Scholar] [CrossRef]
- Wang, L.; Chen, F.; Xiaoqi, C.; Yujun, C.; Zijie, L. Atherogenic Index of Plasma Is an Independent Risk Factor for Coronary Artery Disease and a Higher SYNTAX Score. Angiology 2021, 72, 181–186. [Google Scholar] [CrossRef]
- Newman, R.J.; Darrow, M.; Cummings, D.M.; King, V.; Whetstone, L.; Kelly, S.; Jalonen, E. Predictive value of exercise stress testing in a family medicine population. J. Am. Board Fam. Med. 2008, 21, 531–538. [Google Scholar] [CrossRef]
- Taylor, C.A.; Fonte, T.A.; Min, J.K. Computational fluid dynamics applied to cardiac computed tomography for noninvasive quantification of fractional flow reserve: Scientific basis. J. Am. Coll. Cardiol. 2013, 61, 2233–2241. [Google Scholar] [CrossRef] [PubMed]
- Budoff, M.J.; Dowe, D.; Jollis, J.G.; Gitter, M.; Sutherland, J.; Halamert, E.; Scherer, M.; Bellinger, R.; Martin, A.; Benton, R.; et al. Diagnostic performance of 64-multidetector row coronary computed tomographic angiography for evaluation of coronary artery stenosis in individuals without known coronary artery disease: Results from the prospective multicenter ACCURACY (Assessment by Coronary Computed Tomographic Angiography of Individuals Undergoing Invasive Coronary Angiography) trial. J. Am. Coll. Cardiol. 2008, 52, 1724–1732. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Qiu, H.; Hou, Z.; Zheng, J.; Li, J.; Yin, Y.; Gao, R. Additional value of deep learning computed tomographic angiography-based fractional flow reserve in detecting coronary stenosis and predicting outcomes. Acta Radiol. 2022, 63, 133–140. [Google Scholar] [CrossRef] [PubMed]
- Greenwood, J.P.; Maredia, N.; Younger, J.F.; Brown, J.M.; Nixon, J.; Everett, C.C.; Bijsterveld, P.; Ridgway, J.P.; Radjenovic, A.; Dickinson, C.J.; et al. Cardiovascular magnetic resonance and single-photon emission computed tomography for diagnosis of coronary heart disease (CE-MARC): A prospective trial. Lancet 2012, 379, 453–460. [Google Scholar] [CrossRef]
- Fathala, A.; Aboulkheir, M.; Shoukri, M.M.; Alsergani, H. Diagnostic accuracy of 13N-ammonia myocardial perfusion imaging with PET-CT in the detection of coronary artery disease. Cardiovasc. Diagn. Ther. 2019, 9, 35–42. [Google Scholar] [CrossRef]
- Woodward, W.; Dockerill, C.; McCourt, A.; Upton, R.; O’Driscoll, J.; Balkhausen, K.; Chandrasekaran, B.; Firoozan, S.; Kardos, A.; Wong, K.; et al. Real-world performance and accuracy of stress echocardiography: The EVAREST observational multi-centre study. Eur. Heart J. Cardiovasc. Imaging 2022, 23, 689–698. [Google Scholar] [CrossRef]
- Molinaro, A.M. Diagnostic tests: How to estimate the positive predictive value. Neurooncol. Pract. 2015, 2, 162–166. [Google Scholar] [CrossRef][Green Version]
- Froelicher, V.F.; Maron, D. Exercise testing and ancillary techniques to screen for coronary heart disease. Prog. Cardiovasc. Dis. 1981, 24, 261–274. [Google Scholar] [CrossRef]
- van de Sande, D.A.; Breuer, M.A.; Kemps, H.M. Utility of Exercise Electrocardiography in Pre-participation Screening in Asymptomatic Athletes: A Systematic Review. Sports Med. 2016, 46, 1155–1164. [Google Scholar] [CrossRef]
- Levisman, J.M.; Aspry, K.; Amsterdam, E.A. Improving the positive predictive value of exercise testing in women for coronary artery disease. Am. J. Cardiol. 2012, 110, 1619–1622. [Google Scholar] [CrossRef]
Group 1 (n = 434) (NCA and n-obsCAD) | Group 2 (n = 106) (obsCAD) | p | |
---|---|---|---|
Age | 54.4 ± 9.6 | 59.4 ± 9.4 | <0.001 |
Sex (F/M) | 190/244 (%43.8/%56.2) | 21/85 (%19.8/%80.2) | <0.001 |
BMI | 30.1 ± 5.2 | 29.1 ± 4.4 | 0.067 |
SBP | 117.6 ± 13.6 | 120.1 ± 15.1 | 0.128 |
DBP | 76.5 ± 7.8 | 77.4 ± 7.3 | 0.292 |
Heart rate. | 86.4 ± 15 | 87.3 ± 13.8 | 0.562 |
HT | 88 (%20.3) | 16 (%15.1) | 0.282 |
DM | 60 (%13.8) | 27 (%25.5) | 0.003 |
Glucose | 102.5 [93–122] | 109.5 [95.5–146.8] | 0.006 |
GFR | 95.3 ± 14.5 | 90.1 ± 13.5 | 0.001 |
LDL-C | 117.7 ± 35.8 | 125.9 ± 34.6 | 0.033 |
Triglyceride | 157 [112.8–223] | 163 [126.8–249.5] | 0.160 |
HDL-C | 43 [37–51] | 40.5 [34–47] | 0.010 |
WBC | 7254.8 ± 1823.8 | 7666.04 ± 2047.0 | 0.043 |
Neutrophil | 4304.2 ± 1421.3 | 4541.23 ± 1542.2 | 0.131 |
Lymphocyte | 2210.1 ± 627.9 | 2305.3 ± 748.7 | 0.179 |
Monocyte | 545.1 ± 163.6 | 577.0 ± 193.5 | 0.120 |
Hemoglobin | 14.6 ± 1.7 | 14.9 ± 1.7 | 0.162 |
Platelet | 255.6 ± 55.5 | 261.3 ± 70.9 | 0.446 |
MHR | 13.1 ± 5.5 | 14.7 ± 6.3 | 0.019 |
SII | 479 [361.8–632.3] | 478 [345.3–660.8] | 0.848 |
PAI | 0.21 ± 0.269 | 0.259 ± 0.274 | 0.094 |
Factor | Odds Ratio (%95 CI) | p |
---|---|---|
Age | 1058 (1034–1084) | <0.001 |
Sex (Male vs. Female) | 3652 (2137–6239) | <0.001 |
DM | 2239 (1285–3903) | 0.004 |
LDL-C | 1009 (1002–1015) | 0.007 |
obsCAD | SYNTAX ≤ 22 (n = 82) | SYNTAX 23≤ (n = 24) | p |
---|---|---|---|
PAI | 0.251 ± 0.275 | 0.290 ± 0.273 | 0.543 |
SII | 478 [369–652] | 471 [293.5–815.3] | 0.711 |
MHR | 14.5 ± 6.1 | 15.3 ± 7.1 | 0.616 |
(a) | |||||||
Treatment Strategy n = 106 (%100) | OMT n = 14 (%13) | PCI n = 57 (%54) | CABG n = 35 (%33) | ||||
(b) | |||||||
Obstructed Vessel n = 189 (%100) | LAD n = 70 (%37) | CX n = 59 (%31) | RCA n = 49 (%26) | IMA n = 9 (%5) | LMCA n = 2 (%1) | ||
Treatment Strategy | |||||||
OMT | 8 | 6 | 5 | 2 | 0 | ||
PCI | 29 | 26 | 24 | 2 | 0 | ||
CABG | 33 | 27 | 20 | 5 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ergun, G.; Demirelli, S. Which Biomarker(s) Augment the Diagnostic Value of the Positive Exercise Electrocardiography Test: Systemic Inflammatory Index, Plasma Atherogenic Index, or Monocyte/HDL-C Ratio? J. Clin. Med. 2023, 12, 6440. https://doi.org/10.3390/jcm12206440
Ergun G, Demirelli S. Which Biomarker(s) Augment the Diagnostic Value of the Positive Exercise Electrocardiography Test: Systemic Inflammatory Index, Plasma Atherogenic Index, or Monocyte/HDL-C Ratio? Journal of Clinical Medicine. 2023; 12(20):6440. https://doi.org/10.3390/jcm12206440
Chicago/Turabian StyleErgun, Gokhan, and Selami Demirelli. 2023. "Which Biomarker(s) Augment the Diagnostic Value of the Positive Exercise Electrocardiography Test: Systemic Inflammatory Index, Plasma Atherogenic Index, or Monocyte/HDL-C Ratio?" Journal of Clinical Medicine 12, no. 20: 6440. https://doi.org/10.3390/jcm12206440
APA StyleErgun, G., & Demirelli, S. (2023). Which Biomarker(s) Augment the Diagnostic Value of the Positive Exercise Electrocardiography Test: Systemic Inflammatory Index, Plasma Atherogenic Index, or Monocyte/HDL-C Ratio? Journal of Clinical Medicine, 12(20), 6440. https://doi.org/10.3390/jcm12206440