A Deep Learning System Using Optical Coherence Tomography Angiography to Detect Glaucoma and Anterior Ischemic Optic Neuropathy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Setting
2.2. Observation Procedure
2.3. Main Outcome Measure
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
- Dataset preparation
- Cross-validation
- Network architecture
- CNN training
- Testing and performance metric
- Attribution maps
References
- Steinmetz, J.D.; Bourne, R.R.; Briant, P.S.; Flaxman, S.R.; Taylor, H.R.; Jonas, J.B.; Abdoli, A.A.; Abrha, W.A.; Abualhasan, A.; Abu-Gharbieh, E.G.; et al. Causes of blindness and vision impairment in 2020 and trends over 30 years, and prevalence of avoidable blindness in relation to VISION 2020: The Right to Sight: An analysis for the Global Burden of Disease Study. Lancet Glob. Health 2021, 9, e144–e160. [Google Scholar] [CrossRef]
- Tham, Y.-C.; Li, X.; Wong, T.Y.; Quigley, H.A.; Aung, T.; Cheng, C.-Y. Global Prevalence of Glaucoma and Projections of Glaucoma Burden through 2040. Ophthalmology 2014, 121, 2081–2090. [Google Scholar] [CrossRef]
- Shaikh, Y.; Yu, F.; Coleman, A.L. Burden of Undetected and Untreated Glaucoma in the United States. Am. J. Ophthalmol. 2014, 158, 1121–1129.e1. [Google Scholar] [CrossRef]
- Muehlematter, U.J.; Daniore, P.; Vokinger, K.N. Approval of artificial intelligence and machine learning-based medical devices in the USA and Europe (2015–2020): A comparative analysis. Lancet Digit. Health 2021, 3, e195–e203. [Google Scholar] [CrossRef]
- Mursch-Edlmayr, A.S.; Ng, W.S.; Diniz-Filho, A.; Sousa, D.C.; Arnould, L.; Schlenker, M.B.; Duenas-Angeles, K.; Keane, P.A.; Crowston, J.G.; Jayaram, H. Artificial Intelligence Algorithms to Diagnose Glaucoma and Detect Glaucoma Progression: Translation to Clinical Practice. Transl. Vis. Sci. Technol. 2020, 9, 55. [Google Scholar] [CrossRef] [PubMed]
- Jammal, A.A.; Thompson, A.C.; Mariottoni, E.B.; Berchuck, S.I.; Urata, C.N.; Estrela, T.; Wakil, S.M.; Costa, V.P.; Medeiros, F.A. Human Versus Machine: Comparing a Deep Learning Algorithm to Human Gradings for Detecting Glaucoma on Fundus Photographs. Am. J. Ophthalmol. 2020, 211, 123–131. [Google Scholar] [CrossRef] [PubMed]
- Mursch-Edlmayr, A.-S.; Bolz, M.; Strohmaier, C. Vascular Aspects in Glaucoma: From Pathogenesis to Therapeutic Approaches. Int J Mol Sci. 2021, 22, 4662. [Google Scholar] [CrossRef]
- WuDunn, D.; Takusagawa, H.L.; Sit, A.J.; Rosdahl, J.A.; Radhakrishnan, S.; Hoguet, A.; Han, Y.; Chen, T.C. OCT Angiography for the Diagnosis of Glaucoma. Ophthalmology 2021, 128, 1222–1235. [Google Scholar] [CrossRef] [PubMed]
- Augstburger, E.; Héron, E.; Abanou, A.; Habas, C.; Baudouin, C.; Labbé, A. Acute ischemic optic nerve disease: Pathophysiology, clinical features and management. J. Fr. Ophtalmol. 2020, 43, e41–e54. [Google Scholar] [CrossRef]
- Augstburger, E.; Zéboulon, P.; Keilani, C.; Baudouin, C.; Labbé, A. Retinal and Choroidal Microvasculature in Nonarteritic Anterior Ischemic Optic Neuropathy: An Optical Coherence Tomography Angiography Study. Investig. Ophthalmol. Vis. Sci. 2018, 59, 870–877. [Google Scholar] [CrossRef] [PubMed]
- Augstburger, E.; Ballino, A.; Keilani, C.; Robin, M.; Baudouin, C.; Labbé, A. Follow-Up of Nonarteritic Anterior Ischemic Optic Neuropathy With Optical Coherence Tomography Angiography. Investig. Opthalmol. Vis. Sci. 2021, 62, 42. [Google Scholar] [CrossRef]
- Lévêque, P.-M.; Zéboulon, P.; Brasnu, E.; Baudouin, C.; Labbé, A. Optic Disc Vascularization in Glaucoma: Value of Spectral-Domain Optical Coherence Tomography Angiography. J. Ophthalmol. 2016, 2016, 6956717. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zéboulon, P.; Lévêque, P.M.; Brasnu, E.; Aragno, V.; Hamard, P.; Baudouin, C.; Labbé, A. Effect of Surgical Intraocular Pressure Lowering on Peripapillary and Macular Vessel Density in Glaucoma Patients: An Optical Coherence Tomography Angiography Study. J. Glaucoma 2017, 26, 466–472. [Google Scholar] [CrossRef]
- Hondur, G.; Sen, E.; Budakoglu, O. Microvascular and structural alterations in the optic nerve head of advanced primary open-angle glaucoma compared with atrophic non-arteritic anterior ischemic optic neuropathy. Graefe’s Arch. Clin. Exp. Ophthalmol. 2021, 259, 1945–1953. [Google Scholar] [CrossRef] [PubMed]
- Mastropasqua, R.; Agnifili, L.; Borrelli, E.; Fasanella, V.; Brescia, L.; Di Antonio, L.; Mastropasqua, L. Optical Coherence Tomography Angiography of the Peripapillary Retina in Normal-Tension Glaucoma and Chronic Nonarteritic Anterior Ischemic Optic Neuropathy. Curr. Eye Res. 2018, 43, 778–784. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.-H.; Wu, W.-C.; Sun, M.-H.; Kao, L.-Y.; Lee, Y.-S.; Chen, H.S.-L. Comparison of the Retinal Microvascular Density Between Open Angle Glaucoma and Nonarteritic Anterior Ischemic Optic Neuropathy. Investig. Opthalmol. Vis. Sci. 2017, 58, 3350. [Google Scholar] [CrossRef]
- Fard, M.A.; Suwan, Y.; Moghimi, S.; Geyman, L.S.; Chui, T.Y.; Rosen, R.B.; Ritch, R. Pattern of peripapillary capillary density loss in ischemic optic neuropathy compared to that in primary open-angle glaucoma. PLoS ONE 2018, 13, e0189237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fard, M.A.; Fakhraee, G.; Ghahvechian, H.; Sahraian, A.; Moghimi, S.; Ritch, R. Macular Vascularity in Ischemic Optic Neuropathy Compared to Glaucoma by Projection-Resolved Optical Coherence Tomography Angiography. Am. J. Ophthalmol. 2020, 209, 27–34. [Google Scholar] [CrossRef]
- Foster, P.J. The definition and classification of glaucoma in prevalence surveys. Br. J. Ophthalmol. 2002, 86, 238–242. [Google Scholar] [CrossRef] [Green Version]
- Keltner, J.L. Classification of Visual Field Abnormalities in the Ocular Hypertension Treatment Study. Arch. Ophthalmol. 2003, 121, 643. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR); IEEE: Las Vegas, NV, USA, 2016; pp. 770–778. [Google Scholar]
- Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Fei-Fei, L. ImageNet: A large-scale hierarchical image database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition; IEEE: Miami, FL, USA, 2009; pp. 248–255. [Google Scholar]
- Ruder, S. An overview of gradient descent optimization algorithms. arXiv 2017, arXiv:1609.04747. [Google Scholar]
- Sundararajan, M.; Taly, A.; Yan, Q. Axiomatic attribution for deep networks. arXiv 2017, arXiv:1703.01365. [Google Scholar]
- Ramm, L.; Schwab, B.; Stodtmeister, R.; Hammer, M.; Sauer, L.; Spörl, E.; Pillunat, L.E.; Terai, N. Assessment of Optic Nerve Head Pallor in Primary Open-Angle Glaucoma Patients and Healthy Subjects. Curr. Eye Res. 2017, 42, 1313–1318. [Google Scholar] [CrossRef]
- Sebag, J.; Thomas, J.V.; Epstein, D.L.; Grant, W.M. Optic Disc Cupping in Arteritic Anterior Ischemic Optic Neuropathy Resembles Glaucomatous Cupping. Ophthalmology 1986, 93, 357–361. [Google Scholar] [CrossRef]
- Carpineto, P.; Mastropasqua, R.; Marchini, G.; Toto, L.; Di Nicola, M.; Di Antonio, L. Reproducibility and repeatability of foveal avascular zone measurements in healthy subjects by optical coherence tomography angiography. Br. J. Ophthalmol. 2016, 100, 671–676. [Google Scholar] [CrossRef] [PubMed]
- Adhi, M.; Filho, M.A.B.; Louzada, R.N.; Kuehlewein, L.; De Carlo, T.E.; Baumal, C.R.; Witkin, A.J.; Sadda, S.R.; Sarraf, D.; Reichel, E.; et al. Retinal Capillary Network and Foveal Avascular Zone in Eyes with Vein Occlusion and Fellow Eyes Analyzed With Optical Coherence Tomography Angiography. Investig. Opthalmol. Vis. Sci. 2016, 57, OCT486. [Google Scholar] [CrossRef]
- Freiberg, F.J.; Pfau, M.; Wons, J.; Wirth, M.A.; Becker, M.D.; Michels, S. Optical coherence tomography angiography of the foveal avascular zone in diabetic retinopathy. Graefes. Arch. Clin. Exp. Ophthalmol. 2016, 254, 1051–1058. [Google Scholar] [CrossRef] [Green Version]
- Zivkovic, M.; Dayanir, V.; Kocaturk, T.; Zlatanovic, M.; Zlatanovic, G.; Jaksic, V.; Radenkovic, M.; Jovanovic, P.; Sefic Kasumovic, S.; Golubovic, M.; et al. Foveal Avascular Zone in Normal Tension Glaucoma Measured by Optical Coherence Tomography Angiography. BioMed Res. Int. 2017, 2017, 3079141. [Google Scholar] [CrossRef] [Green Version]
- Choi, J.; Kwon, J.; Shin, J.W.; Lee, J.; Lee, S.; Kook, M.S. Quantitative optical coherence tomography angiography of macular vascular structure and foveal avascular zone in glaucoma. PLoS ONE 2017, 12, e0184948. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Igarashi, R.; Ochiai, S.; Togano, T.; Sakaue, Y.; Suetake, A.; Iikawa, R.; Honma, Y.; Miyamoto, D.; Fukuchi, T. Foveal Avascular Zone Measurement Via Optical Coherence Tomography Angiography and its Relationship With the Visual Field in Eyes With Open-angle Glaucoma. J. Glaucoma 2020, 29, 492–497. [Google Scholar] [CrossRef]
- Li, F.; Lin, F.; Gao, K.; Cheng, W.; Song, Y.; Liu, Y.; Wang, Y.M.; Lam, A.; Tham, C.C.; Cheung, C.; et al. Association of foveal avascular zone area withstructural and functional progression in glaucoma patients. Br. J. Ophthalmol. 2022, 106, 1245–1251. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.-H.; Kao, L.-Y.; Sun, M.-H.; Wu, W.-C.; Chen, H.S.-L. Retinal Vessel Density in Optical Coherence Tomography Angiography in Optic Atrophy after Nonarteritic Anterior Ischemic Optic Neuropathy. J. Ophthalmol. 2017, 2017, 9632647. [Google Scholar] [CrossRef] [PubMed]
- Chao, S.-C.; Yang, S.-J.; Chen, H.-C.; Sun, C.-C.; Liu, C.-H.; Lee, C.-Y. Early Macular Angiography among Patients with Glaucoma, Ocular Hypertension, and Normal Subjects. J. Ophthalmol. 2019, 2019, 7419470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shoji, T.; Zangwill, L.M.; Akagi, T.; Saunders, L.J.; Yarmohammadi, A.; Manalastas, P.I.C.; Penteado, R.C.; Weinreb, R.N. Progressive Macula Vessel Density Loss in Primary Open-Angle Glaucoma: A Longitudinal Study. Am. J. Ophthalmol. 2017, 182, 107–117. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Umapathi, R.M.B.; Atalay, E.; Schmetterer, L.; Husain, R.M.; Boey, P.Y.F.; Aung, T.F.; Nongpiur, M.E.M. The Effect of Medical Lowering of Intraocular Pressure on Peripapillary and Macular Blood Flow as Measured by Optical Coherence Tomography Angiography in Treatment-naive Eyes. J. Glaucoma 2021, 30, 465–472. [Google Scholar] [CrossRef]
- Shin, J.W.; Sung, K.R.; Uhm, K.B.; Jo, J.; Moon, Y.; Song, M.K.; Song, J.Y. Peripapillary Microvascular Improvement and Lamina Cribrosa Depth Reduction After Trabeculectomy in Primary Open-Angle Glaucoma. Investig. Opthalmol. Vis. Sci. 2017, 58, 5993. [Google Scholar] [CrossRef] [Green Version]
- Lee, E.J.; Lee, K.M.; Lee, S.H.; Kim, T.-W. OCT Angiography of the Peripapillary Retina in Primary Open-Angle Glaucoma. Investig. Opthalmol. Vis. Sci. 2016, 57, 6265. [Google Scholar] [CrossRef] [Green Version]
- Fard, M.A.; Yadegari, S.; Ghahvechian, H.; Moghimi, S.; Soltani-Moghaddam, R.; Subramanian, P.S. Optical Coherence Tomography Angiography of a Pale Optic Disc in Demyelinating Optic Neuritis and Ischemic Optic Neuropathy. J. Neuroophthalmol. 2019, 39, 339–344. [Google Scholar] [CrossRef]
- Yu, P.K.; Cringle, S.J.; Yu, D.-Y. Correlation between the radial peripapillary capillaries and the retinal nerve fibre layer in the normal human retina. Exp. Eye Res. 2014, 129, 83–92. [Google Scholar] [CrossRef]
- Hata, M.; Oishi, A.; Muraoka, Y.; Miyamoto, K.; Kawai, K.; Yokota, S.; Fujimoto, M.; Miyata, M.; Yoshimura, N. Structural and Functional Analyses in Nonarteritic Anterior Ischemic Optic Neuropathy: Optical Coherence Tomography Angiography Study. J. Neuroophthalmol. 2017, 37, 140–148. [Google Scholar] [CrossRef]
- Lee, E.J.; Choi, Y.J.; Kim, T.-W.; Hwang, J.-M. Comparison of the Deep Optic Nerve Head Structure between Normal-Tension Glaucoma and Nonarteritic Anterior Ischemic Optic Neuropathy. Anderson MG, ed. PLoS ONE 2016, 11, e0150242. [Google Scholar]
- Chen, J.J.; AbouChehade, J.E.; Iezzi, R.; Leavitt, J.A.; Kardon, R.H. Optical Coherence Angiographic Demonstration of Retinal Changes From Chronic Optic Neuropathies. Neuro-Ophthalmology 2017, 41, 76–83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghasemi Falavarjani, K.; Tian, J.J.; Akil, H.; Garcia, G.A.; Sadda, S.R.; Sadun, A.A. Swept-source optical coherence tomography angiography of the optic disk in optic neuropathy. Retina 2016, 36 (Suppl. S1), S168–S177. [Google Scholar] [CrossRef] [PubMed]
Glaucoma (n = 60) | NAION (n = 30) | NC (n = 40) | Glaucoma vs. NAION (p) | Glaucoma vs. NC (p) | NAION vs. NC (p) | |
---|---|---|---|---|---|---|
Demographic characteristics | ||||||
Mean age, years | 63.2 ± 13.3 | 67.6 ± 8.7 | 62.5 ± 11.4 | 0.173 | 0.858 | 0.132 |
Female/male | 21/39 | 5/25 | 27/13 | 0.135 | 0.002 * | <0.001 * |
High blood pressure, % | 26.7 | 55.2 | 32.5 | 0.011 * | 0.653 | 0.084 |
Diabetes, % | 20.0 | 20.7 | 10.0 | 1.00 | 0.266 | 0.302 |
Ischemic heart diseases, % | 5.0 | 10.3 | 7.5 | 0.387 | 0.681 | 0.690 |
OSAS, % | 5.0 | 20.7 | 2.5 | 0.054 | 0.648 | 0.036 * |
Ophthalmic characteristics | ||||||
BCVA, logMar | 0.21 ± 0.39 | 0.63 ± 0.71 | 0.02 ± 0.05 | <0.001 * | <0.001 * | <0.001 * |
IOP, mmHg | 16.3 ± 5.7 | 14.7 ± 3.3 | 14.4 ± 3.7 | 0.329 | 0.134 | 0.484 |
RNFL thickness, μm | 63.23 ± 10.87 | 70.00 ± 16.04 | 98.25 ± 9.29 | 0.058 | <0.001 * | <0.001 * |
GCC thickness, μm | 67.05 ± 10.04 | 67.79 ± 12.73 | 97.28 ± 6.07 | 0.823 | <0.001 * | <0.001 * |
Visual Field MD, dB | −18.21 ± 7.86 | −20.46 ± 6.94 | 0.10 ± 1.6 | 0.164 | <0.001 * | <0.001 * |
Sensitivity | Specificity | Accuracy | Error Rate | ROC-AUC | k | ||
---|---|---|---|---|---|---|---|
RPC | Glaucoma | 0.90 (0.79–0.96) | 0.80 (0.69–0.88) | 0.85(0.78–0.91) | 0.15 (0.09–0.22) | 0.94 (0.90–0.98) | 0.68 (0.52–0.82) |
NAION | 0.53 (0.36–0.70) | 0.94 (0.87–0.97) | 0.85 (0.78–0.91) | 0.15 (0.09–0.22) | 0.92 (0.89–0.96) | ||
NC | 0.85 (0.70–0.93) | 0.93 (0.86–0.97) | 0.91 (0.86–0.96) | 0.09 (0.04–0.14) | 0.98 (0.94–1.0) | ||
SCP | Glaucoma | 0.85 (0.74–0.92) | 0.82 (0.71–0.90) | 0.84 (0.77–0.90) | 0.17 (0.10–0.23) | 0.94 (0.90–0.98) | 0.60 (0.58–0.61) |
NAION | 0.67 (0.48–0.81) | 0.84 (0.75–0.90) | 0.80 (0.73–0.87) | 0.20 (0.13–0.27) | 0.87 (0.83–0.91) | ||
NC | 0.65(0.50–0.78) | 0.95 (0.88–0.99) | 0.86 (0.80–0.92) | 0.14 (0.08–0.20) | 0.97 (0.95–1.0) | ||
RPC + SCP | Glaucoma | 0.83 (0.75–0.88) | 0.90 (0.83–0.93) | 0.87 (0.82–0.91) | 0.14 (0.09–0.18) | 0.94 (0.92–0.96) | 0.69 (0.63–0.75) |
NAION | 0.59 (0.46–0.70) | 0.93 (0.89–0.96) | 0.86 (0.81–0.90) | 0.14 (0.10–0.19) | 0.90 (0.86–0.94) | ||
NC | 0.92 (0.84–0.97) | 0.87 (0.81–0.91) | 0.88 (0.84–0.92) | 0.12 (0.08–0.16) | 0.96 (0.96–0.97) |
Sensitivity | Specificity | Accuracy | Error Rate | k | ||
---|---|---|---|---|---|---|
Specialist 1 | Glaucoma | 0.62 (0.53–0.70) | 0.81 (0.74–0.87) | 0.72 (0.67–0.78) | 0.28 (0.22–0.33) | 0.42 (0.35–0.48) |
NAION | 0.40 (0.28–0.53) | 0.82 (0.76–0.86) | 0.72 (0.67–0.78) | 0.28 (0.22–0.33) | ||
NC | 0.86 (0.77–0.92) | 0.84 (0.78–0.88) | 0.85 (0.80–0.89) | 0.16 (0.11–0.20) | ||
Specialist 2 | Glaucoma | 0.88 (0.81–0.93) | 0.49 (0.41–0.58) | 0.67 (0.62–0.73) | 0.33 (0.27–0.38) | 0.40 (0.33–0.46) |
NAION | 0.10 (0.05–0.21) | 0.93 (0.89–0.96) | 0.75 (0.69–0.80) | 0.26 (0.20–0.31) | ||
NC | 0.69 (0.58–0.78) | 0.96 (0.92–0.98) | 0.88 (0.84–0.92) | 0.12 (0.08–0.16) |
Specialist 1 | Specialist 2 | RPC + SCP | Sp1 vs. RCP + SCP (p) | Sp2 vs. RPC + SCP (p) | |
---|---|---|---|---|---|
Sensitivity | |||||
Glaucoma | 0.62 | 0.88 | 0.83 | <0.001 * | 0.248 |
NAION | 0.40 | 0.10 | 0.59 | 0.04 * | <0.001 * |
NC | 0.86 | 0.69 | 0.92 | 0.267 | <0.001 * |
Specificity | |||||
Glaucoma | 0.81 | 0.49 | 0.90 | 0.029 * | <0.001 * |
NAION | 0.81 | 0.93 | 0.93 | 0.001 * | 1.00 |
NC | 0.83 | 0.96 | 0.86 | 0.473 | <0.001 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bunod, R.; Lubrano, M.; Pirovano, A.; Chotard, G.; Brasnu, E.; Berlemont, S.; Labbé, A.; Augstburger, E.; Baudouin, C. A Deep Learning System Using Optical Coherence Tomography Angiography to Detect Glaucoma and Anterior Ischemic Optic Neuropathy. J. Clin. Med. 2023, 12, 507. https://doi.org/10.3390/jcm12020507
Bunod R, Lubrano M, Pirovano A, Chotard G, Brasnu E, Berlemont S, Labbé A, Augstburger E, Baudouin C. A Deep Learning System Using Optical Coherence Tomography Angiography to Detect Glaucoma and Anterior Ischemic Optic Neuropathy. Journal of Clinical Medicine. 2023; 12(2):507. https://doi.org/10.3390/jcm12020507
Chicago/Turabian StyleBunod, Roxane, Mélanie Lubrano, Antoine Pirovano, Géraldine Chotard, Emmanuelle Brasnu, Sylvain Berlemont, Antoine Labbé, Edouard Augstburger, and Christophe Baudouin. 2023. "A Deep Learning System Using Optical Coherence Tomography Angiography to Detect Glaucoma and Anterior Ischemic Optic Neuropathy" Journal of Clinical Medicine 12, no. 2: 507. https://doi.org/10.3390/jcm12020507
APA StyleBunod, R., Lubrano, M., Pirovano, A., Chotard, G., Brasnu, E., Berlemont, S., Labbé, A., Augstburger, E., & Baudouin, C. (2023). A Deep Learning System Using Optical Coherence Tomography Angiography to Detect Glaucoma and Anterior Ischemic Optic Neuropathy. Journal of Clinical Medicine, 12(2), 507. https://doi.org/10.3390/jcm12020507