Devices and Treatments to Address Low Adherence in Glaucoma Patients: A Narrative Review
Abstract
:1. Introduction
2. Materials and Methods
3. Medical Treatments
3.1. Preservative-Free Drops
3.2. Sustained Drug Delivery Systems
3.2.1. Nanoparticles
3.2.2. Contact Lenses
3.2.3. Extraocular Inserts
3.2.4. Punctal Delivery Systems
3.2.5. The Periocular Drug Delivery System
3.2.6. Intraocular/Intracameral Drug Delivery
4. Monitoring Devices and Smart Drug Delivery Systems
5. Selective Laser Trabeculoplasty
6. Minimally Invasive Glaucoma Surgery
7. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kass, M.A.; Heuer, D.K.; Higginbotham, E.J.; Johnson, C.A.; Keltner, J.L.; Miller, J.P.; Parrish, R.K., II; Wilson, M.R.; Gordon, M.O. The Ocular Hypertension Treatment Study: A randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma. Arch. Ophthalmol. 2002, 120, 701–713. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agis Investigators. The Advanced Glaucoma Intervention Study (AGIS): 7. The relationship between control of intraocular pressure and visual field deterioration. Am. J. Ophthalmol. 2000, 130, 429–440. [Google Scholar] [CrossRef] [PubMed]
- The effectiveness of intraocular pressure reduction in the treatment of normal-tension glaucoma. Am. J. Ophthalmol. 1998, 126, 498–505. [CrossRef] [PubMed]
- Heijl, A.; Leske, M.C.; Bengtsson, B.; Hyman, L.; Bengtsson, B.; Hussein, M. Reduction of intraocular pressure and glaucoma progression: Results from the Early Manifest Glaucoma Trial. Arch. Ophthalmol. 2002, 120, 1268–1279. [Google Scholar] [CrossRef]
- European Glaucoma Society Terminology and Guidelines for Glaucoma, 4th Edition—Chapter 3: Treatment principles and optionsSupported by the EGS Foundation: Part 1: Foreword; Introduction; Glossary; Chapter 3 Treatment principles and options. Br. J. Ophthalmol. 2017, 101, 130–195. [CrossRef] [Green Version]
- Robin, A.L.; Muir, K.W. Medication adherence in patients with ocular hypertension or glaucoma. Expert Rev. Ophthalmol. 2019, 14, 199–210. [Google Scholar] [CrossRef] [Green Version]
- Hwang, D.-K.; Liu, C.J.-L.; Pu, C.-Y.; Chou, Y.-J.; Chou, P. Persistence of Topical Glaucoma Medication: A nationwide population-based cohort study in Taiwan. JAMA Ophthalmol. 2014, 132, 1446–1452. [Google Scholar] [CrossRef] [Green Version]
- Newman-Casey, P.A.; Blachley, T.; Lee, P.P.; Heisler, M.; Farris, K.B.; Stein, J.D. Patterns of Glaucoma Medication Adherence over Four Years of Follow-Up. Ophthalmology 2015, 122, 2010–2021. [Google Scholar] [CrossRef] [Green Version]
- Caprioli, J.; Coleman, A.L. Intraocular Pressure Fluctuation: A Risk Factor for Visual Field Progression at Low Intraocular Pressures in the Advanced Glaucoma Intervention Study. Ophthalmology 2008, 115, 1123–1129.e3. [Google Scholar] [CrossRef]
- De Moraes, C.G.V.; Juthani, V.J.; Liebmann, J.M.; Teng, C.C.; Tello, C.; Susanna, R., Jr.; Ritch, R. Risk Factors for Visual Field Progression in Treated Glaucoma. Arch. Ophthalmol. 2010, 129, 562–568. [Google Scholar] [CrossRef]
- Sleath, B.; Blalock, S.; Covert, D.; Stone, J.L.; Skinner, A.C.; Muir, K.; Robin, A.L. The Relationship between Glaucoma Medication Adherence, Eye Drop Technique, and Visual Field Defect Severity. Ophthalmology 2011, 118, 2398–2402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rossi, G.C.; Pasinetti, G.M.; Scudeller, L.; Radaelli, R.; Bianchi, P.E. Do Adherence Rates and Glaucomatous Visual Field Progression Correlate? Eur. J. Ophthalmol. 2011, 21, 410–414. [Google Scholar] [CrossRef] [PubMed]
- Newman-Casey, P.A.; Niziol, L.M.; Gillespie, B.W.; Janz, N.K.; Lichter, P.R.; Musch, D.C. The Association between Medication Adherence and Visual Field Progression in the Collaborative Initial Glaucoma Treatment Study. Ophthalmology 2020, 127, 477–483. [Google Scholar] [CrossRef] [PubMed]
- Tsai, J.C.; McClure, C.A.; Ramos, S.E.; Schlundt, D.G.; Pichert, J.W. Compliance Barriers in Glaucoma: A Systematic Classification. Eur. J. Gastroenterol. Hepatol. 2003, 12, 393–398. [Google Scholar] [CrossRef] [PubMed]
- Lacey, J.; Cate, H.T.; Broadway, D.C. Barriers to adherence with glaucoma medications: A qualitative research study. Eye 2009, 23, 924–932. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Newman-Casey, P.A.; Robin, A.L.; Blachley, T.; Farris, K.; Heisler, M.; Resnicow, K.; Lee, P.P. The Most Common Barriers to Glaucoma Medication Adherence: A Cross-Sectional Survey. Ophthalmology 2015, 122, 1308–1316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robin, A.L.; Novack, G.D.; Covert, D.W.; Crockett, R.S.; Marcic, T.S. Adherence in Glaucoma: Objective Measurements of Once-Daily and Adjunctive Medication Use. Am. J. Ophthalmol. 2007, 144, 533–540.e2. [Google Scholar] [CrossRef]
- Hou, C.-H.; Pu, C. Medication Adherence in Patients with Glaucoma and Disability. JAMA Ophthalmol. 2021, 139, 1292–1298. [Google Scholar] [CrossRef]
- Tapply, I.; Broadway, D.C. Improving Adherence to Topical Medication in Patients with Glaucoma. Patient Prefer. Adherence 2021, 15, 1477–1489. [Google Scholar] [CrossRef]
- Anwar, Z.; Wellik, S.R.; Galor, A. Glaucoma therapy and ocular surface disease: Current literature and recommendations. Curr. Opin. Ophthalmol. 2013, 24, 136–143. [Google Scholar] [CrossRef]
- Baudouin, C.; Labbé, A.; Liang, H.; Pauly, A.; Brignole-Baudouin, F. Preservatives in eyedrops: The good, the bad and the ugly. Prog. Retin. Eye Res. 2010, 29, 312–334. [Google Scholar] [CrossRef] [PubMed]
- Nordmann, J.-P.; Auzanneau, N.; Ricard, S.; Berdeaux, G. Vision related quality of life and topical glaucoma treatment side effects. Health Qual. Life Outcomes 2003, 1, 75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leung, E.W.; Medeiros, F.A.; Weinreb, R.N. Prevalence of Ocular Surface Disease in Glaucoma Patients. J. Glaucoma 2008, 17, 350–355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghosh, S.; O’Hare, F.; Lamoureux, E.; Vajpayee, R.B.; Crowston, J.G. Prevalence of signs and symptoms of ocular surface disease in individuals treated and not treated with glaucoma medication. Clin. Exp. Ophthalmol. 2012, 40, 675–681. [Google Scholar] [CrossRef]
- Moss, S.E.; Klein, R.; Klein, B.E. Prevalence of and Risk Factors for Dry Eye Syndrome. Arch. Ophthalmol. 2000, 118, 1264–1268. [Google Scholar] [CrossRef] [Green Version]
- Wolfram, C.; Stahlberg, E.; Pfeiffer, N. Patient-Reported Nonadherence with Glaucoma Therapy. J. Ocul. Pharmacol. Ther. 2019, 35, 223–228. [Google Scholar] [CrossRef]
- Rossi, G.C.M.; Pasinetti, G.M.; Scudeller, L.; Raimondi, M.; Lanteri, S.; Bianchi, P.E. Risk Factors to Develop Ocular Surface Disease in Treated Glaucoma or Ocular Hypertension Patients. Eur. J. Ophthalmol. 2013, 23, 296–302. [Google Scholar] [CrossRef]
- Valente, C.; Iester, M.; Corsi, E.; Rolando, M. Symptoms and Signs of Tear Film Dysfunction in Glaucomatous Patients. J. Ocul. Pharmacol. Ther. 2011, 27, 281–285. [Google Scholar] [CrossRef]
- Pisella, P.J.; Pouliquen, P.; Baudouin, C. Prevalence of ocular symptoms and signs with preserved and preservative free glaucoma medication. Br. J. Ophthalmol. 2002, 86, 418–423. [Google Scholar] [CrossRef]
- Jaenen, N.; Baudouin, C.; Pouliquen, P.; Manni, G.; Figueiredo, A.; Zeyen, T. Ocular Symptoms and Signs with Preserved and Preservative-Free Glaucoma Medications. Eur. J. Ophthalmol. 2007, 17, 341–349. [Google Scholar] [CrossRef]
- Uusitalo, H.; Chen, E.; Pfeiffer, N.; Brignole-Baudouin, F.; Kaarniranta, K.; Leino, M.; Puska, P.; Palmgren, E.; Hamacher, T.; Hofmann, G.; et al. Switching from a preserved to a preservative-free prostaglandin preparation in topical glaucoma medication. Acta Ophthalmol. 2010, 88, 329–336. [Google Scholar] [CrossRef] [PubMed]
- Munoz-Negrete, F.J.; Lemij, H.G.; Erb, C. Switching to preservative-free latanoprost: Impact on tolerability and patient satisfaction. Clin. Ophthalmol. 2017, 11, 557–566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pillunat, L.E.; Erb, C.; Ropo, A.; Kimmich, F.; Pfeiffer, N. Preservative-free fixed combination of tafluprost 0.0015% and timolol 0.5% in patients with open-angle glaucoma and ocular hypertension: Results of an open-label observational study. Clin. Ophthalmol. 2017, 11, 1051–1064. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uusitalo, H.; Egorov, E.; Kaarniranta, K.; Astakhov, Y.; Ropo, A. Benefits of switching from latanoprost to preservative-free tafluprost eye drops: A meta-analysis of two Phase IIIb clinical trials. Clin. Ophthalmol. 2016, 10, 445–454. [Google Scholar] [CrossRef] [Green Version]
- Rouland, J.-F.; Traverso, C.E.; Stalmans, I.; El Fekih, L.; Delval, L.; Renault, D.; Baudouin, C. Efficacy and safety of preservative-free latanoprost eyedrops, compared with BAK-preserved latanoprost in patients with ocular hypertension or glaucoma. Br. J. Ophthalmol. 2012, 97, 196–200. [Google Scholar] [CrossRef]
- Shirley, M. Bimatoprost Implant: First Approval. Drugs Aging 2020, 37, 457–462. [Google Scholar] [CrossRef]
- Occhiutto, M.L.; Maranhão, R.C.; Costa, V.P.; Konstas, A.G. Nanotechnology for Medical and Surgical Glaucoma Therapy—A Review. Adv. Ther. 2020, 37, 155–199. [Google Scholar] [CrossRef] [Green Version]
- González-Fernández, F.M.; Bianchera, A.; Gasco, P.; Nicoli, S.; Pescina, S. Lipid-Based Nanocarriers for Ophthalmic Administration: Towards Experimental Design Implementation. Pharmaceutics 2021, 13, 447. [Google Scholar] [CrossRef]
- Franco, P.; De Marco, I. Contact Lenses as Ophthalmic Drug Delivery Systems: A Review. Polymers 2021, 13, 1102. [Google Scholar] [CrossRef]
- Toffoletto, N.; Saramago, B.; Serro, A.P. Therapeutic Ophthalmic Lenses: A Review. Pharmaceutics 2020, 13, 36. [Google Scholar] [CrossRef]
- Xu, J.; Ge, Y.; Bu, R.; Zhang, A.; Feng, S.; Wang, J.; Gou, J.; Yin, T.; He, H.; Zhang, Y.; et al. Co-delivery of latanoprost and timolol from micelles-laden contact lenses for the treatment of glaucoma. J. Control. Release 2019, 305, 18–28. [Google Scholar] [CrossRef]
- Macoul, K.L.; Pavan-Langston, D. Pilocarpine Ocusert System for Sustained Control of Ocular Hypertension. Arch. Ophthalmol. 1975, 93, 587–590. [Google Scholar] [CrossRef] [PubMed]
- Brandt, J.D.; Sall, K.; DuBiner, H.; Benza, R.; Alster, Y.; Walker, G.; Semba, C.P.; Budenz, D.; Day, D.; Flowers, B.; et al. Six-Month Intraocular Pressure Reduction with a Topical Bimatoprost Ocular Insert: Results of a Phase II Randomized Controlled Study. Ophthalmology 2016, 123, 1685–1694. [Google Scholar] [CrossRef] [Green Version]
- Brandt, J.D.; DuBiner, H.B.; Benza, R.; Sall, K.N.; Walker, G.A.; Semba, C.P.; Budenz, D.; Day, D.; Flowers, B.; Lee, S.; et al. Long-term Safety and Efficacy of a Sustained-Release Bimatoprost Ocular Ring. Ophthalmology 2017, 124, 1565–1566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kompella, U.B.; Hartman, R.R.; Patil, M.A. Extraocular, periocular, and intraocular routes for sustained drug delivery for glaucoma. Prog. Retin. Eye Res. 2021, 82, 100901. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, D.F.; Williams, R. A Phase 2 Study Evaluating Safety and Efficacy of the Latanoprost Punctal Plug Delivery System (L-PPDS) in Subjects with Ocular Hypertension (OH) or Open-Angle Glaucoma (OAG). Investig. Ophthalmol. Vis. Sci. 2012, 53, 5095. [Google Scholar]
- Kesav, N.P.; Young, C.E.C.; Ertel, M.K.; Seibold, L.K.; Kahook, M.Y. Sustained-release drug delivery systems for the treatment of glaucoma. Int. J. Ophthalmol. 2021, 14, 148–159. [Google Scholar] [CrossRef] [PubMed]
- Perera, S.A.; Ting, D.S.; Nongpiur, M.E.; Chew, P.T.; Aquino, M.C.D.; Sng, C.C.; Ho, S.-W.; Aung, T. Feasibility study of sustained-release travoprost punctum plug for intraocular pressure reduction in an Asian population. Clin. Ophthalmol. 2016, 10, 757–764. [Google Scholar] [CrossRef] [Green Version]
- Fahmy, H.M.; Saad, E.A.E.-M.S.; Sabra, N.M.; El-Gohary, A.A.; Mohamed, F.F.; Gaber, M.H. Treatment merits of Latanoprost/Thymoquinone—Encapsulated liposome for glaucomatus rabbits. Int. J. Pharm. 2018, 548, 597–608. [Google Scholar] [CrossRef]
- Lavik, E.; Kuehn, M.H.; Shoffstall, A.J.; Atkins, K.; Dumitrescu, A.; Kwon, Y. Sustained Delivery of Timolol Maleate for Over 90 Days by Subconjunctival Injection. J. Ocul. Pharmacol. Ther. 2016, 32, 642–649. [Google Scholar] [CrossRef] [Green Version]
- Pek, Y.S.; Wu, H.; Mohamed, S.T.; Ying, J.Y. Long-Term Subconjunctival Delivery of Brimonidine Tartrate for Glaucoma Treatment Using a Microspheres/Carrier System. Adv. Healthc. Mater. 2016, 5, 2823–2831. [Google Scholar] [CrossRef] [PubMed]
- Fu, J.; Sun, F.; Liu, W.; Liu, Y.; Gedam, M.; Hu, Q.; Fridley, C.; Quigley, H.A.; Hanes, J.; Pitha, I. Subconjunctival Delivery of Dorzolamide-Loaded Poly(ether-anhydride) Microparticles Produces Sustained Lowering of Intraocular Pressure in Rabbits. Mol. Pharm. 2016, 13, 2987–2995. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Voss, K.; Falke, K.; Bernsdorf, A.; Grabow, N.; Kastner, C.; Sternberg, K.; Minrath, I.; Eickner, T.; Wree, A.; Schmitz, K.-P.; et al. Development of a novel injectable drug delivery system for subconjunctival glaucoma treatment. J. Control. Release 2015, 214, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Natarajan, J.V.; Chattopadhyay, S.; Ang, M.; Darwitan, A.; Foo, S.; Zhen, M.; Koo, M.; Wong, T.T.; Venkatraman, S.S. Sustained Release of an Anti-Glaucoma Drug: Demonstration of Efficacy of a Liposomal Formulation in the Rabbit Eye. PLoS ONE 2011, 6, e24513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wong, T.T.; Novack, G.D.; Natarajan, J.V.; Ho, C.L.; Htoon, H.M.; Venkatraman, S.S. Nanomedicine for glaucoma: Sustained release latanoprost offers a new therapeutic option with substantial benefits over eyedrops. Drug Deliv. Transl. Res. 2014, 4, 303–309. [Google Scholar] [CrossRef] [PubMed]
- Sirinek, P.E.; Lin, M.M. Intracameral sustained release bimatoprost implants (Durysta). Semin. Ophthalmol. 2022, 37, 385–390. [Google Scholar] [CrossRef]
- Lee, S.S.; Hughes, P.; Ross, A.D.; Robinson, M.R. Biodegradable Implants for Sustained Drug Release in the Eye. Pharm. Res. 2010, 27, 2043–2053. [Google Scholar] [CrossRef] [PubMed]
- Lewis, R.A.; Christie, W.C.; Day, D.G.; Craven, E.R.; Walters, T.; Bejanian, M.; Lee, S.S.; Goodkin, M.L.; Zhang, J.; Whitcup, S.M.; et al. Bimatoprost Sustained-Release Implants for Glaucoma Therapy: 6-Month Results From a Phase I/II Clinical Trial. Am. J. Ophthalmol. 2017, 175, 137–147. [Google Scholar] [CrossRef] [Green Version]
- Craven, E.R.; Walters, T.; Christie, W.C.; Day, D.G.; Lewis, R.A.; Goodkin, M.L.; Chen, M.; Wangsadipura, V.; Robinson, M.R.; Bejanian, M.; et al. 24-Month Phase I/II Clinical Trial of Bimatoprost Sustained-Release Implant (Bimatoprost SR) in Glaucoma Patients. Drugs 2020, 80, 167–179. [Google Scholar] [CrossRef] [Green Version]
- Medeiros, F.A.; Walters, T.R.; Kolko, M.; Coote, M.; Bejanian, M.; Goodkin, M.L.; Guo, Q.; Zhang, J.; Robinson, M.R.; Weinreb, R.N.; et al. Phase 3, Randomized, 20-Month Study of Bimatoprost Implant in Open-Angle Glaucoma and Ocular Hypertension (ARTEMIS 1). Ophthalmology 2020, 127, 1627–1641. [Google Scholar] [CrossRef]
- Seal, J.R.; Robinson, M.R.; Burke, J.; Bejanian, M.; Coote, M.; Attar, M. Intracameral Sustained-Release Bimatoprost Implant Delivers Bimatoprost to Target Tissues with Reduced Drug Exposure to Off-Target Tissues. J. Ocul. Pharmacol. Ther. 2019, 35, 50–57. [Google Scholar] [CrossRef]
- Bacharach, J.; Tatham, A.; Ferguson, G.; Belalcázar, S.; Thieme, H.; Goodkin, M.L.; Chen, M.Y.; Guo, Q.; Liu, J.; Robinson, M.R.; et al. Phase 3, Randomized, 20-Month Study of the Efficacy and Safety of Bimatoprost Implant in Patients with Open-Angle Glaucoma and Ocular Hypertension (ARTEMIS 2). Drugs 2021, 81, 2017–2033. [Google Scholar] [CrossRef] [PubMed]
- Medeiros, F.A.; Sheybani, A.; Shah, M.M.; Rivas, M.; Bai, Z.; Werts, E.; Ahmed, I.I.K.; Craven, E.R. Single Administration of Intracameral Bimatoprost Implant 10 µg in Patients with Open-Angle Glaucoma or Ocular Hypertension. Ophthalmol. Ther. 2022, 11, 1517–1537. [Google Scholar] [CrossRef] [PubMed]
- Glaukos’ iDose TR Demonstrates Sustained IOP Reduction and Favorable Safety Profile Over 36 Months in Phase 2b Study. Available online: https://eyewire.news/news/glaukos-idose-tr-demonstrates-sustained-iop-reduction-and-favorable-safety-profile-over-36-months-in-phase-2b-study?c4src=article:infinite-scroll (accessed on 18 July 2022).
- Buehne, K.L.; Rosdahl, J.A.; Muir, K.W. Aiding Adherence to Glaucoma Medications: A Systematic Review. Semin. Ophthalmol. 2022, 37, 313–323. [Google Scholar] [CrossRef] [PubMed]
- Friedman, D.S.; Jampel, H.D.; Congdon, N.G.; Miller, R.; Quigley, H.A. The TRAVATAN Dosing Aid Accurately Records When Drops Are Taken. Am. J. Ophthalmol. 2007, 143, 699–701. [Google Scholar] [CrossRef]
- Chang, D.S.; Friedman, D.S.; Frazier, T.; Plyler, R.; Boland, M.V. Development and Validation of a Predictive Model for Nonadherence with Once-Daily Glaucoma Medications. Ophthalmology 2013, 120, 1396–1402. [Google Scholar] [CrossRef] [Green Version]
- Boland, M.V.; Chang, D.S.; Frazier, T.; Plyler, R.; Jefferys, J.L.; Friedman, D.S. Automated Telecommunication-Based Reminders and Adherence with Once-Daily Glaucoma Medication Dosing: The automated dosing reminder study. JAMA Ophthalmol. 2014, 132, 845–850. [Google Scholar] [CrossRef] [Green Version]
- Boland, M.V.; Chang, D.S.; Frazier, T.; Plyler, R.; Friedman, D.S. Electronic Monitoring to Assess Adherence with Once-Daily Glaucoma Medications and Risk Factors for Nonadherence: The automated dosing reminder study. JAMA Ophthalmol. 2014, 132, 838–844. [Google Scholar] [CrossRef] [Green Version]
- Cook, P.F.; Schmiege, S.J.; Mansberger, S.L.; Kammer, J.; Fitzgerald, T.; Kahook, M.Y. Predictors of Adherence to Glaucoma Treatment in a Multisite Study. Ann. Behav. Med. 2015, 49, 29–39. [Google Scholar] [CrossRef] [Green Version]
- Cook, P.F.; Schmiege, S.J.; Mansberger, S.L.; Sheppler, C.; Kammer, J.; Fitzgerald, T.; Kahook, M.Y. Motivational interviewing or reminders for glaucoma medication adherence: Results of a multi-site randomised controlled trial. Psychol. Health 2017, 32, 145–165. [Google Scholar] [CrossRef] [Green Version]
- Muir, K.W.; Rosdahl, J.A.; Hein, A.M.; Woolson, S.; Olsen, M.K.; Kirshner, M.; Sexton, M.; Bosworth, H.B. Improved Glaucoma Medication Adherence in a Randomized Controlled Trial. Ophthalmol. Glaucoma 2022, 5, 40–46. [Google Scholar] [CrossRef] [PubMed]
- Miller, D.J.; Niziol, L.M.; Elam, A.R.; Heisler, M.; Lee, P.P.; Resnicow, K.; Musch, D.C.; Darnley-Fisch, D.; Mitchell, J.; Newman-Casey, P.A. Demographic, Clinical, and Psychosocial Predictors of Change in Medication Adherence in the Support, Educate, Empower Program. Ophthalmol. Glaucoma 2021, 5, 47–57. [Google Scholar] [CrossRef] [PubMed]
- Richardson, C.; Brunton, L.; Olleveant, N.; Henson, D.B.; Pilling, M.; Mottershead, J.; Fenerty, C.H.; Spencer, A.F.; Waterman, H. A study to assess the feasibility of undertaking a randomized controlled trial of adherence with eye drops in glaucoma patients. Patient Prefer. Adherence 2013, 7, 1025–1039. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sayner, R.; Carpenter, D.M.; Blalock, S.J.; Robin, A.L.; Muir, K.W.; Hartnett, M.E.; Giangiacomo, A.L.; Tudor, G.; Sleath, B. Accuracy of Patient-reported Adherence to Glaucoma Medications on a Visual Analog Scale Compared with Electronic Monitors. Clin. Ther. 2015, 37, 1975–1985. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nishimura, K.; Tabuchi, H.; Nakakura, S.; Nakatani, Y.; Yorihiro, A.; Hasegawa, S.; Tanabe, H.; Noguchi, A.; Aoki, R.; Kiuchi, Y. Evaluation of Automatic Monitoring of Instillation Adherence Using Eye Dropper Bottle Sensor and Deep Learning in Patients with Glaucoma. Transl. Vis. Sci. Technol. 2019, 8, 55. [Google Scholar] [CrossRef] [Green Version]
- Heinemann, L.; Schnell, O.; Gehr, B.; Schloot, N.C.; Görgens, S.W.; Görgen, C. Digital Diabetes Management: A Literature Review of Smart Insulin Pens. J. Diabetes Sci. Technol. 2022, 16, 587–595. [Google Scholar] [CrossRef]
- Gomez-Peralta, F.; Abreu, C.; Gomez-Rodriguez, S.; Ruiz, L. Insulclock: A Novel Insulin Delivery Optimization and Tracking System. Diabetes Technol. Ther. 2019, 21, 209–214. [Google Scholar] [CrossRef]
- BIOCORP. Mallya. Available online: https://biocorpsys.com/en/our-products/connected-devices/mallya/ (accessed on 2 August 2022).
- Kali Homepage. Available online: https://www.kali.care/ (accessed on 2 August 2022).
- Gatwood, J.D.; Johnson, J.; Jerkins, B. Comparisons of Self-reported Glaucoma Medication Adherence with a New Wireless Device: A Pilot Study. J. Glaucoma 2017, 26, 1056–1061. [Google Scholar] [CrossRef]
- Nemera. e-Novelia. Available online: https://www.nemera.net/products/ophthalmic/e-novelia/ (accessed on 3 August 2022).
- Payne, N.; Gangwani, R.; Barton, K.; Sample, A.P.; Cain, S.M.; Burke, D.T.; Newman-Casey, P.A.; Shorter, K.A. Medication Adherence and Liquid Level Tracking System for Healthcare Provider Feedback. Sensors 2020, 20, 2435. [Google Scholar] [CrossRef]
- Eaton, A.M.; Gordon, G.M.; Konowal, A.; Allen, A.; Allen, M.; Sgarlata, A.; Gao, G.; Wafapoor, H.; Avery, R.L. A novel eye drop application monitor to assess patient compliance with a prescribed regimen: A pilot study. Eye 2015, 29, 1383–1391. [Google Scholar] [CrossRef] [Green Version]
- Gazzard, G.; Konstantakopoulou, E.; Garway-Heath, D.; Garg, A.; Vickerstaff, V.; Hunter, R.; Ambler, G.; Bunce, C.; Wormald, R.; Nathwani, N.; et al. Selective laser trabeculoplasty versus eye drops for first-line traetment of ocular hypertension and glaucoma (LIGHT): A multicentre randomised controlled trial. Lancet 2019, 393, 1505–1516. [Google Scholar] [CrossRef] [PubMed]
- Gazzard, G.; Konstantakopoulou, E.; Garway-Heath, D.; Garg, A.; Vickerstaff, V.; Hunter, R.; Ambler, G.; Bunce, C.; Wormald, R.; Nathwani, N.; et al. Selective laser trabeculoplasty versus drops for newly diagnosed ocular hypertension and glaucoma: The LiGHT RCT. Health Technol. Assess. 2019, 23, 1–102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wright, D.M.; Konstantakopoulou, E.; Montesano, G.; Nathwani, N.; Garg, A.; Garway-Heath, D.; Crabb, D.P.; Gazzard, G. Laser in Glaucoma and Ocular Hypertension Trial (LiGHT) Study Group. Visual Field Outcomes from the Multicenter, Randomized Controlled Laser in Glaucoma and Ocular Hypertension Trial (LiGHT). Ophthalmology 2020, 127, 1313–1321. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.Y.; Park, K.H.; Ahn, J.; Ahn, M.-D.; Cha, S.C.; Kim, H.S.; Kim, J.M.; Kim, M.J.; Kim, T.-W.; Kim, Y.Y.; et al. Treatment patterns and medication adherence of patients with glaucoma in South Korea. Br. J. Ophthalmol. 2017, 101, 801–807. [Google Scholar] [CrossRef] [Green Version]
- Ang, G.S.; Fenwick, E.K.; Constantinou, M.; Gan, A.T.L.; Man, R.E.K.; Casson, R.J.; Finkelstein, E.A.; Goldberg, I.; Healey, P.R.; Pesudovs, K.; et al. Selective laser trabeculoplasty versus topical medication as initial glaucoma treatment: The glaucoma initial treatment study randomised clinical trial. Br. J. Ophthalmol. 2020, 104, 813–821. [Google Scholar] [CrossRef]
- Lamoureux, E.L.; Mcintosh, R.; Constantinou, M.; Fenwick, E.K.; Xie, J.; Casson, R.; Finkelstein, E.; Goldberg, I.; Healey, P.; Thomas, R.; et al. Comparing the effectiveness of selective laser trabeculoplasty with topical medication as initial treatment (the Glaucoma Initial Treatment Study): Study protocol for a randomised controlled trial. Trials 2015, 16, 406. [Google Scholar] [CrossRef] [Green Version]
- Shalaby, W.S.; Ahmed, O.M.; Waisbourd, M.; Katz, L.J. A review of potential novel glaucoma therapeutic options independent of intraocular pressure. Surv. Ophthalmol. 2022, 67, 1062–1080. [Google Scholar] [CrossRef]
- Damji, K.F.; Shah, K.C.; Rock, W.J.; Bains, H.S.; Hodge, W.G. Selective laser trabeculoplasty v argon laser trabeculoplasty: A prospective randomised clinical trial. Br. J. Ophthalmol. 1999, 83, 718–722. [Google Scholar] [CrossRef] [Green Version]
- Song, J. Complications of selective laser trabeculoplasty: A review. Clin. Ophthalmol. 2016, 10, 137–143. [Google Scholar] [CrossRef] [Green Version]
- Ong, K.; Ong, L. Selective laser trabeculoplasty may compromise corneas with pigment on endothelium. Clin. Exp. Ophthalmol. 2013, 41, 109–110. [Google Scholar] [CrossRef]
- Ha, J.H.I.; Bowling, B.; Chen, S.D. Cystoid macular oedema following selective laser trabeculoplasty in a diabetic patient. Clin. Exp. Ophthalmol. 2013, 42, 200–201. [Google Scholar] [CrossRef] [PubMed]
- Wechsler, D.Z.; Wechsler, I.B. Cystoid macular oedema after selective laser trabeculoplasty. Eye 2010, 24, 1113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, Z.Q.; Huang, J.; Sadda, S. Selective laser trabeculoplasty complicated by cystoid macular edema: Report of two cases. Eye Sci. 2012, 27, 193–197. [Google Scholar] [CrossRef] [PubMed]
- Shihadeh, W.A.; Ritch, R.; Liebmann, J.M. Hyphema Occurring During Selective Laser Trabeculoplasty. Ophthalmic Surg. Lasers Imaging Retin. 2006, 37, 432–433. [Google Scholar] [CrossRef] [PubMed]
- Rhee, D.J.; Krad, O.; Pasquale, L.R. Hyphema Following Selective Laser Trabeculoplasty. Ophthalmic Surg. Lasers Imaging Retin. 2009, 40, 493–494. [Google Scholar] [CrossRef] [PubMed]
- Okeke, C.O.; Quigley, H.A.; Jampel, H.D.; Ying, G.-S.; Plyler, R.J.; Jiang, Y.; Friedman, D.S. Adherence with Topical Glaucoma Medication Monitored Electronically: The Travatan Dosing Aid Study. Ophthalmology 2009, 116, 191–199. [Google Scholar] [CrossRef] [PubMed]
- Gatwood, J.P.; Brooks, C.; Meacham, R.; Abou-Rahma, J.; Cernasev, A.; Brown, E.; Kuchtey, R.W.M. Facilitators and Barriers to Glaucoma Medication Adherence. J. Glaucoma 2022, 31, 31–36. [Google Scholar] [CrossRef]
- Bovell, A.M.; Damji, K.F.; Hodge, W.G.; Rock, W.J.; Buhrmann, R.R.; Pan, Y.I. Long term effects on the lowering of intraocular pressure: Selective laser or argon laser trabeculoplasty? Can. J. Ophthalmol. 2011, 46, 408–413. [Google Scholar] [CrossRef]
- Damji, K.F.; Bovell, A.M.; Hodge, W.G.; Rock, W.; Shah, K.; Buhrmann, R.; Pan, Y.I. Selective laser trabeculoplasty versus argon laser trabeculoplasty: Results from a 1-year randomised clinical trial. Br. J. Ophthalmol. 2006, 90, 1490–1494. [Google Scholar] [CrossRef] [Green Version]
- Koucheki, B.; Hashemi, H. Selective Laser Trabeculoplasty in the Treatment of Open-angle Glaucoma. J. Glaucoma 2012, 21, 65–70. [Google Scholar] [CrossRef]
- Liu, Y.; Birt, C.M. Argon Versus Selective Laser Trabeculoplasty in Younger Patients: 2-year results. J. Glaucoma 2012, 21, 112–115. [Google Scholar] [CrossRef] [PubMed]
- Hong, B.K.; Winer, J.C.; Martone, J.F.; Wand, M.; Altman, B.; Shields, B. Repeat Selective Laser Trabeculoplasty. J. Glaucoma 2009, 18, 180–183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Avery, N.; Ang, G.S.; Nicholas, S.; Wells, A. Repeatability of primary selective laser trabeculoplasty in patients with primary open-angle glaucoma. Int. Ophthalmol. 2013, 33, 501–506. [Google Scholar] [CrossRef] [PubMed]
- Khouri, A.S.; Lari, H.B.; Berezina, T.L.; Maltzman, B.; Fechtner, R.D. Long term efficacy of repeat selective laser trabeculoplasty. J. Ophthalmic Vis. Res. 2014, 9, 444–448. [Google Scholar] [CrossRef] [PubMed]
- Hutnik, C.; Crichton, A.; Ford, B.; Nicolela, M.; Shuba, L.; Birt, C.; Sogbesan, E.; Damji, K.F.; Dorey, M.; Saheb, H.; et al. Selective Laser Trabeculoplasty versus Argon Laser Trabeculoplasty in Glaucoma Patients Treated Previously with 360° Selective Laser Trabeculoplasty: A Randomized, Single-Blind, Equivalence Clinical Trial. Ophthalmology 2019, 126, 223–232. [Google Scholar] [CrossRef] [PubMed]
- Ilveskoski, L.; Taipale, C.; Tuuminen, R. Selective laser trabeculoplasty in exfoliative glaucoma eyes with prior argon laser trabeculoplasty. Acta Ophthalmol. 2019, 98, 58–64. [Google Scholar] [CrossRef] [PubMed]
- Polat, J.; Grantham, L.; Mitchell, K.; Realini, T. Repeatability of selective laser trabeculoplasty. Br. J. Ophthalmol. 2016, 100, 1437–1441. [Google Scholar] [CrossRef] [Green Version]
- Garg, A.; Vickerstaff, V.; Nathwani, N.; Garway-Heath, D.; Konstantakopoulou, E.; Ambler, G.; Bunce, C.; Wormald, R.; Barton, K.; Gazzard, G.; et al. Efficacy of Repeat Selective Laser Trabeculoplasty in Medication-Naive Open-Angle Glaucoma and Ocular Hypertension during the LiGHT Trial. Ophthalmology 2020, 127, 467–476. [Google Scholar] [CrossRef] [Green Version]
- Richter, G.M.; Coleman, A.L. Minimally invasive glaucoma surgery: Current status and future prospects. Clin. Ophthalmol. 2016, 10, 189–206. [Google Scholar] [CrossRef] [Green Version]
- Kerr, N.M.; Wang, J.; Barton, K. Minimally invasive glaucoma surgery as primary stand-alone surgery for glaucoma. Clin. Exp. Ophthalmol. 2017, 45, 393–400. [Google Scholar] [CrossRef]
- Fellman, R.L.; Mattox, C.; Singh, K.; Flowers, B.; Francis, B.A.; Robin, A.L.; Butler, M.R.; Shah, M.M.; Giaconi, J.A.; Sheybani, A.; et al. American Glaucoma Society Position Paper: Microinvasive Glaucoma Surgery. Ophthalmol. Glaucoma 2020, 3, 1–6. [Google Scholar] [CrossRef] [PubMed]
- European Glaucoma Society Terminology and Guidelines for Glaucoma, 5th Edition. Br. J. Ophthalmol. 2021, 105, 1–169. [CrossRef] [PubMed]
- Yang, X.; Zhao, Y.; Zhong, Y.; Duan, X. The efficacy of XEN gel stent implantation in glaucoma: A systematic review and meta-analysis. BMC Ophthalmol. 2022, 22, 305. [Google Scholar] [CrossRef] [PubMed]
- Reitsamer, H.; Vera, V.; Ruben, S.; Au, L.; Vila-Arteaga, J.; Teus, M.; Lenzhofer, M.; Shirlaw, A.; Bai, Z.; Balaram, M.; et al. Three-year effectiveness and safety of the XEN gel stent as a solo procedure or in combination with phacoemulsification in open-angle glaucoma: A multicentre study. Acta Ophthalmol. 2022, 100, e233–e245. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.Y.; Betzler, B.K.; Yip, L.W.L.; Dorairaj, S.; Ang, B.C.H. Standalone XEN45 Gel Stent implantation in the treatment of open-angle glaucoma: A systematic review and meta-analysis. Surv. Ophthalmol. 2022, 67, 1048–1061. [Google Scholar] [CrossRef] [PubMed]
- Ting, J.L.M.; Rudnisky, C.J.; Damji, K.F. Prospective randomized controlled trial of phaco-trabectome versus phaco-trabeculectomy in patients with open angle glaucoma. Can. J. Ophthalmol. 2018, 53, 588–594. [Google Scholar] [CrossRef]
- Hu, K.; Shah, A.; Virgili, G.; Bunce, C.; Gazzard, G. Ab interno trabecular bypass surgery with Trabectome for open-angle glaucoma. Cochrane Database Syst. Rev. 2021, 2021, CD011693. [Google Scholar] [CrossRef]
- Ventura-Abreu, N.; García-Feijoo, J.; Pazos, M.; Biarnés, M.; Morales-Fernández, L.; Martínez-De-La-Casa, J.M. Twelve-month results of ab interno trabeculectomy with Kahook Dual Blade: An interventional, randomized, controlled clinical study. Graefe’s Arch. Clin. Exp. Ophthalmol. 2021, 259, 2771–2781. [Google Scholar] [CrossRef]
- ElMallah, M.K.; Berdahl, J.P.; Williamson, B.K.; Dorairaj, S.K.; Kahook, M.Y.; Gallardo, M.J.; Mahootchi, A.; Smith, S.N.; Rappaport, L.A.; Diaz-Robles, D.; et al. Twelve-Month Outcomes of Stand-Alone Excisional Goniotomy in Mild to Severe Glaucoma. Clin. Ophthalmol. 2020, 14, 1891–1897. [Google Scholar] [CrossRef]
- Iwasaki, K.; Kakimoto, H.; Orii, Y.; Arimura, S.; Takamura, Y.; Inatani, M. Long-Term Outcomes of a Kahook Dual Blade Procedure Combined with Phacoemulsification in Japanese Patients with Open-Angle Glaucoma. J. Clin. Med. 2022, 11, 1354. [Google Scholar] [CrossRef]
- Le, C.; Kazaryan, S.; Hubbell, M.; Zurakowski, D.; Ayyala, R.S. Surgical Outcomes of Phacoemulsification Followed by iStent Implantation Versus Goniotomy with the Kahook Dual Blade in Patients with Mild Primary Open-angle Glaucoma with a Minimum of 12-Month Follow-up. J. Glaucoma 2019, 28, 411–414. [Google Scholar] [CrossRef] [PubMed]
- Arnljots, T.S.; Economou, M.A. Kahook Dual Blade Goniotomy vs iStent inject: Long-Term Results in Patients with Open-Angle Glaucoma. Clin. Ophthalmol. 2021, 15, 541–550. [Google Scholar] [CrossRef] [PubMed]
- Fea, A.M. Phacoemulsification versus phacoemulsification with micro-bypass stent implantation in primary open-angle glaucoma: Randomized double-masked clinical trial. J. Cataract. Refract. Surg. 2010, 36, 407–412. [Google Scholar] [CrossRef] [PubMed]
- Samuelson, T.W.; Katz, L.J.; Wells, J.M.; Duh, Y.-J.; Giamporcaro, J.E.; US iStent Study Group. Randomized Evaluation of the Trabecular Micro-Bypass Stent with Phacoemulsification in Patients with Glaucoma and Cataract. Ophthalmology 2011, 118, 459–467. [Google Scholar] [CrossRef]
- Samuelson, T.W.; Sarkisian, S.R., Jr.; Lubeck, D.M.; Stiles, M.C.; Duh, Y.-J.; Romo, E.A.; Giamporcaro, J.E.; Hornbeak, D.M.; Katz, L.J.; Bartlett, W.; et al. Prospective, Randomized, Controlled Pivotal Trial of an Ab Interno Implanted Trabecular Micro-Bypass in Primary Open-Angle Glaucoma and Cataract: Two-Year Results. Ophthalmology 2019, 126, 811–821. [Google Scholar] [CrossRef] [Green Version]
- Samuelson, T.W.; Singh, I.P.; Williamson, B.K.; Falvey, H.; Lee, W.C.; Odom, D.; McSorley, D.; Katz, L.J. Quality of Life in Primary Open-Angle Glaucoma and Cataract: An Analysis of VFQ-25 and OSDI from the iStent inject® Pivotal Trial. Am. J. Ophthalmol. 2021, 229, 220–229. [Google Scholar] [CrossRef]
- Holmes, D.P.; Clement, C.I.; Nguyen, V.; Healey, P.R.; Lim, R.; White, A.; Yuen, J.; Lawlor, M.; Franzco, R.L.; Franzco, J.Y. Comparative study of 2-year outcomes for Hydrus or iStent inject microinvasive glaucoma surgery implants with cataract surgery. Clin. Exp. Ophthalmol. 2022, 50, 303–311. [Google Scholar] [CrossRef]
- Bicket, A.K.; Le, J.T.; Azuara-Blanco, A.; Gazzard, G.; Wormald, R.; Bunce, C.; Hu, K.; Jayaram, H.; King, A.; Otárola, F.; et al. Minimally Invasive Glaucoma Surgical Techniques for Open-Angle Glaucoma: An Overview of Cochrane Systematic Reviews and Network Meta-analysis. JAMA Ophthalmol. 2021, 139, 983–989. [Google Scholar] [CrossRef]
- Otarola, F.; Virgili, G.; Shah, A.; Hu, K.; Bunce, C.; Gazzard, G. Ab interno trabecular bypass surgery with Schlemm´s canal microstent (Hydrus) for open angle glaucoma. Cochrane Database Syst. Rev. 2020, 2020, CD012740. [Google Scholar] [CrossRef] [Green Version]
- Hu, R.; Guo, D.; Hong, N.; Xuan, X.; Wang, X. Comparison of Hydrus and iStent microinvasive glaucoma surgery implants in combination with phacoemulsification for treatment of open-angle glaucoma: Systematic review and network meta-analysis. BMJ Open 2022, 12, e051496. [Google Scholar] [CrossRef]
- Reiss, G.; Clifford, B.; Vold, S.; He, J.; Hamilton, C.; Dickerson, J.; Lane, S. Safety and Effectiveness of CyPass Supraciliary Micro-Stent in Primary Open-Angle Glaucoma: 5-Year Results from the COMPASS XT Study. Am. J. Ophthalmol. 2019, 208, 219–225. [Google Scholar] [CrossRef] [PubMed]
- Sandhu, A.; Jayaram, H.; Hu, K.; Bunce, C.; Gazzard, G. Ab interno supraciliary microstent surgery for open-angle glaucoma. Cochrane Database Syst. Rev. 2021, 2021, CD012802. [Google Scholar] [CrossRef] [Green Version]
- Denis, P.; Hirneiß, C.; Durr, G.M.; Reddy, K.P.; Kamarthy, A.; Calvo, E.; Hussain, Z.; Ahmed, I.K. Two-year outcomes of the MINIject drainage system for uncontrolled glaucoma from the STAR-I first-in-human trial. Br. J. Ophthalmol. 2022, 106, 65–70. [Google Scholar] [CrossRef] [PubMed]
- Baudouin, C.; Kolko, M.; Melik-Parsadaniantz, S.; Messmer, E.M. Inflammation in Glaucoma: From the back to the front of the eye, and beyond. Prog. Retin. Eye Res. 2021, 83, 100916. [Google Scholar] [CrossRef] [PubMed]
- Freiberg, J.C.; Hedengran, A.; Heegaard, S.; Petrovski, G.; Jacobsen, J.; Cvenkel, B.; Kolko, M. An Evaluation of the Physicochemical Properties of Preservative-Free 0.005% (w/v) Latanoprost Ophthalmic Solutions, and the Impact on In Vitro Human Conjunctival Goblet Cell Survival. J. Clin. Med. 2022, 11, 3137. [Google Scholar] [CrossRef]
- Thein, A.-S.; Hedengran, A.; Azuara-Blanco, A.; Arita, R.; Cvenkel, B.; Gazzard, G.; Heegaard, S.; de Paiva, C.S.; Petrovski, G.; Prokosch-Willing, V.; et al. Adverse Effects and Safety in Glaucoma Patients: Agreement on Clinical Trial Outcomes for Reports on Eye Drops (ASGARD)—A Delphi Consensus Statement. Am. J. Ophthalmol. 2022, 241, 190–197. [Google Scholar] [CrossRef] [PubMed]
- Erras, A.; Shahrvini, B.; Weinreb, R.N.; Baxter, S.L. Review of glaucoma medication adherence monitoring in the digital health era. Br. J. Ophthalmol. 2021. [Google Scholar] [CrossRef] [PubMed]
- Khawaja, A.P.; Campbell, J.H.; Kirby, N.; Chandwani, H.S.; Keyzor, I.; Parekh, M.; McNaught, A.I.; Vincent, D.; Angela, K.; Nitin, A.; et al. Real-World Outcomes of Selective Laser Trabeculoplasty in the United Kingdom. Ophthalmology 2020, 127, 748–757. [Google Scholar] [CrossRef]
- Agrawal, P.; Bradshaw, S.E. Systematic Literature Review of Clinical and Economic Outcomes of Micro-Invasive Glaucoma Surgery (MIGS) in Primary Open-Angle Glaucoma. Ophthalmol. Ther. 2018, 7, 49–73. [Google Scholar] [CrossRef]
- Fea, A.M.; Cattel, F.; Gandolfi, S.; Buseghin, G.; Furneri, G.; Costagliola, C. Cost-utility analysis of trabecular micro-bypass stents (TBS) in patients with mild-to-moderate open-angle Glaucoma in Italy. BMC Health Serv. Res. 2021, 21, 1–12. [Google Scholar] [CrossRef]
- Buller, A.J.; Connell, B.; Spencer, A.F. Compliance: Clear communication’s critical. Br. J. Ophthalmol. 2005, 89, 1370. [Google Scholar] [CrossRef] [PubMed]
Treatment Option | Type | Advantages | Disadvantages/Limitations | Clinical Setting | |
---|---|---|---|---|---|
1. Medical treatment | |||||
Topical PF drugs | Reduce signs and symptoms of OSD, thus may improve adherence | Drop instillation is not reduced | PF drugs available for most of the drug classes | ||
Sustained DDS | No or reduced need of drop instillation depending on the DDS; reduction in systemic and local side effects | Depends on the DDS; Lack of data on the dosage and administration regimen of these formulations, metabolic ways and ocular toxicity of all formulation components, their pharmacokinetics and pharmacodynamics, the release of the drug in different eye tissues, formulation stability, the influence of the method of the synthesis not only on physio-chemical properties of formulation but also on its physiological effect, the suitability of nanocarriers with respect to biodegradability and patient comfort, safety issues | Only 1 sustained DDS approved for clinical use, single drug loading | ||
Nanoparticles | Different forms: liposomes, dendrimers | Improved corneal penetration, higher concentration at target tissue, longer retention, sustained release; different NP systems investigated carrying different glaucoma drugs | See above limitations | Not approved for clinical use; in preclinical and clinical trials | |
Contact lenses | Various types of drugs or delivery systems can be placed into the periphery of lens | Increased drug residence time > 30 min improves bioavailability, prolonged drug release | Changes in contact lens swelling and water content, transmittance, protein adherence, surface roughness, tensile strength, ion, and oxygen permeability and leaching of the drug during contact lens manufacture and storage | Preclinical studies: contact lens eluting latanoprost starting human trial | |
Extraocular inserts | Bimatoprost ring insert | As above, IOP -lowering effect over 6 months similar to timolol eye drops | Foreign body reaction to insert? Long-term acceptance -dislodgement. Cost | Not approved for clinical use | |
Punctal DDS | Different pharmaceutical forms loaded into the core of the plug | Reduced need of drop instillation | Only low drug doses of potent drugs (e.g., prostaglandins) can be loaded into the plug matrix. Long-term acceptance. Side effects | Not approved for clinical use; in clinical trials | |
Periocular DDS | Different DDS, subconjunctival injections | Reduced need of drop instillation | Efficacy and safety issues depending on the DDS | Most studies in animals. Not approved for clinical use | |
Intraocular/intracameral drug delivery | Biodegradable implants using different DDS (bimatoprost, travoprost); titanium implant eluting travoprost (needs to be exchanged) | No or reduced need of drop instillation, effective IOP lowering ≥ 6 months | Retention of implant beyond the optimal drug effect, long-term safety, and repeatability | Bimatoprost SR intracameral biodegradable implant approved for single administration. Ongoing trials | |
2. Monitoring systems and smart DDS | MEMS caps for electronic monitoring. Smart drug delivery-connected devices | Supporting adherence by providing information to patients (alerts, remaining drug volume, positioning), health care providers | Studies showing improved adherence over short-term, measure drop dispensing and not drops landing into the eye. No real-world data, cost Data protection issues | Smart drug delivery-connected devices | |
3. SLT | Postpones the need for medical treatment, safe, can be repeated | Greater effect in eyes with higher pre-SLT IOP; reduction in effect over time. Lack of data about long-term SLT outcomes (visual field), how many times can be repeated and is still efficacious | As first treatment in open-angle glaucoma or high-risk ocular hypertension | ||
4. MIGS | Microinvasive bleb surgery. Non-bleb forming | No drops or reduce the number of drops needed over 2 years; delay the need for more invasive surgery | Lack of large RCTs with long-term outcomes and real-world data on clinical and economic effectiveness | Available, combined with cataract surgery to treat mild to moderate glaucoma |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cvenkel, B.; Kolko, M. Devices and Treatments to Address Low Adherence in Glaucoma Patients: A Narrative Review. J. Clin. Med. 2023, 12, 151. https://doi.org/10.3390/jcm12010151
Cvenkel B, Kolko M. Devices and Treatments to Address Low Adherence in Glaucoma Patients: A Narrative Review. Journal of Clinical Medicine. 2023; 12(1):151. https://doi.org/10.3390/jcm12010151
Chicago/Turabian StyleCvenkel, Barbara, and Miriam Kolko. 2023. "Devices and Treatments to Address Low Adherence in Glaucoma Patients: A Narrative Review" Journal of Clinical Medicine 12, no. 1: 151. https://doi.org/10.3390/jcm12010151
APA StyleCvenkel, B., & Kolko, M. (2023). Devices and Treatments to Address Low Adherence in Glaucoma Patients: A Narrative Review. Journal of Clinical Medicine, 12(1), 151. https://doi.org/10.3390/jcm12010151