Neonatal Neuroimaging in Neonatal Intensive Care Graduates Who Subsequently Develop Cerebral Palsy
Abstract
:1. Introduction
- (1)
- To determine the frequency and modality of neonatal cerebral imaging used in NZ for high-risk infants who subsequently developed CP, including sub-analysis by GA and ethnicity, plus benchmarking against available guidelines.
- (2)
- To document the rate of abnormality and characterise CP diagnosis (including functional and topographical classifications) in relation to abnormal neuroimaging in this NZ-specific cohort.
2. Materials and Methods
2.1. Participants
2.2. Data Capture
2.3. Data and Statistical Analysis
3. Results
3.1. Extremely or Very Preterm
3.2. Moderate to Late Preterm
3.3. Term
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Graham, H.; Rosenbaum, P.; Paneth, N.; Dan, B.; Lin, J.P.; Damiano, D.L.; Becher, J.G.; Gaebler-Spira, D.; Colver, A.; Reddihough, D.S.; et al. Cerebral palsy. Nat. Rev. Dis. Primers 2016, 2, 15082. Available online: https://www.nature.com/articles/nrdp201582 (accessed on 27 February 2022). [CrossRef] [PubMed]
- Oskoui, M.; Coutinho, F.; Dykeman, J.; Jette, N.; Pringsheim, T. An update on the prevalence of cerebral palsy: A systematic review and meta-analysis. Dev. Med. Child Neurol. 2013, 55, 509–519. [Google Scholar] [CrossRef] [PubMed]
- Galea, C.; Mcintyre, S.; Smithers-Sheedy, H.; Reid, S.M.; Gibson, C.; Delacy, M.; Watson, L.; Goldsmith, S.; Badawi, N.; Blair, E.; et al. Australian Cerebral Palsy Register Group. Cerebral palsy trends in Australia (1995–2009): A population-based observational study. Dev. Med. Child Neurol. 2019, 61, 186–193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- The Australian Cerebral Palsy Register Group. Report of the Australian Cerebral Palsy Register, Birth Years 1995–2012. 2018. Available online: https://cpregister.com/wp-content/uploads/2019/02/Report-of-the-Australian-Cerebral-Palsy-Register-Birth-Years-1995-2012.pdf (accessed on 27 February 2022).
- Boychuck, Z.; Bussières, A.; Goldschleger, J.; Majnemer, A.; The Prompt Group. Age at referral for diagnosis and rehabilitation services for cerebral palsy: A scoping review. Dev. Med. Child Neurol. 2019, 61, 908–914. [Google Scholar] [CrossRef] [PubMed]
- Granild-Jensen, J.B.; Rackauskaite, G.; Meulengracht Flachs, E.; Uldall, P. Predictors of early diagnosis of cerebral palsy from national registry data. Dev. Med. Child Neurol. 2015, 57, 931–935. [Google Scholar] [CrossRef]
- The Australian Cerebral Palsy Register Group. Report of the Australian Cerebral Palsy Register, Birth Years 1993–2009. 2016. Available online: https://cpregister.com/wp-content/uploads/2018/05/ACPR-Report_Web_2016.pdf (accessed on 27 February 2022).
- Guttmann, K.; Flibotte, J.; DeMauro, S.B. Parental Perspectives on Diagnosis and Prognosis of Neonatal Intensive Care Unit Graduates with Cerebral Palsy. J. Pediatr. 2018, 203, 156–162. [Google Scholar] [CrossRef]
- Williams, S.A.; Mackey, A.; Sorhage, A.; Battin, M.; Wilson, N.; Spittle, A.; Stott, N.S. Clinical practice of health professionals working in early detection for infants with or at risk of cerebral palsy across New Zealand. J. Pediatr. Child Health 2021, 57, 541–547. [Google Scholar] [CrossRef]
- Johnston, M.V.; Ishida, A.; Ishida, W.N.; Matsushita, H.B.; Nishimura, A.; Tsuji, M. Plasticity and injury in the developing brain. Brain Dev. JPN 2009, 31, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Novak, I.; Morgan, C.; Adde, L.; Blackman, J.; Boyd, R.N.; Brunstrom-Hernandez, J.; Cioni, G.; Damiano, D.; Darrah, J.; Eliasson, A.-C.; et al. Early, accurate diagnosis and early intervention in cerebral palsy: Advances in diagnosis and treatment. JAMA Pediatr. 2017, 171, 897–907. [Google Scholar] [CrossRef]
- Bosanquet, M.; Copeland, L.; Ware, R.; Boyd, R. A systematic review of tests to predict cerebral palsy in young children. Dev. Med. Child Neurol. 2013, 55, 418–426. [Google Scholar] [CrossRef]
- Romeo, D.M.; Ricci, D.; Brogna, C.; Mercuri, E. Use of the Hammersmith Infant Neurological Examination in infants with cerebral palsy: A critical review of the literature. Dev. Med. Child Neurol. 2016, 58, 240–245. [Google Scholar] [CrossRef] [PubMed]
- Maitre, N.L.; Burton, V.J.; Duncan, A.F.; Iyer, S.; Ostrander, B.; Winter, S.; Ayala, L.; Burkhardt, S.; Gerner, G.; Getachew, R.; et al. Network Implementation of Guideline for Early Detection Decreases Age at Cerebral Palsy Diagnosis. Pediatrics 2020, 145, e20192126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cerebral Palsy Clinical Network. Available online: https://www.starship.org.nz/health-professionals/cerebral-palsy-clinical-network (accessed on 27 February 2022).
- Jöud, A.; Sehlstedt, A.; Källén, K.; Westbom, L.; Rylander, L. Associations between antenatal and perinatal risk factors and cerebral palsy: A Swedish cohort study. BMJ Open 2020, 10, e038453. [Google Scholar] [CrossRef]
- Chow, S.S.W.; Creighton, P.; Chambers, G.M.; Lui, K. Report of the Australian and New Zealand Neonatal Network 2018, Sydney: ANZNN. 2020. Available online: https://anznn.net/Portals/0/AnnualReports/Report%20of%20the%20Australian%20and%20New%20Zealand%20Neonatal%20Network%202018.pdf (accessed on 27 February 2022).
- Badawi, N.; Felix, J.F.; Kurinczuk, J.J.; Dixon, G.; Watson, L.; Keogh, J.M.; Valentine, J.; Stanley, F.J. Cerebral palsy following term newborn encephalopathy: A population-based study. Dev. Med. Child Neurol. 2005, 47, 293–298. [Google Scholar] [CrossRef] [PubMed]
- Edwards, A.D.; Brocklehurst, P.; Gunn, A.J.; Halliday, H.; Levene, M.; Strohm, B.; Thoresen, M.; Whitelaw, A.; Azzopardi, D. Neurological outcomes at 18 months of age after moderate hypothermia for perinatal hypoxic ischaemic encephalopathy: Synthesis and meta-analysis of trial data. BMJ 2010, 340, c363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- King, A.R.; Machipisa, C.; Finlayson, F.; Fahey, M.C.; Novak, I.; Malhotra, A. Early detection of cerebral palsy in high-risk infants: Translation of evidence into practice in an Australian hospital. J. Pediatr. Child Health. 2021, 57, 246–250. [Google Scholar] [CrossRef]
- National Women’s Health. Pūrongo Haumanu ā tau. Annual Clinical Report. 2019. Available online: https://www.nationalwomenshealth.adhb.govt.nz/assets/Womens-health/Documents/ACR/NWH-Annual-Clinical-Report-2019-FINAL3.pdf (accessed on 27 February 2022).
- Intracranial Haemorrhage in the Neonate. ACH Guideline. Available online: https://starship.org.nz/guidelines/intracranial-haemorrhage/ (accessed on 27 February 2022).
- Neonatal Encephalopathy Consensus Statement from the Newborn Clinical Network. Available online: https://www.starship.org.nz/guidelines/neonatal-encephalopathy-consensus-statement-from-the-newborn-clinical/ (accessed on 27 February 2022).
- Himmelmann, K.; Horber, V.; De La Cruz, J.; Horridge, K.; Mejaski-Bosnjak, V.; Hollody, K.; Krageloh-Mann, I.; SCPE Working Group. MRI classification system (MRICS) for children with cerebral palsy: Development, reliability, and recommendations. Dev. Med. Child Neurol. 2017, 59, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Paneth, N.; Pinto-Martin, J.; Gardiner, J.; Wallenstein, S.; Katsikiotis, V.; Hegyi, T.; Hiatt, M.I.; Susser, M. Incidence and timing of germinal matrix / intraventricular hemorrhage in low birth weight infants. Am. J. Epidemiol. 1993, 137, 1167–1176. [Google Scholar] [CrossRef]
- Cheong, J.L.Y.; Thompson, D.K.; Olsen, J.E.; Spittle, A.J. Late preterm births: New insights from neonatal neuroimaging and neurobehaviour. Semin. Fetal Neonatal Med. 2019, 24, 60–65. [Google Scholar] [CrossRef] [Green Version]
- Boswinkel, V.; Nijboer-Oosterveld, J.; Nijholt, I.M.; Edens, M.A.; Mulder-de Tollenar, S.M.; Boomsma, M.F.; de Vries, L.S.; van Wezel-Meijler, G. A systematic review on brain injury and altered brain development in moderate-late preterm infants. Early Hum. Dev. 2020, 148, 105094. [Google Scholar] [CrossRef]
- Ballardini, E.; Tarocco, A.; Rosignoli, C.; Baldan, A.; Borgna-Pignatti, C.; Garani, G. Universal Head Ultrasound Screening in Full-term Neonates: A Retrospective Analysis of 6771 Infants. Pediatr. Neurol. 2017, 71, 14–17. [Google Scholar] [CrossRef] [PubMed]
- Beltempo, M.; Wintermark, P.; Lemyre, B.; Shalish, W.; Martel-Bucci, A.; Narvey, M.; Ng, E.H.; Gullot, M.; Shah, P.S. Canadian Neonatal Network Investigators. Predictors of Severe Neurologic Injury on Ultrasound Scan of the Head and Risk Factor-based Screening for Infants Born Preterm. J. Pediatr. 2019, 214, 27–33.e3. [Google Scholar] [CrossRef] [PubMed]
- Natarajan, G.; Shankaran, S.; Saha, S.; Laptook, A.R.; Das, A.; Higgins, R.D.; Stoll, B.J.; Bell, E.F.; Carlo, W.A.; D’Angio, C.T.; et al. Eunice Kennedy Shriver National Institute of Child Health and Human Development Neonatal Research Network. Antecedents and Outcomes of Abnormal Cranial Imaging in Moderately Preterm Infants. J. Pediatr. 2018, 195, 66–72.e3. [Google Scholar] [CrossRef] [PubMed]
- Arulkumaran, S.; Tusor, N.; Chew, A.; Falconer, S.; Kennea, N.; Nongena, P.; Hajnal, J.V.; Counsell, S.J.; Rutherford, M.A.; Edwards, A.D. MRI Findings at Term-Corrected Age and Neuro-developmental Outcomes in a Large Cohort of Very Preterm Infants. AJNR Am. J. Neuroradiol. 2020, 41, 1509–1516. [Google Scholar] [CrossRef]
- Hand, I.L.; Shellhaas, R.A.; Milla, S.S.; Committee on Fetus and Newborn, Section on Neurology, Section on Radiology. Routine Neuroimaging of the Preterm Brain. Pediatrics 2020, 146, e2020029082. [Google Scholar] [CrossRef] [PubMed]
Extremely or Very Preterm <32 Weeks, n = 55 | Moderate to Late Preterm 32–36 Weeks, n = 34 | Term 37–42 Weeks, n = 51 | |
---|---|---|---|
Mean (SD) GA (weeks) | 27.9 (2.4) | 33.6 (1.35) | 39.2 (1.39) |
Mean (SD) BW (g) | 1242 (385) | 2024.1 (464.8) | 3360.2 (585.9) |
Male:Female | 33 (60%):22 (40%) | 18 (53%):16 (47%) | 27 (53%):24 (47%) |
Mean (SD) LOS (days) | 68.2 (40) | 31 (21.5) | 18.7 (12.8) |
GMFCS I–II | 37 (67%) | 22 (65%) | 23 (45%) |
GMFCS III–V | 18 (33%) | 11 (32%) (1 unknown 3%) | 24 (47%) (4 unknown 8%) |
Extremely or Very Preterm <32 Weeks, n = 55 | Moderate to Late Preterm 32–36 Weeks, n = 34 | Term 37–42 Weeks, n = 51 | |
---|---|---|---|
Neuroimaging during neonatal admission | 53/55 (96%) * | 19/34 (55.9%) * | 42/51 (82.3%) * |
Abnormal neonatal imaging | 30/53 (56.6%) | 13/19 (68.4%) | 41/42 (97.6%) |
Initial imaging performed after NICU discharge | 1 (1.8%) | 6 (17.6%) | 9 (17.6%) |
No cerebral imaging prior to CP diagnosis | 1 (1.8%) | 9 (26.5%) | 0 (0%) |
Postnatal cause CP | 3 (5.45%) | 1 (2.9%) | 3 (5.88%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Battin, M.R.; Williams, S.A.; Mackey, A.; Alzaher, W.; Sorhage, A.; Stott, N.S. Neonatal Neuroimaging in Neonatal Intensive Care Graduates Who Subsequently Develop Cerebral Palsy. J. Clin. Med. 2022, 11, 1866. https://doi.org/10.3390/jcm11071866
Battin MR, Williams SA, Mackey A, Alzaher W, Sorhage A, Stott NS. Neonatal Neuroimaging in Neonatal Intensive Care Graduates Who Subsequently Develop Cerebral Palsy. Journal of Clinical Medicine. 2022; 11(7):1866. https://doi.org/10.3390/jcm11071866
Chicago/Turabian StyleBattin, Malcolm R., Sîan A. Williams, Anna Mackey, Woroud Alzaher, Alexandra Sorhage, and N. Susan Stott. 2022. "Neonatal Neuroimaging in Neonatal Intensive Care Graduates Who Subsequently Develop Cerebral Palsy" Journal of Clinical Medicine 11, no. 7: 1866. https://doi.org/10.3390/jcm11071866
APA StyleBattin, M. R., Williams, S. A., Mackey, A., Alzaher, W., Sorhage, A., & Stott, N. S. (2022). Neonatal Neuroimaging in Neonatal Intensive Care Graduates Who Subsequently Develop Cerebral Palsy. Journal of Clinical Medicine, 11(7), 1866. https://doi.org/10.3390/jcm11071866