Low Vertebrobasilar Velocity Is Associated with a Higher Risk of Posterior Circulation Ischemic Lesions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Candidates
2.2. Sonography
2.3. Brain Images and Criteria of Stroke
2.4. Statistics
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Searls, D.E.; Pazdera, L.; Korbel, E.; Vyšata, O.; Caplan, L.R. Symptoms and Signs of Posterior Circulation Ischemia in the New England Medical Center Posterior Circulation Registry. Arch. Neurol. 2012, 69, 346–351. [Google Scholar] [CrossRef] [PubMed]
- Caplan, L.R. Vertebrobasilar Ischemia and Hemorrhage: Clinical Findings, Diagnosis and Management of Posterior Circulation Disease; Cambridge University Press: Cambridge, UK, 2015. [Google Scholar]
- Ausman, J.I.; Shrontz, C.E.; Pearce, J.E.; Diaz, F.G.; Crecelius, J.L. Vertebrobasilar insufficiency. A review. Arch. Neurol. 1985, 42, 803–808. [Google Scholar] [CrossRef] [PubMed]
- Pico, F.; Labreuche, J.; Amarenco, P. Pathophysiology, presentation, prognosis, and management of intracranial arterial dolichoectasia. Lancet Neurol. 2015, 14, 833–845. [Google Scholar] [CrossRef]
- Paul, N.L.; Simoni, M.; Rothwell, P.M. Transient isolated brainstem symptoms preceding posterior circulation stroke: A population-based study. Lancet Neurol. 2013, 12, 65–71. [Google Scholar] [CrossRef] [Green Version]
- Millikan, C.H.; Siekert, R.G. Studies in cerebrovascular disease. I. The syndrome of intermittent insufficiency of the basilar arterial system. Proc. Staff. Meet. Mayo Clin. 1955, 30, 61–68. [Google Scholar]
- Amin-Hanjani, S.; Stapleton, C.J.; Du, X.; Rose-Finnell, L.; Pandey, D.K.; Elkind, M.S.; Zipfel, G.J.; Liebeskind, D.S.; Silver, F.L.; Kasner, S.E.; et al. Hypoperfusion Symptoms Poorly Predict Hemodynamic Compromise and Stroke Risk in Vertebrobasilar Disease. Stroke 2019, 50, 495–497. [Google Scholar] [CrossRef] [Green Version]
- Fiehler, J.; Thomalla, G. Vertebrobasilar occlusions: Pathophysiology, diagnostics and treatment. Radiologe 2009, 49, 319–327. [Google Scholar] [CrossRef]
- Bendick, P.J.; Glover, J.L. Vertebrobasilar insufficiency: Evaluation by quantitative duplex flow measurements: A preliminary report. J. Vasc. Surg. 1987, 5, 594–600. [Google Scholar] [CrossRef] [Green Version]
- Khan, S.; Cloud, G.; Kerry, S.; Markus, H.S. Imaging of vertebral artery stenosis: A systematic review. J. Neurol. Neurosurg. Psychiatry 2007, 78, 1218–1225. [Google Scholar] [CrossRef] [Green Version]
- Pandya, A.; Gupta, A. Improving imaging to optimize screening strategies for carotid artery stenosis. Clin. Imaging 2015, 40, 276–278. [Google Scholar] [CrossRef]
- Jauch, E.C.; Saver, J.L.; Adams, H.P., Jr.; Bruno, A.; Connors, J.J.; Demaerschalk, B.M.; Khatri, P.; McMullan, P.W., Jr.; Qureshi, A.I.; Rosenfield, K.; et al. Guidelines for the early management of patients with acute ischemic stroke: A guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 2013, 44, 870–947. [Google Scholar] [CrossRef] [PubMed]
- Vicenzini, E.; Ricciardi, M.C.; Sirimarco, G.; Di Piero, V.; Lenzi, G.L. Extracranial and intracranial sonographic findings in vertebral artery diseases. J. Ultrasound Med. 2010, 29, 1811–1824. [Google Scholar] [CrossRef]
- Amin-Hanjani, S.; Du, X.; Pandey, D.; Thulborn, K.; Charbel, F.T. Effect of Age and Vascular Anatomy on Blood Flow in Major Cerebral Vessels. J. Cereb. Blood Flow Metab. 2015, 35, 312–318. [Google Scholar] [CrossRef] [Green Version]
- Acar, M.; Degirmenci, B.; Yucel, A.; Albayrak, R.; Haktanir, A.; Yaman, M. Comparison of vertebral artery velocity and flow volume measurements for diagnosis of vertebrobasilar insufficiency using color duplex sonography. Eur. J. Radiol. 2005, 54, 221–224. [Google Scholar] [CrossRef] [PubMed]
- von Büdingen, H.C.; Staudacher, T.; von Büdingen, H.J. Ultrasound Diagnostics of the Vertebrobasilar System. Handb. Neurovascular Ultrasound 2006, 21, 57–69. [Google Scholar] [CrossRef]
- Yurdakul, M.; Tola, M. Doppler Criteria for Identifying Proximal Vertebral Artery Stenosis of 50% or More. J. Ultrasound Med. 2011, 30, 163–168. [Google Scholar] [CrossRef] [PubMed]
- Spencer, M.P.; Reid, J.M. Quantitation of carotid stenosis with continuous-wave (C-W) Doppler ultrasound. Stroke 1979, 10, 326–330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, L.; Barlinn, K.; Sharma, V.K.; Tsivgoulis, G.; Cava, L.F.; Vasdekis, S.N.; Teoh, H.L.; Triantafyllou, N.; Chan, B.P.; Sharma, A.; et al. Velocity criteria for intracranial stenosis revisited: An international multicenter study of transcranial Doppler and digital subtraction angiography. Stroke 2011, 42, 3429–3434. [Google Scholar] [CrossRef]
- Zhu, X.; Liu, L.; He, X.; Zhang, X.; Hu, L.; Du, B.; Wang, W.; Jiang, W.; Liu, Z. Wall thickening pattern in atherosclerotic basilar artery stenosis. Neurol. Sci. 2015, 37, 269–276. [Google Scholar] [CrossRef]
- Vokina, T.A.; Tkachenko, S.B.; Beresten, N.F.; Tvalavadze, V.V. Correlations of arterial hemodynamics with the severity of clinical manifestations of vertebrobasilar insufficiency. Bull. Exp. Biol. Med. 2008, 146, 459–461. [Google Scholar] [CrossRef]
- Katsanos, A.H.; Kosmidou, M.; Kyritsis, A.P.; Giannopoulos, S. Is Vertebral Artery Hypoplasia a Predisposing Factor for Posterior Circulation Cerebral Ischemic Events? A Comprehensive Review. Eur. Neurol. 2013, 70, 78–83. [Google Scholar] [CrossRef] [PubMed]
- Chi, H.; Hsu, C.; Chen, A.; Su, C.; Hu, H.; Fu, W. Extracranial and Intracranial Ultrasonographic Findings in Posterior Circulation Infarction. J. Ultrasound Med. 2017, 37, 1605–1610. [Google Scholar] [CrossRef] [PubMed]
- Chi, H.; Chen, K.; Hsu, C.; Shen, C.; Chen, A.; Su, C.; Fu, W. Ultrasound Findings Disclose the Mutual Impact of Vertebrobasilar Dolichoectasia and Vertebral Artery Hypoplasia. J. Ultrasound Med. 2019, 38, 3037–3042. [Google Scholar] [CrossRef] [PubMed]
- Zhong, J.; Chen, X.-Y.; Leung, T.W.H.; Ou, A.; Shi, X.; Cai, Y.; Huang, Y.; Wong, K.S. Significance of Raised Flow Velocity in Basilar Artery in Patients with Acute Ischemic Stroke: Focal Stenosis, Coexistent Stenosis, and Collateral Flow. J. Neuroimaging 2015, 25, 922–926. [Google Scholar] [CrossRef]
- Tao, W.D.; Liu, M.; Fisher, M.; Wang, D.R.; Li, J.; Furie, K.L.; Hao, Z.L.; Lin, S.; Zhang, C.F.; Zeng, Q.T.; et al. Posterior versus anterior circulation infarction: How different are the neurological deficits? Stroke 2012, 43, 2060–2065. [Google Scholar] [CrossRef] [Green Version]
- Gulli, G.; Marquardt, L.; Rothwell, P.M.; Markus, H.S. Stroke risk after posterior circulation stroke/transient ischemic attack and its relationship to site of vertebrobasilar stenosis: Pooled data analysis from prospective studies. Stroke 2013, 44, 598–604. [Google Scholar] [CrossRef] [Green Version]
- Miyamoto, N.; Tanaka, Y.; Ueno, Y.; Tanaka, R.; Hattori, N.; Urabe, T. Comparison of Clinical Backgrounds with Anterior Versus Posterior Circulation Infarcts. J. Stroke Cerebrovasc. Dis. 2010, 19, 393–397. [Google Scholar] [CrossRef]
- Marinoni, M.; Ginanneschi, A.; Forleo, P.; Amaducci, L. Technical limits in transcranial Doppler recording: Inadequate acoustic windows. Ultrasound Med. Biol. 1997, 23, 1275–1277. [Google Scholar] [CrossRef]
- Babikian, V.L.; Nguyen, T.N. Outcome Improvement in Acute Stroke Revascularization Procedures. Stroke 2010, 41, 577–578. [Google Scholar] [CrossRef] [Green Version]
Parameter | Total Patients (n = 875) | POCI (n = 112) | TIS (n = 427) |
---|---|---|---|
Sex | Male 458/Female 417 | Male 70/Female 42 p value:0.026 | Male 266/Female 161 p value: <0.001 |
Age (years) | 68.77 ± 12.56 (25–97) | 69.58 ± 11.43 p value: 0.466 | 71.05 ± 11.65 p value: <0.001 |
Diabetes mellitus | 39.43% | 52.68% p value: 0.003 | 43.22% p value:0.026 |
Hypertension | 68.22% | 85.71% p value: <0.001 | 81.49% p value: <0.001 |
Dyslipidemia | 45.37% | 49.11% p value:0.417 | 49.18% p value: 0.026 |
CKD (eGFR < 50) | 17.71% | 24.11% p value:0.064 | 23.89% p value: <0.001 |
Af | 9.94% | 12.5% p value:0.314 | 12.6% p value: 0.009 |
Statin drug use | 33.48% | 42.85% p value: 0.032 | 40.75% p value: <0.001 |
MV and PI of BA | 33.33 ± 14.34 cm/s, 1.1 ± 0.3 | 31.51 ± 15.14 cm/s, 1.16 ± 0.36 p value: 0.15; p value:0.13 | 32.61 ± 16.06 cm/s, 1.14 ± 0.32 p value: 0.148; p value: 0.001 |
MV and PI of RT VA | 20.79 ± 13.11 cm/s, 1.1 ± 0.3 | 26.03 ± 13.85 cm/s, 1.19 ± 0.36 p value: 0.98; p value: 0.42 | 26.62 ± 14.52 cm/s, 1.19 ± 0.35 p value: 0.04; p value: <0.001 |
MV and PI of LT VA | 28.47 ± 11.75 cm/s, 1.1 ± 0.3 | 25/14 ± 13.63 cm/s, 1.19 ± 0.38 p value: 0.001; p value: 0.001 | 27.43 ± 12.75 cm/s, 1.13 ± 0.33 p value: 0.011; p value: 0.01 |
Brain image MRI diagnosed stroke | CT: 53.1%; MRI: 46.9% POCI: 89.3%; ACI 63.9% | ||
TIS rate/ACI rate/POCI rate | 48.8%/42.4%/12.8% |
Parameters | Pearson’s r (95%CI)/p Value | ad-Pearson’s r (95%CI)/ ad-p Value |
---|---|---|
MV of BA | −0.203(−0.272–−0.138)/<0.001 | −0.203(−0.247–−0.156)/0.001 |
PI of BA | 0.306(0.240–0.364)/<0.001 | 0.306(0.269–0.343)/<0.001 |
MV of RT VA | −0.178(−0.240–−0.115)<0.001 | −0.178(−0.228–−0.131)/0.032 |
PI of RT VA | 0.309(0.250–0.370)/<0.001 | 0.309(0.271–0.343)/<0.001 |
MV of LT VA | −0.199(−0.259–−0.135)/<0.001 | −0.199(−0.237–−0.162)/0.003 |
PI of LT VA | 0.299(0.228–0.369)/<0.001 | 0.299(0.259–0.339)/<0.001 |
TIS Rate AOR (95% CI) | POCI Rate AOR (95% CI) | |
---|---|---|
MV ≤ 15 cm/s | 1.75 (1.15–2.67) p value = 0.009 | 2.55 (1.58–4.13) p value < 0.001 |
MV ≤ 20 cm/s | 1.62 (1.21–2.17) p value = 0.001 | 1.75 (1.15–2.66) p value = 0.009 |
MV ≤ 25 cm/s | 1.31 (0.96–1.79) p value = 0.094 | 1.27 (0.79–2.04) p value = 0.313 |
MV ≤ 30 cm/s | 0.93 (0.62–1.40) p value = 0.728 | 1.43 (0.75–2.75) p value = 0.278 |
MV ≥ 55 cm/s | 1.41 (0.87–2.27) p value = 0.16 | 0.99 (0.51–1.96) p value = 0.985 |
MV ≥ 60 cm/s | 2.57 (1.36–4.86) p value = 0.004 | 1.43 (0.67–3.06) p value = 0.357 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chan, P.-C.; Huang, H.-S.; Chen, K.-W.; Chi, H.-Y. Low Vertebrobasilar Velocity Is Associated with a Higher Risk of Posterior Circulation Ischemic Lesions. J. Clin. Med. 2022, 11, 1396. https://doi.org/10.3390/jcm11051396
Chan P-C, Huang H-S, Chen K-W, Chi H-Y. Low Vertebrobasilar Velocity Is Associated with a Higher Risk of Posterior Circulation Ischemic Lesions. Journal of Clinical Medicine. 2022; 11(5):1396. https://doi.org/10.3390/jcm11051396
Chicago/Turabian StyleChan, Po-Chi, Hua-Si Huang, Kuan-Wen Chen, and Hsin-Yi Chi. 2022. "Low Vertebrobasilar Velocity Is Associated with a Higher Risk of Posterior Circulation Ischemic Lesions" Journal of Clinical Medicine 11, no. 5: 1396. https://doi.org/10.3390/jcm11051396
APA StyleChan, P.-C., Huang, H.-S., Chen, K.-W., & Chi, H.-Y. (2022). Low Vertebrobasilar Velocity Is Associated with a Higher Risk of Posterior Circulation Ischemic Lesions. Journal of Clinical Medicine, 11(5), 1396. https://doi.org/10.3390/jcm11051396