Serum Inflammatory Markers and Their Associations with the Integrity of the Cingulum Bundle in Schizophrenia, from Prodromal Stages to Chronic Psychosis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants and Procedure
2.2. Acquisition of DTI Data and Image Processing
2.3. Inflammatory Markers
2.4. Statistical Analysis
3. Results
3.1. Group Comparisons
3.2. Correlations between Inflammatory Markers and the Integrity of the Cingulum Bundle
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Simeone, J.C.; Ward, A.J.; Rotella, P.; Collins, J.; Windisch, R. An Evaluation of Variation in Published Estimates of Schizophrenia Prevalence from 1990–2013: A Systematic Literature Review. BMC Psychiatry 2015, 15, 193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raballo, A.; Mechelli, A.; Menculini, G.; Tortorella, A. Risk Syndromes in Psychiatry: A State-of-the-Art Overview. Arch Psych. Psych. 2019, 21, 7–14. [Google Scholar] [CrossRef]
- Yung, A.R.; McGorry, P.D.; McFarlane, C.A.; Jackson, H.J.; Patton, G.C.; Rakkar, A. Monitoring and Care of Young People at Incipient Risk of Psychosis. Schizophr. Bull. 1996, 22, 283–303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheitman, B.B.; Lieberman, J.A. The Natural History and Pathophysiology of Treatment Resistant Schizophrenia. J. Psychiatr. Res. 1998, 32, 143–150. [Google Scholar] [CrossRef]
- Misiak, B.; Bartoli, F.; Carrà, G.; Stańczykiewicz, B.; Gładka, A.; Frydecka, D.; Samochowiec, J.; Jarosz, K.; Hadryś, T.; Miller, B.J. Immune-Inflammatory Markers and Psychosis Risk: A Systematic Review and Meta-Analysis. Psychoneuroendocrinology 2021, 127, 105200. [Google Scholar] [CrossRef] [PubMed]
- Trovão, N.; Prata, J.; VonDoellinger, O.; Santos, S.; Barbosa, M.; Coelho, R. Peripheral Biomarkers for First-Episode Psychosis-Opportunities from the Neuroinflammatory Hypothesis of Schizophrenia. Psychiatry Investig. 2019, 16, 177–184. [Google Scholar] [CrossRef] [Green Version]
- Park, S.; Miller, B.J. Meta-Analysis of Cytokine and C-Reactive Protein Levels in High-Risk Psychosis. Schizophr. Res. 2020, 226, 5–12. [Google Scholar] [CrossRef]
- Miller, B.J.; Buckley, P.; Seabolt, W.; Mellor, A.; Kirkpatrick, B. Meta-Analysis of Cytokine Alterations in Schizophrenia: Clinical Status and Antipsychotic Effects. Biol. Psychiatry 2011, 70, 663–671. [Google Scholar] [CrossRef] [Green Version]
- Bocchio-Chiavetto, L.; Zanardini, R.; Tosato, S.; Ventriglia, M.; Ferrari, C.; Bonetto, C.; Lasalvia, A.; Giubilini, F.; Fioritti, A.; Pileggi, F.; et al. Immune and Metabolic Alterations in First Episode Psychosis (FEP) Patients. Brain Behav. Immun. 2018, 70, 315–324. [Google Scholar] [CrossRef]
- Rodrigues-Amorim, D.; Rivera-Baltanás, T.; Spuch, C.; Caruncho, H.J.; González-Fernandez, Á.; Olivares, J.M.; Agís-Balboa, R.C. Cytokines Dysregulation in Schizophrenia: A Systematic Review of Psychoneuroimmune Relationship. Schizophr. Res. 2018, 197, 19–33. [Google Scholar] [CrossRef]
- Momtazmanesh, S.; Zare-Shahabadi, A.; Rezaei, N. Cytokine Alterations in Schizophrenia: An Updated Review. Front. Psychiatry 2019, 10, 892. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, B.J.; Culpepper, N.; Rapaport, M.H. C-Reactive Protein Levels in Schizophrenia: A Review and Meta-Analysis. Clin. Schizophr. Relat. Psychoses 2014, 7, 223–230. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhang, R.; Hou, X.; Zhang, Y.; Ding, F.; Li, F.; Yao, Y.; Wang, Y. Microglia Activation Triggers Oligodendrocyte Precursor Cells Apoptosis via HSP60. Mol. Med. Rep. 2017, 16, 603–608. [Google Scholar] [CrossRef] [Green Version]
- McDonough, A.; Lee, R.V.; Weinstein, J.R. Microglial Interferon Signaling and White Matter. Neurochem. Res. 2017, 42, 2625–2638. [Google Scholar] [CrossRef]
- Stolp, H.B.; Ek, C.J.; Johansson, P.A.; Dziegielewska, K.M.; Bethge, N.; Wheaton, B.J.; Potter, A.M.; Saunders, N.R. Factors Involved in Inflammation-Induced Developmental White Matter Damage. Neurosci. Lett. 2009, 451, 232–236. [Google Scholar] [CrossRef] [PubMed]
- Samartzis, L.; Dima, D.; Fusar-Poli, P.; Kyriakopoulos, M. White Matter Alterations in Early Stages of Schizophrenia: A Systematic Review of Diffusion Tensor Imaging Studies. J. Neuroimaging 2014, 24, 101–110. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, H.; Liu, R.; Wu, C.; Meng, Z.; Wang, D.; Liu, D.; Liu, M.; Li, Y. Multimodal Classification of Drug-Naïve First-Episode Schizophrenia Combining Anatomical, Diffusion and Resting State Functional Resonance Imaging. Neurosci. Lett. 2019, 705, 87–93. [Google Scholar] [CrossRef]
- Ardekani, B.A.; Tabesh, A.; Sevy, S.; Robinson, D.G.; Bilder, R.M.; Szeszko, P.R. Diffusion Tensor Imaging Reliably Differentiates Patients with Schizophrenia from Healthy Volunteers. Hum. Brain Mapp. 2011, 32, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Pettersson-Yeo, W.; Benetti, S.; Marquand, A.F.; Dell’acqua, F.; Williams, S.C.R.; Allen, P.; Prata, D.; McGuire, P.; Mechelli, A. Using Genetic, Cognitive and Multi-Modal Neuroimaging Data to Identify Ultra-High-Risk and First-Episode Psychosis at the Individual Level. Psychol. Med. 2013, 43, 2547–2562. [Google Scholar] [CrossRef] [Green Version]
- Bubb, E.J.; Metzler-Baddeley, C.; Aggleton, J.P. The Cingulum Bundle: Anatomy, Function, and Dysfunction. Neurosci. Biobehav. Rev. 2018, 92, 104–127. [Google Scholar] [CrossRef]
- Yao, L.; Lui, S.; Liao, Y.; Du, M.-Y.; Hu, N.; Thomas, J.A.; Gong, Q.-Y. White Matter Deficits in First Episode Schizophrenia: An Activation Likelihood Estimation Meta-Analysis. Prog. Neuropsychopharmacol. Biol. Psychiatry 2013, 45, 100–106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ellison-Wright, I.; Bullmore, E. Meta-Analysis of Diffusion Tensor Imaging Studies in Schizophrenia. Schizophr. Res. 2009, 108, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Cao, D.; Liang, X.; Zhao, J. Schizophrenia Symptomatic Associations with Diffusion Tensor Imaging Measured Fractional Anisotropy of Brain: A Meta-Analysis. Neuroradiology 2017, 59, 699–708. [Google Scholar] [CrossRef] [PubMed]
- Fitzsimmons, J.; Rosa, P.; Sydnor, V.J.; Reid, B.E.; Makris, N.; Goldstein, J.M.; Mesholam-Gately, R.I.; Woodberry, K.; Wojcik, J.; McCarley, R.W.; et al. Cingulum Bundle Abnormalities and Risk for Schizophrenia. Schizophr. Res. 2020, 215, 385–391. [Google Scholar] [CrossRef] [PubMed]
- Waszczuk, K.; Rek-Owodziń, K.; Tyburski, E.; Mak, M.; Misiak, B.; Samochowiec, J. Disturbances in White Matter Integrity in the Ultra-High-Risk Psychosis State-A Systematic Review. J. Clin. Med. 2021, 10, 2515. [Google Scholar] [CrossRef] [PubMed]
- Tyburski, E.; Mak, M.; Samochowiec, A.; Plichta, P.; Bielecki, M.; Rek-Owodziń, K.; Podwalski, P.; Rudkowski, K.; Waszczuk, K.; Pełka-Wysiecka, J.; et al. The Relationship between Cingulum Bundle Integrity and Different Aspects of Executive Functions in Chronic Schizophrenia. Prog. Neuropsychopharmacol. Biol. Psychiatry 2020, 102, 109955. [Google Scholar] [CrossRef]
- Li, Q.; Cheung, C.; Wei, R.; Cheung, V.; Hui, E.S.; You, Y.; Wong, P.; Chua, S.E.; McAlonan, G.M.; Wu, E.X. Voxel-Based Analysis of Postnatal White Matter Microstructure in Mice Exposed to Immune Challenge in Early or Late Pregnancy. Neuroimage 2010, 52, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Lee, I.; Neil, J.J.; Huettner, P.C.; Smyser, C.D.; Rogers, C.E.; Shimony, J.S.; Kidokoro, H.; Mysorekar, I.U.; Inder, T.E. The Impact of Prenatal and Neonatal Infection on Neurodevelopmental Outcomes in Very Preterm Infants. J. Perinatol. 2014, 34, 741–747. [Google Scholar] [CrossRef]
- Rodrigue, A.L.; Knowles, E.E.; Mollon, J.; Mathias, S.R.; Koenis, M.M.; Peralta, J.M.; Leandro, A.C.; Fox, P.T.; Sprooten, E.; Kochunov, P.; et al. Evidence for Genetic Correlation between Human Cerebral White Matter Microstructure and Inflammation. Hum. Brain Mapp. 2019, 40, 4180–4191. [Google Scholar] [CrossRef] [Green Version]
- Prasad, K.M.; Upton, C.H.; Nimgaonkar, V.L.; Keshavan, M.S. Differential Susceptibility of White Matter Tracts to Inflammatory Mediators in Schizophrenia: An Integrated DTI Study. Schizophr. Res. 2015, 161, 119–125. [Google Scholar] [CrossRef]
- Fu, G.; Zhang, W.; Dai, J.; Liu, J.; Li, F.; Wu, D.; Xiao, Y.; Shah, C.; Sweeney, J.A.; Wu, M.; et al. Increased Peripheral Interleukin 10 Relate to White Matter Integrity in Schizophrenia. Front. Neurosci. 2019, 13, 52. [Google Scholar] [CrossRef] [PubMed]
- Mäntylä, T.; Mantere, O.; Raij, T.T.; Kieseppä, T.; Laitinen, H.; Leiviskä, J.; Torniainen, M.; Tuominen, L.; Vaarala, O.; Suvisaari, J. Altered Activation of Innate Immunity Associates with White Matter Volume and Diffusion in First-Episode Psychosis. PLoS ONE 2015, 10, e0125112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Michalczyk, A.; Tyburski, E.; Podwalski, P.; Waszczuk, K.; Rudkowski, K.; Kucharska-Mazur, J.; Mak, M.; Rek-Owodziń, K.; Plichta, P.; Bielecki, M.; et al. Serum Inflammatory Markers and Their Associations with White Matter Integrity of the Corpus Callosum in Schizophrenia Patients and Healthy Controls. Prog. Neuropsychopharmacol. Biol. Psychiatry 2022, 116, 110510. [Google Scholar] [CrossRef] [PubMed]
- Thomas, M.; Savitz, J.; Zhang, Y.; Burrows, K.; Smith, R.; Figueroa-Hall, L.; Kuplicki, R.; Khalsa, S.S.; Taki, Y.; Teague, T.K.; et al. Elevated Systemic Inflammation Is Associated with Reduced Corticolimbic White Matter Integrity in Depression. Life 2021, 12, 43. [Google Scholar] [CrossRef]
- Benedetti, F.; Poletti, S.; Hoogenboezem, T.A.; Mazza, E.; Ambrée, O.; de Wit, H.; Wijkhuijs, A.J.M.; Locatelli, C.; Bollettini, I.; Colombo, C.; et al. Inflammatory Cytokines Influence Measures of White Matter Integrity in Bipolar Disorder. J. Affect. Disord. 2016, 202, 1–9. [Google Scholar] [CrossRef]
- Miller, T.J.; McGlashan, T.H.; Rosen, J.L.; Cadenhead, K.; Cannon, T.; Ventura, J.; McFarlane, W.; Perkins, D.O.; Pearlson, G.D.; Woods, S.W. Prodromal Assessment with the Structured Interview for Prodromal Syndromes and the Scale of Prodromal Symptoms: Predictive Validity, Interrater Reliability, and Training to Reliability. Schizophr. Bull. 2003, 29, 703–715. [Google Scholar] [CrossRef] [Green Version]
- Mak, M.; Starkowska, A.; Tyburski, E.; Samochowiec, J. Polish Version of the Structured Interview for Psychosis-Risk Syndromes (SIPS)—Description of the Tool. Psychiatr. Pol. 2019, 53, 561–575. [Google Scholar] [CrossRef]
- The ICD-10 Classification of Mental and Behavioural Disorders: Diagnostic Criteria for Research; World Health Organization: Geneva, Switzerland, 1993.
- Pużyński, S.; Wciórka, J. Klasyfikacja Zaburzeń Psychicznych i Zaburzeń Zachowania w ICD-10. In Badawcze Kryteria Diagnostyczne; Vesalius: Kraków, Poland, 2000. [Google Scholar]
- Sheehan, D.V.; Lecrubier, Y.; Sheehan, K.H.; Amorim, P.; Janavs, J.; Weiller, E.; Hergueta, T.; Baker, R.; Dunbar, G.C. The Mini-International Neuropsychiatric Interview (M.I.N.I.): The Development and Validation of a Structured Diagnostic Psychiatric Interview for DSM-IV and ICD-10. J. Clin. Psychiatry 1998, 59 (Suppl. S20), 22–33. [Google Scholar]
- Leucht, S.; Samara, M.; Heres, S.; Davis, J.M. Dose Equivalents for Antipsychotic Drugs: The DDD Method. Schizophr. Bull. 2016, 42 (Suppl. S1), S90–S94. [Google Scholar] [CrossRef] [Green Version]
- Kay, S.R.; Fiszbein, A.; Opler, L.A. The Positive and Negative Syndrome Scale (PANSS) for Schizophrenia. Schizophr. Bull. 1987, 13, 261–276. [Google Scholar] [CrossRef]
- Shafer, A.; Dazzi, F. Meta-Analysis of the Positive and Negative Syndrome Scale (PANSS) Factor Structure. J. Psychiatr. Res. 2019, 115, 113–120. [Google Scholar] [CrossRef] [PubMed]
- Tyburski, E.; Podwalski, P.; Waszczuk, K.; Rek-Owodziń, K.; Mak, M.; Plichta, P.; Bielecki, M.; Rudkowski, K.; Szelepajło, M.; Kucharska-Mazur, J.; et al. Relationship of Corpus Callosum Integrity with Working Memory, Planning, and Speed of Processing in Patients with First-Episode and Chronic Schizophrenia. J. Clin. Med. 2021, 10, 3158. [Google Scholar] [CrossRef]
- Leemans, A.; Jeurissen, B.; Sijbers, J.; Jones, D.K. ExploreDTI: A Graphical Toolbox for Processing, Analyzing, and Visualizing Diffusion MR Data. Proc. Int. Soc. Mag. Reson. Med. 2009, 17, 3537. [Google Scholar]
- Wang, Z.; Li, P.; Chi, D.; Wu, T.; Mei, Z.; Cui, G. Association between C-Reactive Protein and Risk of Schizophrenia: An Updated Meta-Analysis. Oncotarget 2017, 8, 75445–75454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernandes, B.S.; Steiner, J.; Bernstein, H.-G.; Dodd, S.; Pasco, J.A.; Dean, O.M.; Nardin, P.; Gonçalves, C.-A.; Berk, M. C-Reactive Protein Is Increased in Schizophrenia but Is Not Altered by Antipsychotics: Meta-Analysis and Implications. Mol. Psychiatry 2016, 21, 554–564. [Google Scholar] [CrossRef]
- Goldsmith, D.R.; Rapaport, M.H.; Miller, B.J. A Meta-Analysis of Blood Cytokine Network Alterations in Psychiatric Patients: Comparisons between Schizophrenia, Bipolar Disorder and Depression. Mol. Psychiatry 2016, 21, 1696–1709. [Google Scholar] [CrossRef]
- Kelsven, S.; de la Fuente-Sandoval, C.; Achim, C.L.; Reyes-Madrigal, F.; Mirzakhanian, H.; Domingues, I.; Cadenhead, K. Immuno-Inflammatory Changes across Phases of Early Psychosis: The Impact of Antipsychotic Medication and Stage of Illness. Schizophr. Res. 2020, 226, 13–23. [Google Scholar] [CrossRef]
- Więdłocha, M.; Marcinowicz, P.; Krupa, R.; Janoska-Jaździk, M.; Janus, M.; Dębowska, W.; Mosiołek, A.; Waszkiewicz, N.; Szulc, A. Effect of antidepressant treatment on peripheral inflammation markers—A meta-analysis. Prog. Neuropsychopharmacol. Biol. Psychiatry 2018, 80 Pt C, 217–226. [Google Scholar] [CrossRef]
- Dawidowski, B.; Górniak, A.; Podwalski, P.; Lebiecka, Z.; Misiak, B.; Samochowiec, J. The Role of Cytokines in the Pathogenesis of Schizophrenia. J. Clin. Med. 2021, 10, 3849. [Google Scholar] [CrossRef]
- Capuzzi, E.; Bartoli, F.; Crocamo, C.; Clerici, M.; Carrà, G. Acute Variations of Cytokine Levels after Antipsychotic Treatment in Drug-Naïve Subjects with a First-Episode Psychosis: A Meta-Analysis. Neurosci. Biobehav. Rev. 2017, 77, 122–128. [Google Scholar] [CrossRef]
- Romeo, B.; Brunet-Lecomte, M.; Martelli, C.; Benyamina, A. Kinetics of Cytokine Levels during Antipsychotic Treatment in Schizophrenia: A Meta-Analysis. Int. J. Neuropsychopharmacol. 2018, 21, 828–836. [Google Scholar] [CrossRef] [PubMed]
- Marcinowicz, P.; Więdłocha, M.; Zborowska, N.; Dębowska, W.; Podwalski, P.; Misiak, B.; Tyburski, E.; Szulc, A. A Meta-Analysis of the Influence of Antipsychotics on Cytokines Levels in First Episode Psychosis. J. Clin. Med. 2021, 10, 2488. [Google Scholar] [CrossRef] [PubMed]
- Soares, J.M.; Marques, P.; Alves, V.; Sousa, N. A Hitchhiker’s Guide to Diffusion Tensor Imaging. Front. Neurosci. 2013, 7, 31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seki, Y.; Kato, T.A.; Monji, A.; Mizoguchi, Y.; Horikawa, H.; Sato-Kasai, M.; Yoshiga, D.; Kanba, S. Pretreatment of Aripiprazole and Minocycline, but Not Haloperidol, Suppresses Oligodendrocyte Damage from Interferon-γ-Stimulated Microglia in Co-Culture Model. Schizophr. Res. 2013, 151, 20–28. [Google Scholar] [CrossRef]
- Sun, Y.; Koyama, Y.; Shimada, S. Inflammation from Peripheral Organs to the Brain: How Does Systemic Inflammation Cause Neuroinflammation? Front. Aging Neurosci. 2022, 14, 903455. [Google Scholar] [CrossRef] [PubMed]
- Manu, P.; Dima, L.; Shulman, M.; Vancampfort, D.; De Hert, M.; Correll, C.U. Weight Gain and Obesity in Schizophrenia: Epidemiology, Pathobiology, and Management. Acta Psychiatr. Scand. 2015, 132, 97–108. [Google Scholar] [CrossRef]
- Sagud, M.; Mihaljevic Peles, A.; Pivac, N. Smoking in Schizophrenia: Recent Findings about an Old Problem. Curr. Opin. Psychiatry 2019, 32, 402–408. [Google Scholar] [CrossRef]
- GHO | By Category | Prevalence of Overweight among Adults, BMI ≥ 25, Crude—Estimates by Country. Available online: https://apps.who.int/gho/data/view.main.BMI25Cv?lang=en (accessed on 23 August 2022).
- Lima, M.G.; Tardelli, V.S.; Brietzke, E.; Fidalgo, T.M. Cannabis and Inflammatory Mediators. Eur. Addict. Res. 2021, 27, 16–24. [Google Scholar] [CrossRef]
- Becker, M.P.; Collins, P.F.; Lim, K.O.; Muetzel, R.L.; Luciana, M. Longitudinal Changes in White Matter Microstructure after Heavy Cannabis Use. Dev. Cogn. Neurosci. 2015, 16, 23–35. [Google Scholar] [CrossRef]
Parameter | HC | UHR | FEP | SCH | H/x2 |
---|---|---|---|---|---|
n | 34 | 16 | 30 | 71 | |
Women | 19 (56) | 8 (50) | 18 (60) | 31 (44) | 2.80 |
Age (years) | 36 ± 8 (37) | 24 ± 5 (25) | 28 ± 6 (27.5) | 39 ± 7 (39) | 56.79 ***# |
Years of education | 15 ± 3 (15.5) | 13 ± 3 (12) | 13 ± 3 (12) | 13 ± 3 (12) | 6.96 |
BMI (kg/m2) | 26 ± 4 (25) | 23 ± 3 (22) | 24 ± 4 (23) | 28 ± 5 (28) | 28.92 ***# |
Smoking cigarettes | 0 (0) | 0 (0) | 4 (13) | 23 (32) | 20.51 ***# |
Duration of illness (years) | - | 1.0 ± 1.2 (0.5) | 0.7 ± 1.3 (0.3) | 15.2 ± 5.5 (13) | 84.04 ***# |
Exacerbations ^ | - | 5.1 ± 6.4 (1.0) | 1.1 ± 0.3 (1) | 6 ± 4 (5) | 59.68 ***# |
Antipsychotic medications: | 41.92 ***# | ||||
Atypical | - | 7 (44) | 26 (87) | 49 (69) | |
Atypical and typical | - | 1 (6) | 2 (7) | 20 (28) | |
Typical | - | 0 (0) | 1 (3) | 3 (4) | |
None | - | 8 (50) | 1 (3) | 2 (3) | |
Chlorpromazine equivalent (mg) | - | 138 ± 210 (17) | 483 ± 305 (450) | 666 ± 308 (640) | 43.23 ***# |
Antidepressant medications | - | 5 (31) | 0 (0) | 2 (3) | |
Global functioning in GAF | - | 62 ± 14 (65) | 59 ± 17 (56) | 56 ± 15 (60) | 2.60 |
Psychopathological symptoms in PANSS: | |||||
Positive | - | - | 12 ± 5 (12) | 8 ± 4 (6) | 4.01 ***# |
Negative | - | - | 17 ± 7 (17.5) | 17 ± 6 (16) | −0.15 |
Disorganization | - | - | 15 ± 5 (14) | 12 ± 4 (11) | 2.61 ** |
Affect | - | - | 10 ± 4 (9.5) | 9 ± 3 (8) | 1.75 |
Resistance | - | - | 5 ± 2 (4) | 5 ± 2 (4) | 1.44 |
Psychopathological symptoms in SIPS: | |||||
Positive | - | 6.3 ± 4.0 (6) | - | - | |
negative | - | 11.5 ± 3.4 (14) | - | - | |
Disorganization | - | 4.5 ± 3.4 (3) | - | - | |
General | - | 8.0 ± 4.0 (8) | - | - | |
CRP (mg/L) | 2.45 ± 5.23 (0.89) | 2.70 ± 4.95 (0.91) | 1.24 ± 1.29 (0.71) | 6.28 ± 15.89 (2.03) | 10.67 * |
IL-6 (pg/mL) | 1.32 ± 0.84 (1.08) | 1.85 ± 1.08 (1.68) | 1.34 ± 0.65 (1.20) | 2.76 ± 3.48 (1.65) | 16.08 **# |
IL-8 (pg/mL) | 11.56 ± 7.29 (10.19) | 9.81 ± 3.30 (8.83) | 8.51 ± 3.50 (7.62) | 12.43 ± 21.63 (9.69) | 7.77 |
IL-10 (pg/mL) | 1.26 ± 1.24 (1.18) | 1.02 ± 0.74 (1.14) | 5.15 ± 21.86 (0.82) | 4.43 ± 22.14 (1.42) | 5.01 |
TNF-α (pg/mL) | 6.91 ± 2.38 (6.26) | 7.18 ± 3.88 (6.26) | 6.70 ± 2.51 (5.88) | 6.69 ± 2.42 (6.12) | 0.90 |
IFN-γ (pg/mL) | 2.86 ± 3.96 (1.81) | 11.88 ± 16.02 (5.30) | 4.50 ± 5.35 (2.62) | 9.21 ± 30.65 (2.94) | 14.67 **# |
HC (n = 29) | UHR (n = 12) | FEP (n = 19) | SCH (n = 51) | |||||
---|---|---|---|---|---|---|---|---|
FA of CB | Left | Right | Left | Right | Left | Right | Left | Right |
CRP | −0.190 | −0.181 | −0.014 | −0.252 | 0.407 | 0.272 | 0.118 | 0.197 |
IL-6 | −0.208 | −0.410 * | −0.608 * | −0.462 | −0.142 | −0.281 | −0.035 | −0.088 |
IL-8 | 0.291 | 0.325 | 0.203 | 0.056 | −0.304 | −0.161 | −0.030 | −0.003 |
IL-10 | 0.175 | 0.178 | −0.098 | 0.221 | −0.283 | −0.259 | 0.085 | 0.024 |
TNF-α | −0.197 | 0.008 | 0.014 | 0.154 | −0.049 | 0.072 | 0.277 * | 0.144 |
IFN-γ | −0.358 | −0.398 * | 0.079 | 0.248 | −0.441 | −0.159 | 0.061 | 0.104 |
HC (n = 29) | UHR (n = 12) | FEP (n = 19) | SCH (n = 51) | |||||
---|---|---|---|---|---|---|---|---|
MD of CB | Left | Right | Left | Right | Left | Right | Left | Right |
CRP | −0.085 | −0.260 | −0.098 | −0.126 | 0.274 | 0.444 | −0.009 | 0.066 |
IL-6 | −0.090 | −0.215 | 0.175 | 0.517 | 0.161 | 0.325 | 0.300 * | 0.230 |
IL-8 | −0.465* | −0.360 | −0.594 * | −0.734 ** | 0.311 | 0.239 | −0.025 | −0.141 |
IL-10 | 0.300 | 0.197 | 0.130 | 0.098 | 0.004 | −0.014 | 0.154 | 0.090 |
TNF-α | 0.314 | 0.230 | 0.007 | 0.084 | 0.046 | −0.054 | 0.091 | 0.205 |
IFN-γ | −0.123 | −0.009 | −0.370 | −0.200 | 0.048 | −0.396 | 0.214 | 0.184 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Michalczyk, A.; Tyburski, E.; Podwalski, P.; Waszczuk, K.; Rudkowski, K.; Kucharska-Mazur, J.; Mak, M.; Rek-Owodziń, K.; Plichta, P.; Bielecki, M.; et al. Serum Inflammatory Markers and Their Associations with the Integrity of the Cingulum Bundle in Schizophrenia, from Prodromal Stages to Chronic Psychosis. J. Clin. Med. 2022, 11, 6352. https://doi.org/10.3390/jcm11216352
Michalczyk A, Tyburski E, Podwalski P, Waszczuk K, Rudkowski K, Kucharska-Mazur J, Mak M, Rek-Owodziń K, Plichta P, Bielecki M, et al. Serum Inflammatory Markers and Their Associations with the Integrity of the Cingulum Bundle in Schizophrenia, from Prodromal Stages to Chronic Psychosis. Journal of Clinical Medicine. 2022; 11(21):6352. https://doi.org/10.3390/jcm11216352
Chicago/Turabian StyleMichalczyk, Anna, Ernest Tyburski, Piotr Podwalski, Katarzyna Waszczuk, Krzysztof Rudkowski, Jolanta Kucharska-Mazur, Monika Mak, Katarzyna Rek-Owodziń, Piotr Plichta, Maksymilian Bielecki, and et al. 2022. "Serum Inflammatory Markers and Their Associations with the Integrity of the Cingulum Bundle in Schizophrenia, from Prodromal Stages to Chronic Psychosis" Journal of Clinical Medicine 11, no. 21: 6352. https://doi.org/10.3390/jcm11216352
APA StyleMichalczyk, A., Tyburski, E., Podwalski, P., Waszczuk, K., Rudkowski, K., Kucharska-Mazur, J., Mak, M., Rek-Owodziń, K., Plichta, P., Bielecki, M., Andrusewicz, W., Cecerska-Heryć, E., Samochowiec, A., Misiak, B., Sagan, L., & Samochowiec, J. (2022). Serum Inflammatory Markers and Their Associations with the Integrity of the Cingulum Bundle in Schizophrenia, from Prodromal Stages to Chronic Psychosis. Journal of Clinical Medicine, 11(21), 6352. https://doi.org/10.3390/jcm11216352