Therapeutic Drug Monitoring of Subcutaneous Infliximab in Inflammatory Bowel Disease—Understanding Pharmacokinetics and Exposure Response Relationships in a New Era of Subcutaneous Biologics
Abstract
:1. Introduction
2. Search Strategy
3. Pharmacokinetics of Subcutaneous CT-P13
4. Impact of Dosing on Exposure-Response Relationship
5. Comparing Drug Levels between Intravenous and Subcutaneous Infliximab
6. Predictors of Infliximab Drug Levels
6.1. Body Weight
6.2. Serum Albumin
6.3. Immunomodulator Use
6.4. Immunogenicity
7. Conclusions and Future Directions
Author Contributions
Funding
Conflicts of Interest
References
- Ungaro, R.; Mehandru, S.; Allen, P.B.; Peyrin-Biroulet, L.; Colombel, J.F. Ulcerative colitis. Lancet 2017, 389, 1756–1770. [Google Scholar] [CrossRef]
- Torres, J.; Mehandru, S.; Colombel, J.F.; Peyrin-Biroulet, L. Crohn’s disease. Lancet 2017, 389, 1741–1755. [Google Scholar] [CrossRef]
- Hanauer, S.B.; Sandborn, W.J.; Rutgeerts, P.; Fedorak, R.N.; Lukas, M.; MacIntosh, D.; Panaccione, R.; Wolf, D.; Pollack, P. Human anti-tumor necrosis factor monoclonal antibody (adalimumab) in Crohn’s disease: The CLASSIC-I trial. Gastroenterology 2006, 130, 323–333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sandborn, W.J.; Hanauer, S.B.; Rutgeerts, P.; Fedorak, R.N.; Lukas, M.; MacIntosh, D.G.; Panaccione, R.; Wolf, D.; Kent, J.D.; Bittle, B.; et al. Adalimumab for maintenance treatment of Crohn’s disease: Results of the CLASSIC II trial. Gut 2007, 56, 1232–1239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanauer, S.B.; Feagan, B.G.; Lichtenstein, G.R.; Mayer, L.F.; Schreiber, S.; Colombel, J.F.; Rachmilewitz, D.; Wolf, D.C.; Olson, A.; Bao, W.; et al. Maintenance infliximab for Crohn’s disease: The ACCENT I randomised trial. Lancet 2002, 359, 1541–1549. [Google Scholar] [CrossRef]
- Colombel, J.F.; Sandborn, W.J.; Rutgeerts, P.; Enns, R.; Hanauer, S.B.; Panaccione, R.; Schreiber, S.; Byczkowski, D.; Li, J.; Kent, J.D.; et al. Adalimumab for maintenance of clinical response and remission in patients with Crohn’s disease: The CHARM trial. Gastroenterology 2007, 132, 52–65. [Google Scholar] [CrossRef] [Green Version]
- Rutgeerts, P.; Sandborn, W.J.; Feagan, B.G.; Reinisch, W.; Olson, A.; Johanns, J.; Travers, S.; Rachmilewitz, D.; Hanauer, S.B.; Lichtenstein, G.R.; et al. Infliximab for induction and maintenance therapy for ulcerative colitis. N. Engl. J. Med. 2005, 353, 2462–2476. [Google Scholar] [CrossRef] [Green Version]
- Sands, B.E.; Anderson, F.H.; Bernstein, C.N.; Chey, W.Y.; Feagan, B.G.; Fedorak, R.N.; Kamm, M.A.; Korzenik, J.R.; Lashner, B.A.; Onken, J.E.; et al. Infliximab maintenance therapy for fistulizing Crohn’s disease. N. Engl. J. Med. 2004, 350, 876–885. [Google Scholar] [CrossRef]
- D’Haens, G.R.; van Deventer, S. 25 years of anti-TNF treatment for inflammatory bowel disease: Lessons from the past and a look to the future. Gut 2021, 70, 1396–1405. [Google Scholar] [CrossRef]
- Ben-Horin, S.; Vande Casteele, N.; Schreiber, S.; Lakatos, P.L. Biosimilars in Inflammatory Bowel Disease: Facts and Fears of Extrapolation. Clin. Gastroenterol. Hepatol. 2016, 14, 1685–1696. [Google Scholar] [CrossRef]
- Jha, A.; Upton, A.; Dunlop, W.C.; Akehurst, R. The Budget Impact of Biosimilar Infliximab (Remsima(R)) for the Treatment of Autoimmune Diseases in Five European Countries. Adv. Ther. 2015, 32, 742–756. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parigi, T.L.; D’Amico, F.; Peyrin-Biroulet, L.; Danese, S. Evolution of infliximab biosimilar in inflammatory bowel disease: From intravenous to subcutaneous CT-P13. Expert Opin. Biol. Ther. 2021, 21, 37–46. [Google Scholar] [CrossRef] [PubMed]
- Park, W.; Hrycaj, P.; Jeka, S.; Kovalenko, V.; Lysenko, G.; Miranda, P.; Mikazane, H.; Gutierrez-Urena, S.; Lim, M.; Lee, Y.A.; et al. A randomised, double-blind, multicentre, parallel-group, prospective study comparing the pharmacokinetics, safety, and efficacy of CT-P13 and innovator infliximab in patients with ankylosing spondylitis: The PLANETAS study. Ann. Rheum. Dis. 2013, 72, 1605–1612. [Google Scholar] [CrossRef] [PubMed]
- Yoo, D.H.; Hrycaj, P.; Miranda, P.; Ramiterre, E.; Piotrowski, M.; Shevchuk, S.; Kovalenko, V.; Prodanovic, N.; Abello-Banfi, M.; Gutierrez-Urena, S.; et al. A randomised, double-blind, parallel-group study to demonstrate equivalence in efficacy and safety of CT-P13 compared with innovator infliximab when coadministered with methotrexate in patients with active rheumatoid arthritis: The PLANETRA study. Ann. Rheum. Dis. 2013, 72, 1613–1620. [Google Scholar] [CrossRef]
- Goll, G.L.; Jorgensen, K.K.; Sexton, J.; Olsen, I.C.; Bolstad, N.; Haavardsholm, E.A.; Lundin, K.E.A.; Tveit, K.S.; Lorentzen, M.; Berset, I.P.; et al. Long-term efficacy and safety of biosimilar infliximab (CT-P13) after switching from originator infliximab: Open-label extension of the NOR-SWITCH trial. J. Intern. Med. 2019, 285, 653–669. [Google Scholar] [CrossRef] [Green Version]
- Jorgensen, K.K.; Olsen, I.C.; Goll, G.L.; Lorentzen, M.; Bolstad, N.; Haavardsholm, E.A.; Lundin, K.E.A.; Mork, C.; Jahnsen, J.; Kvien, T.K.; et al. Switching from originator infliximab to biosimilar CT-P13 compared with maintained treatment with originator infliximab (NOR-SWITCH): A 52-week, randomised, double-blind, non-inferiority trial. Lancet 2017, 389, 2304–2316. [Google Scholar] [CrossRef]
- Komaki, Y.; Yamada, A.; Komaki, F.; Micic, D.; Ido, A.; Sakuraba, A. Systematic review with meta-analysis: The efficacy and safety of CT-P13, a biosimilar of anti-tumour necrosis factor-alpha agent (infliximab), in inflammatory bowel diseases. Aliment. Pharmacol. Ther. 2017, 45, 1043–1057. [Google Scholar] [CrossRef] [Green Version]
- Ebada, M.A.; Elmatboly, A.M.; Ali, A.S.; Ibrahim, A.M.; Fayed, N.; Faisal, A.F.; Alkanj, S. An updated systematic review and meta-analysis about the safety and efficacy of infliximab biosimilar, CT-P13, for patients with inflammatory bowel disease. Int. J. Colorectal Dis. 2019, 34, 1633–1652. [Google Scholar] [CrossRef]
- Smits, L.J.T.; van Esch, A.A.J.; Derikx, L.; Boshuizen, R.; de Jong, D.J.; Drenth, J.P.H.; Hoentjen, F. Drug Survival and Immunogenicity after Switching from Remicade to Biosimilar CT-P13 in Inflammatory Bowel Disease Patients: Two-year Follow-up of a Prospective Observational Cohort Study. Inflamm. Bowel Dis. 2019, 25, 172–179. [Google Scholar] [CrossRef]
- Ye, B.D.; Pesegova, M.; Alexeeva, O.; Osipenko, M.; Lahat, A.; Dorofeyev, A.; Fishman, S.; Levchenko, O.; Cheon, J.H.; Scribano, M.L.; et al. Efficacy and safety of biosimilar CT-P13 compared with originator infliximab in patients with active Crohn’s disease: An international, randomised, double-blind, phase 3 non-inferiority study. Lancet 2019, 393, 1699–1707. [Google Scholar] [CrossRef]
- Strik, A.S.; van de Vrie, W.; Bloemsaat-Minekus, J.P.J.; Nurmohamed, M.; Bossuyt, P.J.J.; Bodelier, A.; Rispens, T.; van Megen, Y.J.B.; D’Haens, G.R.; SECURE study group. Serum concentrations after switching from originator infliximab to the biosimilar CT-P13 in patients with quiescent inflammatory bowel disease (SECURE): An open-label, multicentre, phase 4 non-inferiority trial. Lancet Gastroenterol. Hepatol. 2018, 3, 404–412. [Google Scholar] [CrossRef]
- Wentworth, B.J.; Buerlein, R.C.D.; Tuskey, A.G.; Overby, M.A.; Smolkin, M.E.; Behm, B.W. Nonadherence to Biologic Therapies in Inflammatory Bowel Disease. Inflamm. Bowel Dis. 2018, 24, 2053–2061. [Google Scholar] [CrossRef] [PubMed]
- van der Have, M.; Oldenburg, B.; Kaptein, A.A.; Jansen, J.M.; Scheffer, R.C.; van Tuyl, B.A.; van der Meulen-de Jong, A.E.; Pierik, M.; Siersema, P.D.; van Oijen, M.G.; et al. Non-adherence to Anti-TNF Therapy is Associated with Illness Perceptions and Clinical Outcomes in Outpatients with Inflammatory Bowel Disease: Results from a Prospective Multicentre Study. J. Crohn’s Colitis 2016, 10, 549–555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Degli Esposti, L.; Sangiorgi, D.; Perrone, V.; Radice, S.; Clementi, E.; Perone, F.; Buda, S. Adherence and resource use among patients treated with biologic drugs: Findings from BEETLE study. Clin. Outcomes Res. 2014, 6, 401–407. [Google Scholar] [CrossRef] [Green Version]
- De Jong, M.J.; Pierik, M.J.; Peters, A.; Roemers, M.; Hilhorst, V.; van Tubergen, A. Exploring conditions for redistribution of anti-tumor necrosis factors to reduce spillage: A study on the quality of anti-tumor necrosis factor home storage. J. Gastroenterol. Hepatol. 2018, 33, 426–430. [Google Scholar] [CrossRef]
- Rentsch, C.; Headon, B.; Ward, M.G.; Gibson, P.R. Inadequate storage of subcutaneous biological agents by patients with inflammatory bowel disease: Another factor driving loss of response? J. Gastroenterol. Hepatol. 2018, 33, 10–11. [Google Scholar] [CrossRef] [Green Version]
- Huynh, T.K.; Ostergaard, A.; Egsmose, C.; Madsen, O.R. Preferences of patients and health professionals for route and frequency of administration of biologic agents in the treatment of rheumatoid arthritis. Patient Prefer. Adherence 2014, 8, 93–99. [Google Scholar] [CrossRef] [Green Version]
- Asnong, K.; Hoefkens, E.; Lembrechts, N.; Van de Schoot, I.; Pouillon, L.; Bossuyt, P. N02 PREVIEW study: Factors associated with willingness to switch from intravenous to subcutaneous formulations of CT-P13 and vedolizumab in patients with Inflammatory Bowel Disease. J. Crohn’s Colitis 2021, 15, S608–S609. [Google Scholar] [CrossRef]
- Stoner, K.L.; Harder, H.; Fallowfield, L.J.; Jenkins, V.A. Intravenous versus Subcutaneous Drug Administration. Which Do Patients Prefer? A Systematic Review. Patient Patient-Cent. Outcomes Res. 2015, 8, 145–153. [Google Scholar] [CrossRef] [Green Version]
- Vavricka, S.R.; Bentele, N.; Scharl, M.; Rogler, G.; Zeitz, J.; Frei, P.; Straumann, A.; Binek, J.; Schoepfer, A.M.; Fried, M.; et al. Systematic assessment of factors influencing preferences of Crohn’s disease patients in selecting an anti-tumor necrosis factor agent (CHOOSE TNF TRIAL). Inflamm. Bowel Dis. 2012, 18, 1523–1530. [Google Scholar] [CrossRef]
- Tetteh, E.K.; Morris, S. Evaluating the administration costs of biologic drugs: Development of a cost algorithm. Health Econ. Rev. 2014, 4, 26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buisson, A.; Seigne, A.L.; D’huart, M.C.; Bigard, M.A.; Peyrin-Biroulet, L. The extra burden of infliximab infusions in inflammatory bowel disease. Inflamm. Bowel Dis. 2013, 19, 2464–2467. [Google Scholar] [CrossRef]
- Heald, A.; Bramham-Jones, S.; Davies, M. Comparing cost of intravenous infusion and subcutaneous biologics in COVID-19 pandemic care pathways for rheumatoid arthritis and inflammatory bowel disease: A brief UK stakeholder survey. Int. J. Clin. Pr. 2021, 75, e14341. [Google Scholar] [CrossRef]
- Cronin, J.; Moore, S.; Lenihan, N.; O’Shea, M.; Woods, N. The non-drug costs associated with the administration of an intravenous biologic treatment in the hospital setting. Ir. J. Med. Sci. 2019, 188, 821–834. [Google Scholar] [CrossRef] [PubMed]
- Byun, H.G.; Jang, M.; Yoo, H.K.; Potter, J.; Kwon, T.S. Budget Impact Analysis of the Introduction of Subcutaneous Infliximab (CT-P13 SC) for the Treatment of Rheumatoid Arthritis in the United Kingdom. Appl. Health Econ. Health Policy 2021, 19, 735–745. [Google Scholar] [CrossRef] [PubMed]
- Clough, J.N.; Hill, K.L.; Duff, A.; Sharma, E.; Ray, S.; Mawdsley, J.E.; Anderson, S.; Irving, P.M.; Samaan, M.A. Managing an IBD Infusion Unit During the COVID-19 Pandemic: Service Modifications and the Patient Perspective. Inflamm. Bowel Dis. 2020, 26, e125–e126. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, N.A.; Jones, G.R.; Lamb, C.A.; Appleby, R.; Arnott, I.; Beattie, R.M.; Bloom, S.; Brooks, A.J.; Cooney, R.; Dart, R.J.; et al. British Society of Gastroenterology guidance for management of inflammatory bowel disease during the COVID-19 pandemic. Gut 2020, 69, 984–990. [Google Scholar] [CrossRef] [PubMed]
- Magro, F.; Rahier, J.F.; Abreu, C.; MacMahon, E.; Hart, A.; van der Woude, C.J.; Gordon, H.; Adamina, M.; Viget, N.; Vavricka, S.; et al. Inflammatory Bowel Disease Management During the COVID-19 Outbreak: The Ten Do’s and Don’ts from the ECCO-COVID Taskforce. J. Crohn’s Colitis 2020, 14, S798–S806. [Google Scholar] [CrossRef]
- Westhovens, R.; Yoo, D.H.; Jaworski, J.; Matyska-Piekarska, E.; Smiyan, S.; Ivanova, D.; Zielinska, A.; Raussi, E.-K.; Batalov, A.; Lee, S.J.; et al. THU0191 Novel formulation of ct-p13 for subcutaneous administration in patients with rheumatoid arthritis: Initial results from a phase i/iii randomised controlled trial. Ann. Rheum. Dis. 2018, 77, 315. [Google Scholar] [CrossRef]
- Schreiber, S.; Jang, B.I.; Borzan, V.; Lahat, A.; Pukitis, A.; Osipenko, M.; Mostovoy, Y.; Ben-Horin, S.; Ye, B.D.; Lee, S.J.; et al. Tu2018—Novel Formulation of CT-P13 (Infliximab Biosimilar) for Subcutaneous Administration: Initial Results from a Phase I Open-Label Randomized Controlled Trial in Patients with Active Crohn’s Disease. Gastroenterology 2018, 154, 1371. [Google Scholar] [CrossRef]
- Caporali, R.; Allanore, Y.; Alten, R.; Combe, B.; Durez, P.; Iannone, F.; Nurmohamed, M.T.; Lee, S.J.; Kwon, T.S.; Choi, J.S.; et al. Efficacy and safety of subcutaneous infliximab versus adalimumab, etanercept and intravenous infliximab in patients with rheumatoid arthritis: A systematic literature review and meta-analysis. Expert Rev. Clin. Immunol. 2021, 17, 85–99. [Google Scholar] [CrossRef] [PubMed]
- Combe, B.; Allanore, Y.; Alten, R.; Caporali, R.; Durez, P.; Iannone, F.; Nurmohamed, M.T.; Toumi, M.; Lee, S.J.; Kwon, T.S.; et al. Comparative efficacy of subcutaneous (CT-P13) and intravenous infliximab in adult patients with rheumatoid arthritis: A network meta-regression of individual patient data from two randomised trials. Arthritis Res. Ther. 2021, 23, 119. [Google Scholar] [CrossRef] [PubMed]
- Schreiber, S.; Ben-Horin, S.; Leszczyszyn, J.; Dudkowiak, R.; Lahat, A.; Gawdis-Wojnarska, B.; Pukitis, A.; Horynski, M.; Farkas, K.; Kierkus, J.; et al. Randomized Controlled Trial: Subcutaneous vs Intravenous Infliximab CT-P13 Maintenance in Inflammatory Bowel Disease. Gastroenterology 2021, 160, 2340–2353. [Google Scholar] [CrossRef] [PubMed]
- Adedokun, O.J.; Sandborn, W.J.; Feagan, B.G.; Rutgeerts, P.; Xu, Z.; Marano, C.W.; Johanns, J.; Zhou, H.; Davis, H.M.; Cornillie, F.; et al. Association between serum concentration of infliximab and efficacy in adult patients with ulcerative colitis. Gastroenterology 2014, 147, 1296–1307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steenholdt, C.; Brynskov, J.; Thomsen, O.O.; Munck, L.K.; Fallingborg, J.; Christensen, L.A.; Pedersen, G.; Kjeldsen, J.; Jacobsen, B.A.; Oxholm, A.S.; et al. Individualised therapy is more cost-effective than dose intensification in patients with Crohn’s disease who lose response to anti-TNF treatment: A randomised, controlled trial. Gut 2014, 63, 919–927. [Google Scholar] [CrossRef]
- Papamichael, K.; Cheifetz, A.S.; Melmed, G.Y.; Irving, P.M.; Vande Casteele, N.; Kozuch, P.L.; Raffals, L.E.; Baidoo, L.; Bressler, B.; Devlin, S.M.; et al. Appropriate Therapeutic Drug Monitoring of Biologic Agents for Patients with Inflammatory Bowel Diseases. Clin. Gastroenterol. Hepatol. 2019, 17, 1655–1668. [Google Scholar] [CrossRef] [Green Version]
- Cheifetz, A.S.; Abreu, M.T.; Afif, W.; Cross, R.K.; Dubinsky, M.C.; Loftus, E.V., Jr.; Osterman, M.T.; Saroufim, A.; Siegel, C.A.; Yarur, A.J.; et al. A Comprehensive Literature Review and Expert Consensus Statement on Therapeutic Drug Monitoring of Biologics in Inflammatory Bowel Disease. Am. J. Gastroenterol. 2021, 116, 2014–2025. [Google Scholar] [CrossRef]
- Gibson, D.J.; Ward, M.G.; Rentsch, C.; Friedman, A.B.; Taylor, K.M.; Sparrow, M.P.; Gibson, P.R. Review article: Determination of the therapeutic range for therapeutic drug monitoring of adalimumab and infliximab in patients with inflammatory bowel disease. Aliment. Pharmacol. Ther. 2020, 51, 612–628. [Google Scholar] [CrossRef]
- Fasanmade, A.A.; Adedokun, O.J.; Blank, M.; Zhou, H.; Davis, H.M. Pharmacokinetic properties of infliximab in children and adults with Crohn’s disease: A retrospective analysis of data from 2 phase III clinical trials. Clin. Ther. 2011, 33, 946–964. [Google Scholar] [CrossRef]
- Fasanmade, A.A.; Adedokun, O.J.; Ford, J.; Hernandez, D.; Johanns, J.; Hu, C.; Davis, H.M.; Zhou, H. Population pharmacokinetic analysis of infliximab in patients with ulcerative colitis. Eur. J. Clin. Pharmacol. 2009, 65, 1211–1228. [Google Scholar] [CrossRef]
- Brandse, J.F.; Mould, D.; Smeekes, O.; Ashruf, Y.; Kuin, S.; Strik, A.; van den Brink, G.R.; D’Haens, G.R. A Real-life Population Pharmacokinetic Study Reveals Factors Associated with Clearance and Immunogenicity of Infliximab in Inflammatory Bowel Disease. Inflamm. Bowel Dis. 2017, 23, 650–660. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dotan, I.; Ron, Y.; Yanai, H.; Becker, S.; Fishman, S.; Yahav, L.; Ben Yehoyada, M.; Mould, D.R. Patient Factors That Increase Infliximab Clearance and Shorten Half-life in Inflammatory Bowel Disease: A Population Pharmacokinetic Study. Inflamm. Bowel Dis. 2014, 20, 2247–2259. [Google Scholar] [CrossRef] [PubMed]
- Hanzel, J.; Bukkems, L.H.; Gecse, K.B.; D’Haens, G.R.; Mathot, R.A.A. Population pharmacokinetics of subcutaneous infliximab CT-P13 in Crohn’s disease and ulcerative colitis. Aliment. Pharmacol. Ther. 2021, 54, 1309–1319. [Google Scholar] [CrossRef] [PubMed]
- European Medicines Agency. Remsima: Assessment Report on Extension(s) of Marketing Authorisation. Available online: https://www.ema.europa.eu/en/documents/variation-report/remsima-h-c-2576-x-0062-epar-assessment-report-variation_en.pdf (accessed on 18 August 2022).
- European Medicines Agency. Humira (Adalimumab). Summary of Product Characteristics. Available online: https://www.ema.europa.eu/en/documents/product-information/humira-epar-product-information_en.pdf (accessed on 22 August 2022).
- Adedokun, O.J.; Xu, Z.; Liao, S.; Strauss, R.; Reinisch, W.; Feagan, B.G.; Sandborn, W.J. Population Pharmacokinetics and Exposure-Response Modeling of Golimumab in Adults with Moderately to Severely Active Ulcerative Colitis. Clin. Ther. 2020, 42, 157–174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buisson, A.; Nachury, M.; Reymond, M.; Yzet, C.; Wils, P.; Payen, K.; Laugie, M.; Manlay, L.; Mathieu, N.; Pereira, B.; et al. Effectiveness of Switching from Intravenous to Subcutaneous Infliximab in Patients with Inflammatory Bowel Diseases: The REMSWITCH Study. Clin. Gastroenterol. Hepatol. 2022, in press. [Google Scholar] [CrossRef] [PubMed]
- Little, R.D.; Ward, M.G.; Sparrow, M.P. Letter to the Editor: Can subcutaneous infliximab replace dose-intensified intravenous administration in inflammatory bowel disease? Clin. Gastroenterol. Hepatol. 2022. Epub ahead of printing. [Google Scholar] [CrossRef]
- Smith, P.J.; Critchley, L.; Storey, D.; Gregg, B.; Stenson, J.; Kneebone, A.; Rimmer, T.; Burke, S.; Hussain, S.; Teoh, W.Y.; et al. Efficacy and Safety of Elective Switching from Intravenous to Subcutaneous Infliximab (Ct-P13): A Multi-Centre Cohort Study. J. Crohn’s Colitis 2022, 16, 1436–1446. [Google Scholar] [CrossRef]
- Paul, S.; Williet, N.; Nancey, S.; Veyrard, P.; Boschetti, G.; Phelip, J.M.; Flourie, B.; Roblin, X. No Difference of Adalimumab Pharmacokinetics When Dosed at 40 mg Every Week or 80 mg Every Other Week in IBD Patients in Clinical Remission After Adalimumab Dose Intensification. Dig. Dis. Sci. 2021, 66, 2744–2749. [Google Scholar] [CrossRef]
- Roblin, X.; Veyrard, P.; Bastide, L.; Berger, A.E.; Barrau, M.; Paucelle, A.S.; Waeckel, L.; Kwiatek, S.; Flourie, B.; Nancey, S.; et al. Subcutaneous injection of infliximab CT-P13 results in stable drug levels within 14-day treatment cycle in Crohn’s disease. Aliment. Pharmacol. Ther. 2022, 56, 77–83. [Google Scholar] [CrossRef]
- Falquina, I.C.M.; Chumillas, R.M.S.; Garcia, L.A.; González, B.V.; Cuesta, N.R.; Hernández, L.A.; Pascual, L.A.; Aladrén, B.S. P617 Switching from an intensified regimen of infliximab to a subcutaneous standard dose in adults with Inflammatory Bowel Disease: Our experience in a tertiary hospital. J. Crohn’s Colitis 2022, 16, i544–i545. [Google Scholar] [CrossRef]
- Arguelles-Arias, F.; Alvarez, P.F.; Laria, L.C.; Perez, B.M.; Jimenez, M.B.; Merino-Bohorquez, V.; Alvarez, A.C.; Hernandez, M.A.C. Switch to subcutaneous infliximab during the SARS-CoV-2 pandemic: Preliminary results. Rev. Esp. Enferm. Dig. 2022, 114, 118–119. [Google Scholar] [CrossRef] [PubMed]
- Liefferinckx, C.; Bottieau, J.; Toubeau, J.F.; Thomas, D.; Rahier, J.F.; Louis, E.; Baert, F.; Dewint, P.; Pouillon, L.; Lambrecht, G.; et al. Collecting New Peak and Intermediate Infliximab Levels to Predict Remission in Inflammatory Bowel Diseases. Inflamm. Bowel Dis. 2022, 28, 208–217. [Google Scholar] [CrossRef] [PubMed]
- Bar-Yoseph, H.; Levhar, N.; Selinger, L.; Manor, U.; Yavzori, M.; Picard, O.; Fudim, E.; Kopylov, U.; Eliakim, R.; Ben-Horin, S.; et al. Early drug and anti-infliximab antibody levels for prediction of primary nonresponse to infliximab therapy. Aliment. Pharmacol. Ther. 2018, 47, 212–218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ungar, B.; Engel, T.; Yablecovitch, D.; Lahat, A.; Lang, A.; Avidan, B.; Har-Noy, O.; Carter, D.; Levhar, N.; Selinger, L.; et al. Prospective Observational Evaluation of Time-Dependency of Adalimumab Immunogenicity and Drug Concentrations: The POETIC Study. Am. J. Gastroenterol. 2018, 113, 890–898. [Google Scholar] [CrossRef]
- Ward, M.G.; Thwaites, P.A.; Beswick, L.; Hogg, J.; Rosella, G.; Van Langenberg, D.; Reynolds, J.; Gibson, P.R.; Sparrow, M.P. Intra-patient variability in adalimumab drug levels within and between cycles in Crohn’s disease. Aliment. Pharmacol. Ther. 2017, 45, 1135–1145. [Google Scholar] [CrossRef] [Green Version]
- Casteele, N.V.; Baert, F.; Bian, S.; Dreesen, E.; Compernolle, G.; Van Assche, G.; Ferrante, M.; Vermeire, S.; Gils, A. Subcutaneous Absorption Contributes to Observed Interindividual Variability in Adalimumab Serum Concentrations in Crohn’s Disease: A Prospective Multicentre Study. J. Crohn’s Colitis 2019, 13, 1248–1256. [Google Scholar] [CrossRef]
- Casteele, N.V.; Gils, A. Editorial: Variability in adalimumab trough and peak serum concentrations. Aliment. Pharmacol. Ther. 2017, 45, 1475–1476. [Google Scholar] [CrossRef] [Green Version]
- Ye, B.D.; Leszczyszyn, J.; Dudkowiak, R.; Lahat, A.; Gawdis-Wojnarska, B.; Pukitis, A.; Horynski, M.; Farkas, K.; Kierkuś, J.; Kowalski, M.; et al. Exposure-response relationship of subcutaneous infliximab (CT-P13 SC) in patients with active Crohn’s disease and ulcerative colitis: Analysis from a multicenter, randomized controlled pivotal trial. United Eur. Gastroenterol. Week 2020, 8 (Suppl. S1), 385–386. Available online: https://ueg.eu/library/exposure-response-relationship-of-subcutaneous-infliximab-ct-p13-sc-in-patients-with-active-crohns-disease-and-ulcerative-colitis-analysis-from-a-multicenter-randomized-controlled-pivotal-trial/235451 (accessed on 22 August 2022).
- Dai, Z.H.; Xu, X.T.; Ran, Z.H. Associations Between Obesity and the Effectiveness of Anti-Tumor Necrosis Factor-alpha Agents in Inflammatory Bowel Disease Patients: A Literature Review and Meta-analysis. Ann. Pharmacother. 2020, 54, 729–741. [Google Scholar] [CrossRef]
- Singh, S.; Facciorusso, A.; Singh, A.G.; Vande Casteele, N.; Zarrinpar, A.; Prokop, L.J.; Grunvald, E.L.; Curtis, J.R.; Sandborn, W.J. Obesity and response to anti-tumor necrosis factor-alpha agents in patients with select immune-mediated inflammatory diseases: A systematic review and meta-analysis. PLoS ONE 2018, 13, e0195123. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.; Proudfoot, J.; Xu, R.; Sandborn, W.J. Obesity and Response to Infliximab in Patients with Inflammatory Bowel Diseases: Pooled Analysis of Individual Participant Data from Clinical Trials. Am. J. Gastroenterol. 2018, 113, 883–889. [Google Scholar] [CrossRef] [PubMed]
- Gu, P.; Chhabra, A.; Chittajallu, P.; Chang, C.; Mendez, D.; Gilman, A.; Fudman, D.I.; Xi, Y.; Feagins, L.A. Visceral Adipose Tissue Volumetrics Inform Odds of Treatment Response and Risk of Subsequent Surgery in IBD Patients Starting Antitumor Necrosis Factor Therapy. Inflamm. Bowel Dis. 2022, 28, 657–666. [Google Scholar] [CrossRef] [PubMed]
- Brandse, J.F.; van den Brink, G.R.; Wildenberg, M.E.; van der Kleij, D.; Rispens, T.; Jansen, J.M.; Mathot, R.A.; Ponsioen, C.Y.; Lowenberg, M.; D’Haens, G.R. Loss of Infliximab into Feces Is Associated with Lack of Response to Therapy in Patients with Severe Ulcerative Colitis. Gastroenterology 2015, 149, 350–355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.; Hayton, W.L.; Robinson, J.M.; Anderson, C.L. Kinetics of FcRn-mediated recycling of IgG and albumin in human: Pathophysiology and therapeutic implications using a simplified mechanism-based model. Clin. Immunol. 2007, 122, 146–155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pyzik, M.; Rath, T.; Lencer, W.I.; Baker, K.; Blumberg, R.S. FcRn: The Architect Behind the Immune and Nonimmune Functions of IgG and Albumin. J. Immunol. 2015, 194, 4595–4603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colombel, J.F.; Sandborn, W.J.; Reinisch, W.; Mantzaris, G.J.; Kornbluth, A.; Rachmilewitz, D.; Lichtiger, S.; D’Haens, G.; Diamond, R.H.; Broussard, D.L.; et al. Infliximab, azathioprine, or combination therapy for Crohn’s disease. N. Engl. J. Med. 2010, 362, 1383–1395. [Google Scholar] [CrossRef] [Green Version]
- Colombel, J.F.; Adedokun, O.J.; Gasink, C.; Gao, L.L.; Cornillie, F.J.; D’Haens, G.R.; Rutgeerts, P.J.; Reinisch, W.; Sandborn, W.J.; Hanauer, S.B. Combination Therapy with Infliximab and Azathioprine Improves Infliximab Pharmacokinetic Features and Efficacy: A Post Hoc Analysis. Clin. Gastroenterol. Hepatol. 2019, 17, 1525–1532. [Google Scholar] [CrossRef] [Green Version]
- Kennedy, N.A.; Heap, G.A.; Green, H.D.; Hamilton, B.; Bewshea, C.; Walker, G.J.; Thomas, A.; Nice, R.; Perry, M.H.; Bouri, S.; et al. Predictors of anti-TNF treatment failure in anti-TNF-naive patients with active luminal Crohn’s disease: A prospective, multicentre, cohort study. Lancet Gastroenterol. Hepatol. 2019, 4, 341–353. [Google Scholar] [CrossRef] [Green Version]
- Schultheiss, J.P.D.; Mahmoud, R.; Louwers, J.M.; van der Kaaij, M.T.; van Hellemondt, B.P.; van Boeckel, P.G.; Mahmmod, N.; Jharap, B.; Fidder, H.H.; Oldenburg, B. Loss of response to anti-TNFalpha agents depends on treatment duration in patients with inflammatory bowel disease. Aliment. Pharmacol. Ther. 2021, 54, 1298–1308. [Google Scholar] [CrossRef]
- Baert, F.; Noman, M.; Vermeire, S.; Van Assche, G.; Haens, G.D.; Carbonez, A.; Rutgeerts, P. Influence of immunogenicity on the long-term efficacy of infliximab in Crohn’s disease. N. Engl. J. Med. 2003, 348, 601–608. [Google Scholar] [CrossRef]
- D’Haens, G.; Reinisch, W.; Schreiber, S.; Cummings, F.; Irving, P.; Ye, B.; Kim, D.; Yoon, S.; Ben-Horin, S. Comparison of combination subcutaneous infliximab and an immunomodulator versus subcutaneous infliximab monotherapy: Post-hoc analysis of a randomised clinical trial. United Eur. Gastroenterol. Week 2021, 9 (Suppl. S1), P0467. Available online: https://programme.ueg.eu/week2021/#/details/presentations/1284 (accessed on 22 August 2022).
- Ungar, B.; Chowers, Y.; Yavzori, M.; Picard, O.; Fudim, E.; Har-Noy, O.; Kopylov, U.; Eliakim, R.; Ben-Horin, S. The temporal evolution of antidrug antibodies in patients with inflammatory bowel disease treated with infliximab. Gut 2014, 63, 1258–1264. [Google Scholar] [CrossRef] [PubMed]
- Mahmoud, R.; Schultheiss, J.P.D.; Fidder, H.H.; Oldenburg, B. Letter: Loss of response to anti-TNFalpha agents depends on treatment duration in patients with inflammatory bowel disease-authors’ reply. Aliment. Pharmacol. Ther. 2022, 55, 499–500. [Google Scholar] [CrossRef] [PubMed]
- Vande Casteele, N.; Gils, A.; Singh, S.; Ohrmund, L.; Hauenstein, S.; Rutgeerts, P.; Vermeire, S. Antibody response to infliximab and its impact on pharmacokinetics can be transient. Am. J. Gastroenterol. 2013, 108, 962–971. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.L.; Ohrmund, L.; Hauenstein, S.; Salbato, J.; Reddy, R.; Monk, P.; Lockton, S.; Ling, N.; Singh, S. Development and validation of a homogeneous mobility shift assay for the measurement of infliximab and antibodies-to-infliximab levels in patient serum. J. Immunol. Methods 2012, 382, 177–188. [Google Scholar] [CrossRef] [Green Version]
- Egea-Pujol, L.; Reddy, R.; Patel, S.; Christie, R.; Salbato, J.; Shah, S.; Hauenstein, S.; Singh, S. Homogenous Mobility Shift Assay (HMSA) Overcomes the Limitations of ELISA and ECLIA Assays for Monitoring Infliximab (IFX), Adalimumab (ADA), and Associated Anti-drug Antibodies in Serum: 1817. Off. J. Am. Coll. Gastroenterol. 2013, 108, S548. [Google Scholar] [CrossRef]
- Nice, R.; Chanchlani, N.; Green, H.; Bewshea, C.; Ahmad, T.; Goodhand, J.R.; McDonald, T.J.; Perry, M.H.; Kennedy, N.A. Validating the positivity thresholds of drug-tolerant anti-infliximab and anti-adalimumab antibody assays. Aliment. Pharmacol. Ther. 2021, 53, 128–137. [Google Scholar] [CrossRef]
- Weisshof, R.; Ungar, B.; Blatt, A.; Dahan, A.; Pressman, S.; Waterman, M.; Kopylov, U.; Ben-Horin, S.; Chowers, Y. Anti-infliximab Antibodies with Neutralizing Capacity in Patients with Inflammatory Bowel Disease: Distinct Clinical Implications Revealed by a Novel Assay. Inflamm. Bowel Dis. 2016, 22, 1655–1661. [Google Scholar] [CrossRef] [Green Version]
- Buurman, D.J.; Maurer, J.M.; Keizer, R.J.; Kosterink, J.G.; Dijkstra, G. Population pharmacokinetics of infliximab in patients with inflammatory bowel disease: Potential implications for dosing in clinical practice. Aliment. Pharmacol. Ther. 2015, 42, 529–539. [Google Scholar] [CrossRef]
- Malissen, B.; Tamoutounour, S.; Henri, S. The origins and functions of dendritic cells and macrophages in the skin. Nat. Rev. Immunol. 2014, 14, 417–428. [Google Scholar] [CrossRef]
- Kim, H.; Alten, R.; Cummings, F.; Danese, S.; D’Haens, G.; Emery, P.; Ghosh, S.; de Saint Joseph, C.G.; Lee, J.; Lindsay, J.O.; et al. Innovative approaches to biologic development on the trail of CT-P13: Biosimilars, value-added medicines, and biobetters. MAbs 2021, 13, 1868078. [Google Scholar] [CrossRef] [PubMed]
- Mohanan, D.; Slutter, B.; Henriksen-Lacey, M.; Jiskoot, W.; Bouwstra, J.A.; Perrie, Y.; Kundig, T.M.; Gander, B.; Johansen, P. Administration routes affect the quality of immune responses: A cross-sectional evaluation of particulate antigen-delivery systems. J. Control Release 2010, 147, 342–349. [Google Scholar] [CrossRef]
- Hamuro, L.; Kijanka, G.; Kinderman, F.; Kropshofer, H.; Bu, D.X.; Zepeda, M.; Jawa, V. Perspectives on Subcutaneous Route of Administration as an Immunogenicity Risk Factor for Therapeutic Proteins. J. Pharm. Sci. 2017, 106, 2946–2954. [Google Scholar] [CrossRef] [PubMed]
- Rutgeerts, P.; Feagan, B.G.; Lichtenstein, G.R.; Mayer, L.F.; Schreiber, S.; Colombel, J.F.; Rachmilewitz, D.; Wolf, D.C.; Olson, A.; Bao, W.; et al. Comparison of scheduled and episodic treatment strategies of infliximab in Crohn’s disease. Gastroenterology 2004, 126, 402–413. [Google Scholar] [CrossRef] [Green Version]
- Hanauer, S.B.; Wagner, C.L.; Bala, M.; Mayer, L.; Travers, S.; Diamond, R.H.; Olson, A.; Bao, W.; Rutgeerts, P. Incidence and importance of antibody responses to infliximab after maintenance or episodic treatment in Crohn’s disease. Clin. Gastroenterol. Hepatol. 2004, 2, 542–553. [Google Scholar] [CrossRef]
- Schreiber, S.; Ben-Horin, S.; Alten, R.; Westhovens, R.; Peyrin-Biroulet, L.; Danese, S.; Hibi, T.; Takeuchi, K.; Magro, F.; An, Y.; et al. Perspectives on Subcutaneous Infliximab for Rheumatic Diseases and Inflammatory Bowel Disease: Before, During, and After the COVID-19 Era. Adv. Ther. 2022, 39, 2342–2364. [Google Scholar] [CrossRef] [PubMed]
- Bar-Yoseph, H.; Pressman, S.; Blatt, A.; Vainberg, S.G.; Maimon, N.; Starosvetsky, E.; Ungar, B.; Ben-Horin, S.; Shen-Orr, S.S.; Chowers, Y.; et al. Infliximab-Tumor Necrosis Factor Complexes Elicit Formation of Anti-Drug Antibodies. Gastroenterology 2019, 157, 1338–1351. [Google Scholar] [CrossRef]
- Chaigne, B.; Watier, H. Monoclonal antibodies in excess: A simple way to avoid immunogenicity in patients? J. Allergy Clin. Immunol. 2015, 136, 814–816. [Google Scholar] [CrossRef]
- De Almeida, R.; Nakamura, C.N.; de Lima Fontes, M.; Deffune, E.; Felisbino, S.L.; Kaneno, R.; Favaro, W.J.; Billis, A.; Cerri, M.O.; Fusco-Almeida, A.M.; et al. Enhanced immunization techniques to obtain highly specific monoclonal antibodies. MAbs 2018, 10, 46–54. [Google Scholar] [CrossRef]
- Somerfield, J.; Hill-Cawthorne, G.A.; Lin, A.; Zandi, M.S.; McCarthy, C.; Jones, J.L.; Willcox, M.; Shaw, D.; Thompson, S.A.; Compston, A.S.; et al. A novel strategy to reduce the immunogenicity of biological therapies. J. Immunol. 2010, 185, 763–768. [Google Scholar] [CrossRef]
Study | Design | Objectives | n | Characteristics | Drug Levels (µg/mL) and Anti-Drug Antibodies (µg/mL) | Disease Outcomes | |
---|---|---|---|---|---|---|---|
Intravenous (IV) | Subcutaneous (SC) | ||||||
Schreiber (2021) [43] | Multicentre (n = 50) randomised, open-label, non-inferiority trial. | Primary: to compare week 22 trough drug levels in patients exposed to IV or SC infliximab following IV induction. Secondary: to compare clinical outcomes between IV and SC infliximab. | 131 | 41% CD, 60% UC 0% in remission Anti-TNF naïve Immunomodulator use: 44% | Drug levels: Mean (SD) W22 level: 2.9 (2.6) Adjusted geometric LSM W22 level: 1.8 Anti-drug antibodies: W22 ADA: 32 (49%) W22 nADA: 12 (19%) | Drug levels: Mean (SD) W22 level: 21.5 (9.9) Adjusted geometric LSM W22 level: 21 Anti-drug antibodies: W22 ADA: 21 (32%) W22 nADA: 4 (6%) Laboratory assays: Infliximab: ECLIA ADA: Drug-tolerant ECLIA with ACE | Comparable W30 and W54 clinical, biochemical, endoscopic response rates between IV and SC arms. |
Smith (2022) [59] | Retrospective, multicentre (n = 3) cohort study. | Primary: to evaluate treatment persistence post-switch from IV to SC infliximab. Secondary: to compare clinical outcomes and drug levels between IV and SC infliximab. | 181 |
64% CD, 33% UC, 3% IBD-U 87% in remission Prior IV infliximab: – 131 5 mg/kg q8W – 50 5 mg/kg q4 or q6W Immunomodulator use: 59% | Drug levels: Median (range) level: 8.9 (0.4–16) | Drug levels: Median level: 16 at 3, 6 and 12 months Anti-drug antibodies: Throughout study: 14 (8%) Laboratory assays: Drug-tolerant ELISA for infliximab levels plus free and bound ADA OR Drug-sensitive in-house ELISA for infliximab levels and ADA, dependent on centre. | Treatment persistence 92% No significant difference in clinical or biochemical activity between baseline and at 3, 6, or 12 months post-switch to SC infliximab. |
Buisson (2022) [57] | Prospective, multicentre (n = 3) cohort study. | Primary: to assess clinical and pharmacological outcomes post-switch from IV to SC infliximab in IBD patients according to different IV infliximab regimens. | 133 |
72% CD, 28% UC Perianal lesions (42%) 100% in remission Prior IV infliximab: – 44% 5 mg/kg q8W – 31% 10 mg/kg q8W – 14% 10 mg/kg q6W – 11% 10 mg/kg q4W Immunomodulator use: 26% | Drug levels: Median (IQR) baseline level: – 5 mg/kg q8W 4.7 (2.4–6.8) – 10 mg/kg q8W 7.2 (4.4–11.9) – 10 mg/kg q6W 8.1 (6.2–15.1) – 10 mg/kg q4W 18.5 (11.9–20) Anti-drug antibodies: 2 (2%) positive ADAs | Drug levels: Median (IQR) level at W16–24: – Prior 5 mg/kg q8W 15.1 (11.2–18.2) – Prior 10 mg/kg q8W 18.7 (8–20) – Prior 10 mg/kg q6W 14.3 (11.9–17.6) – Prior 10 mg/kg q4W 20 (17.7–20) Anti-drug antibodies: No positive ADAs Laboratory assays: Infliximab: ELISA ADA: drug-sensitive ELISA | By W16–24 a clinical or faecal calprotectin recurrence occurred in: – 10.2% 5 mg/kg q8W – 7.3% 10mg/kg q8W – 16.7% 10mg/kg q6W – 66.7% 10mg/kg q4W Intensification to 240 mg q2W, recaptured clinical remission in 93% (14/15). |
Roblin (2022) [61] | Prospective, single centre cohort study. | Primary: to investigate the intra-individual variations of infliximab drug levels across and between 2 cycles of SC infliximab. | 20 | 100% CD 100% in remission Immunomodulator use: 40% | Drug levels: Median (IQR) level: 3.9 (1.2–7.9) Anti-drug antibodies: No ADAs | Drug levels: Median (IQR) W8 level 11 (7.5–15.1) Similar level independent of sampling period (day 3–6, day 7–9, day 14). Anti-drug antibodies: No ADAs. Laboratory assays: Infliximab: ELISA ADA: drug-sensitive ELISA | No clinical relapse. |
Abstracts and Letters: | |||||||
Schreiber (2018) [40] | Randomised, open-label controlled trial | Primary: find the optimal dose of SC infliximab in patients with active CD following IV induction at W0, W2 and randomisation 1:1:1:1 to: – IV 5 mg/kg q8W – 120 mg SC q2W – 180 mg SC q2W – 240 mg SC q2W Secondary: evaluate clinical outcomes and pharmacokinetics. | 44 | 100% CD 0% in remission Immunomodulator use: not reported | Drug levels: Median W30 level (predicted interval 5th–95th percentile): 2.3 (0.1–8.6) Anti-drug antibodies: 7 (58%) positive ADAs | Drug levels: Median W30 TL (predicted interval 5th–95th percentile): – 120 mg SC: 13.3 (5.6–26.8) – 180 mg SC: 19.9 (8.4–40) – 240 mg SC: 26.5 (11.2–53.2) Anti-drug antibodies: 3 (10%) positive ADAs Laboratory assays: Not specified | Similar rates of clinical remission and response between SC and IV infliximab arms. |
Chivato Martín-Falquina (2022) [62] | Retrospective, single-centre cohort study. | Primary: to report rates of remission and treatment persistence in IBD patients post-switch from IV to SC infliximab. | 14 | 29% CD, 71% UC 100% in remission 79% prior intensified IV infliximab. Doses not specified Immunomodulator use: 64% | Drug levels: Median (IQR) level: 7 (2.4–10.5) Anti-drug antibodies: Not reported | Drug levels: W8 (IQR) level: 14.1 (IQR 12.2–22.7) Anti-drug antibodies: Not reported Laboratory assays: Not specified | Treatment persistence 93% 93% remained in clinical remission at 8 weeks. |
Argüelles-Arias (2022) [63] | Retrospective, single centre, cohort study. | To assess efficacy and safety post-switch from IV to SC infliximab. | 17 | 71% CD, 29% UC 100% in remission Immunomodulator use: 53% | Drug levels: Median (IQR) level: 6.1 (3.5–8.9) Anti-drug antibodies: Not reported | Drug levels: Median (IQR) W24 level: 19.9 (12.3–21.6) Anti-drug antibodies: Not reported Laboratory assays: Not specified | No clinical relapse but a reduced faecal calprotectin at W24 following switch to SC infliximab. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Little, R.D.; Ward, M.G.; Wright, E.; Jois, A.J.; Boussioutas, A.; Hold, G.L.; Gibson, P.R.; Sparrow, M.P. Therapeutic Drug Monitoring of Subcutaneous Infliximab in Inflammatory Bowel Disease—Understanding Pharmacokinetics and Exposure Response Relationships in a New Era of Subcutaneous Biologics. J. Clin. Med. 2022, 11, 6173. https://doi.org/10.3390/jcm11206173
Little RD, Ward MG, Wright E, Jois AJ, Boussioutas A, Hold GL, Gibson PR, Sparrow MP. Therapeutic Drug Monitoring of Subcutaneous Infliximab in Inflammatory Bowel Disease—Understanding Pharmacokinetics and Exposure Response Relationships in a New Era of Subcutaneous Biologics. Journal of Clinical Medicine. 2022; 11(20):6173. https://doi.org/10.3390/jcm11206173
Chicago/Turabian StyleLittle, Robert D., Mark G. Ward, Emily Wright, Asha J. Jois, Alex Boussioutas, Georgina L. Hold, Peter R. Gibson, and Miles P. Sparrow. 2022. "Therapeutic Drug Monitoring of Subcutaneous Infliximab in Inflammatory Bowel Disease—Understanding Pharmacokinetics and Exposure Response Relationships in a New Era of Subcutaneous Biologics" Journal of Clinical Medicine 11, no. 20: 6173. https://doi.org/10.3390/jcm11206173
APA StyleLittle, R. D., Ward, M. G., Wright, E., Jois, A. J., Boussioutas, A., Hold, G. L., Gibson, P. R., & Sparrow, M. P. (2022). Therapeutic Drug Monitoring of Subcutaneous Infliximab in Inflammatory Bowel Disease—Understanding Pharmacokinetics and Exposure Response Relationships in a New Era of Subcutaneous Biologics. Journal of Clinical Medicine, 11(20), 6173. https://doi.org/10.3390/jcm11206173