Non-Invasive Assessment of Right Ventricle to Arterial Coupling for Prognosis Stratification of Fibrotic Interstitial Lung Diseases
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Echocardiographic Examination
2.3. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. RV-to-Arterial Coupling in f-ILDs
3.3. Survival Analysis in f-ILDs
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Raghu, G.; Weycker, D.; Edelsberg, J.; Bradford, W.Z.; Oster, G. Incidence and prevalence of idiopathic pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 2006, 174, 810–816. [Google Scholar] [CrossRef] [PubMed]
- Mikolasch, T.A.; Garthwaite, H.S.; Porter, J.C. Update in diagnosis and management of interstitial lung disease. Clin. Med. 2016, 16, s71–s78. [Google Scholar] [CrossRef]
- McLaughlin, V.V.; Presberg, K.W.; Doyle, R.L.; Abman, S.H.; McCrory, D.C.; Fortin, T.; Ahearn, G.; American College of Chest, Physicians. Prognosis of pulmonary arterial hypertension: ACCP evidence-based clinical practice guidelines. Chest 2004, 126, 78S–92S. [Google Scholar] [CrossRef] [PubMed]
- Kazimierczyk, R.; Malek, L.A.; Szumowski, P.; Nekolla, S.G.; Blaszczak, P.; Jurgilewicz, D.; Hladunski, M.; Sobkowicz, B.; Mysliwiec, J.; Grzywna, R.; et al. Multimodal assessment of right ventricle overload-metabolic and clinical consequences in pulmonary arterial hypertension. J. Cardiovasc. Magn. Reson. 2021, 23, 49. [Google Scholar] [CrossRef]
- Tello, K.; Wan, J.; Dalmer, A.; Vanderpool, R.; Ghofrani, H.A.; Naeije, R.; Roller, F.; Mohajerani, E.; Seeger, W.; Herberg, U.; et al. Validation of the Tricuspid Annular Plane Systolic Excursion/Systolic Pulmonary Artery Pressure Ratio for the Assessment of Right Ventricular-Arterial Coupling in Severe Pulmonary Hypertension. Circ. Cardiovasc. Imaging 2019, 12, e009047. [Google Scholar] [CrossRef]
- Iacoviello, M.; Monitillo, F.; Citarelli, G.; Leone, M.; Grande, D.; Antoncecchi, V.; Rizzo, C.; Terlizzese, P.; Romito, R.; Caldarola, P.; et al. Right ventriculo-arterial coupling assessed by two-dimensional strain: A new parameter of right ventricular function independently associated with prognosis in chronic heart failure patients. Int. J. Cardiol. 2017, 241, 318–321. [Google Scholar] [CrossRef] [PubMed]
- Braganca, B.; Trepa, M.; Santos, R.; Silveira, I.; Fontes-Oliveira, M.; Sousa, M.J.; Reis, H.; Torres, S.; Santos, M. Echocardiographic Assessment of Right Ventriculo-arterial Coupling: Clinical Correlates and Prognostic Impact in Heart Failure Patients Undergoing Cardiac Resynchronization Therapy. J. Cardiovasc. Imaging 2020, 28, 109–120. [Google Scholar] [CrossRef] [PubMed]
- Raghu, G.; Collard, H.R.; Egan, J.J.; Martinez, F.J.; Behr, J.; Brown, K.K.; Colby, T.V.; Cordier, J.F.; Flaherty, K.R.; Lasky, J.A.; et al. An official ATS/ERS/JRS/ALAT statement: Idiopathic pulmonary fibrosis: Evidence-based guidelines for diagnosis and management. Am. J. Respir. Crit. Care Med. 2011, 183, 788–824. [Google Scholar] [CrossRef]
- Miller, M.R.; Hankinson, J.; Brusasco, V.; Burgos, F.; Casaburi, R.; Coates, A.; Crapo, R.; Enright, P.; van der Grinten, C.P.; Gustafsson, P.; et al. Standardisation of spirometry. Eur. Respir. J. 2005, 26, 319–338. [Google Scholar] [CrossRef]
- Macintyre, N.; Crapo, R.O.; Viegi, G.; Johnson, D.C.; van der Grinten, C.P.; Brusasco, V.; Burgos, F.; Casaburi, R.; Coates, A.; Enright, P.; et al. Standardisation of the single-breath determination of carbon monoxide uptake in the lung. Eur. Respir. J. 2005, 26, 720–735. [Google Scholar] [CrossRef] [PubMed]
- Wanger, J.; Clausen, J.L.; Coates, A.; Pedersen, O.F.; Brusasco, V.; Burgos, F.; Casaburi, R.; Crapo, R.; Enright, P.; van der Grinten, C.P.; et al. Standardisation of the measurement of lung volumes. Eur. Respir. J. 2005, 26, 511–522. [Google Scholar] [CrossRef] [PubMed]
- ATS Committee on Proficiency Standards for Clinical Pulmonary Function Laboratories. ATS statement: Guidelines for the six-minute walk test. Am. J. Respir. Crit. Care Med. 2002, 166, 111–117. [Google Scholar] [CrossRef]
- Esposito, R.; Galderisi, M.; Schiano-Lomoriello, V.; Santoro, A.; De Palma, D.; Ippolito, R.; Muscariello, R.; Santoro, C.; Guerra, G.; Cameli, M.; et al. Nonsymmetric myocardial contribution to supranormal right ventricular function in the athlete’s heart: Combined assessment by speckle tracking and real time three-dimensional echocardiography. Echocardiography 2014, 31, 996–1004. [Google Scholar] [CrossRef] [PubMed]
- Niemann, P.S.; Pinho, L.; Balbach, T.; Galuschky, C.; Blankenhagen, M.; Silberbach, M.; Broberg, C.; Jerosch-Herold, M.; Sahn, D.J. Anatomically oriented right ventricular volume measurements with dynamic three-dimensional echocardiography validated by 3-Tesla magnetic resonance imaging. J. Am. Coll. Cardiol. 2007, 50, 1668–1676. [Google Scholar] [CrossRef] [PubMed]
- Galderisi, M.; Cosyns, B.; Edvardsen, T.; Cardim, N.; Delgado, V.; Di Salvo, G.; Donal, E.; Sade, L.E.; Ernande, L.; Garbi, M.; et al. Standardization of adult transthoracic echocardiography reporting in agreement with recent chamber quantification, diastolic function, and heart valve disease recommendations: An expert consensus document of the European Association of Cardiovascular Imaging. Eur. Heart J. Cardiovasc. Imaging 2017, 18, 1301–1310. [Google Scholar] [CrossRef]
- Horton, K.D.; Meece, R.W.; Hill, J.C. Assessment of the right ventricle by echocardiography: A primer for cardiac sonographers. J. Am. Soc. Echocardiogr. 2009, 22, 776–792; quiz 861–772. [Google Scholar] [CrossRef]
- Lang, R.M.; Badano, L.P.; Mor-Avi, V.; Afilalo, J.; Armstrong, A.; Ernande, L.; Flachskampf, F.A.; Foster, E.; Goldstein, S.A.; Kuznetsova, T.; et al. Recommendations for cardiac chamber quantification by echocardiography in adults: An update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur. Heart J. Cardiovasc. Imaging 2015, 16, 233–270. [Google Scholar] [CrossRef]
- Rudski, L.G.; Lai, W.W.; Afilalo, J.; Hua, L.; Handschumacher, M.D.; Chandrasekaran, K.; Solomon, S.D.; Louie, E.K.; Schiller, N.B. Guidelines for the echocardiographic assessment of the right heart in adults: A report from the American Society of Echocardiography endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and the Canadian Society of Echocardiography. J. Am. Soc. Echocardiogr. 2010, 23, 685–713; quiz 786–688. [Google Scholar] [CrossRef]
- Nagueh, S.F.; Smiseth, O.A.; Appleton, C.P.; Byrd, B.F., 3rd; Dokainish, H.; Edvardsen, T.; Flachskampf, F.A.; Gillebert, T.C.; Klein, A.L.; Lancellotti, P.; et al. Recommendations for the Evaluation of Left Ventricular Diastolic Function by Echocardiography: An Update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur. Heart J. Cardiovasc. Imaging 2016, 17, 1321–1360. [Google Scholar] [CrossRef] [PubMed]
- Galie, N.; Humbert, M.; Vachiery, J.L.; Gibbs, S.; Lang, I.; Torbicki, A.; Simonneau, G.; Peacock, A.; Vonk Noordegraaf, A.; Beghetti, M.; et al. 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension: The Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT). Eur. Heart J. 2016, 37, 67–119. [Google Scholar] [CrossRef] [PubMed]
- Cameli, M.; Lisi, M.; Righini, F.M.; Tsioulpas, C.; Bernazzali, S.; Maccherini, M.; Sani, G.; Ballo, P.; Galderisi, M.; Mondillo, S. Right ventricular longitudinal strain correlates well with right ventricular stroke work index in patients with advanced heart failure referred for heart transplantation. J. Card Fail. 2012, 18, 208–215. [Google Scholar] [CrossRef] [PubMed]
- Deaconu, S.; Deaconu, A.; Scarlatescu, A.; Petre, I.; Onciul, S.; Vijiiac, A.; Zamfir, D.; Marascu, G.; Iorgulescu, C.; Radu, A.D.; et al. Ratio between Right Ventricular Longitudinal Strain and Pulmonary Arterial Systolic Pressure: Novel Prognostic Parameter in Patients Undergoing Cardiac Resynchronization Therapy. J. Clin. Med. 2021, 10, 2442. [Google Scholar] [CrossRef] [PubMed]
- Lembo, M.; Esposito, R.; Lo Iudice, F.; Santoro, C.; Izzo, R.; De Luca, N.; Trimarco, B.; de Simone, G.; Galderisi, M. Impact of pulse pressure on left ventricular global longitudinal strain in normotensive and newly diagnosed, untreated hypertensive patients. J. Hypertens. 2016, 34, 1201–1207. [Google Scholar] [CrossRef] [PubMed]
- Santoro, C.; Esposito, R.; Lembo, M.; Sorrentino, R.; De Santo, I.; Luciano, F.; Casciano, O.; Giuliano, M.; De Placido, S.; Trimarco, B.; et al. Strain-oriented strategy for guiding cardioprotection initiation of breast cancer patients experiencing cardiac dysfunction. Eur. Heart J. Cardiovasc. Imaging 2019, 20, 1345–1352. [Google Scholar] [CrossRef] [PubMed]
- Benza, R.L.; Miller, D.P.; Gomberg-Maitland, M.; Frantz, R.P.; Foreman, A.J.; Coffey, C.S.; Frost, A.; Barst, R.J.; Badesch, D.B.; Elliott, C.G.; et al. Predicting survival in pulmonary arterial hypertension: Insights from the Registry to Evaluate Early and Long-Term Pulmonary Arterial Hypertension Disease Management (REVEAL). Circulation 2010, 122, 164–172. [Google Scholar] [CrossRef] [PubMed]
- Carluccio, E.; Biagioli, P.; Alunni, G.; Murrone, A.; Zuchi, C.; Coiro, S.; Riccini, C.; Mengoni, A.; D’Antonio, A.; Ambrosio, G. Prognostic Value of Right Ventricular Dysfunction in Heart Failure With Reduced Ejection Fraction: Superiority of Longitudinal Strain Over Tricuspid Annular Plane Systolic Excursion. Circ. Cardiovasc. Imaging 2018, 11, e006894. [Google Scholar] [CrossRef] [PubMed]
- Papadopoulos, C.E.; Pitsiou, G.; Karamitsos, T.D.; Karvounis, H.I.; Kontakiotis, T.; Giannakoulas, G.; Efthimiadis, G.K.; Argyropoulou, P.; Parharidis, G.E.; Bouros, D. Left ventricular diastolic dysfunction in idiopathic pulmonary fibrosis: A tissue Doppler echocardiographic [corrected] study. Eur. Respir. J. 2008, 31, 701–706. [Google Scholar] [CrossRef] [PubMed]
- D’Andrea, A.; Stanziola, A.; D’Alto, M.; Di Palma, E.; Martino, M.; Scarafile, R.; Molino, A.; Rea, G.; Maglione, M.; Calabro, R.; et al. Right ventricular strain: An independent predictor of survival in idiopathic pulmonary fibrosis. Int. J. Cardiol. 2016, 222, 908–910. [Google Scholar] [CrossRef] [PubMed]
- Buonauro, A.; Santoro, C.; Galderisi, M.; Canora, A.; Sorrentino, R.; Esposito, R.; Lembo, M.; Canonico, M.E.; Ilardi, F.; Fazio, V.; et al. Impaired Right and Left Ventricular Longitudinal Function in Patients with Fibrotic Interstitial Lung Diseases. J. Clin. Med. 2020, 9, 587. [Google Scholar] [CrossRef]
- Tello, K.; Dalmer, A.; Vanderpool, R.; Ghofrani, H.A.; Naeije, R.; Roller, F.; Seeger, W.; Wilhelm, J.; Gall, H.; Richter, M.J. Cardiac Magnetic Resonance Imaging-Based Right Ventricular Strain Analysis for Assessment of Coupling and Diastolic Function in Pulmonary Hypertension. JACC Cardiovasc. Imaging 2019, 12, 2155–2164. [Google Scholar] [CrossRef]
- Borgdorff, M.A.; Dickinson, M.G.; Berger, R.M.; Bartelds, B. Right ventricular failure due to chronic pressure load: What have we learned in animal models since the NIH working group statement? Heart Fail. Rev. 2015, 20, 475–491. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Guazzi, M.; Dixon, D.; Labate, V.; Beussink-Nelson, L.; Bandera, F.; Cuttica, M.J.; Shah, S.J. RV Contractile Function and its Coupling to Pulmonary Circulation in Heart Failure with Preserved Ejection Fraction: Stratification of Clinical Phenotypes and Outcomes. JACC Cardiovasc. Imaging 2017, 10, 1211–1221. [Google Scholar] [CrossRef] [PubMed]
- Houard, L.; Benaets, M.B.; de Meester de Ravenstein, C.; Rousseau, M.F.; Ahn, S.A.; Amzulescu, M.S.; Roy, C.; Slimani, A.; Vancraeynest, D.; Pasquet, A.; et al. Additional Prognostic Value of 2D Right Ventricular Speckle-Tracking Strain for Prediction of Survival in Heart Failure and Reduced Ejection Fraction: A Comparative Study with Cardiac Magnetic Resonance. JACC Cardiovasc. Imaging 2019, 12, 2373–2385. [Google Scholar] [CrossRef] [PubMed]
- Waxman, A.; Restrepo-Jaramillo, R.; Thenappan, T.; Ravichandran, A.; Engel, P.; Bajwa, A.; Allen, R.; Feldman, J.; Argula, R.; Smith, P.; et al. Inhaled Treprostinil in Pulmonary Hypertension Due to Interstitial Lung Disease. N. Engl. J. Med. 2021, 384, 325–334. [Google Scholar] [CrossRef]
Parameter | f-ILDs | Controls | p |
---|---|---|---|
(n = 50) | (n = 30) | ||
Demographics and clinical data | |||
Age (years) | 67 ± 7 | 67 ± 8 | 0.857 |
Sex (males) | 37 (74) | 21 (70) | |
BMI (kg/m2) | 28.9 ± 4.3 | 25.2 ± 3.1 | <0.001 |
Smoking (never/former/smokers) | 20 (40)/30 (60)/0 (0) | 11 (37)/18 (60)/1 (3) | |
Systemic arterial hypertension | 30 (60) | 5 (17) | |
Chronic ischemic heart disease | 7 (14) | 0 (0) | |
Type II diabetes | 9 (18) | 0 (0) | |
Gastro-esophageal reflux | 18 (36) | 11 (37) | |
Lung function | |||
paO2 (mmHg) | 74 (67–83) | / | / |
FVC (% pred) | 61 (51–80) | / | / |
TLC (% pred) | 57 (46–73) | / | / |
RV (% pred) | 48 (39–91) | / | / |
DLCOsb (% pred) | 47 (34–71) | / | / |
6-MWT (meters) | 407 (252–520) | / | / |
Parameter | f-ILDs | Controls | p |
---|---|---|---|
(n = 50) | (n = 30) | ||
Right heart | |||
RV basal diameter (mm) | 39 (36–43) | 35 (31–36) | 0.0001 |
RV middle diameter mm) | 32 (28–36) | 28 (24–31) | 0.03 |
RV longitudinal diameter (mm) | 63 (57–69) | 59 (52–64) | 0.1 |
RV TDI s’ (m/s) | 0.13 (0.12–0.16) | 0.13 (0.11–0.16) | 0.85 |
TAPSE (mm) | 22 (19–25) | 23 (21–26) | 0.27 |
TRV (m/s) | 2.57 (2.49–2.75) | 2.12 (2.04–2.30) | 0.001 |
sPAP (mmHg) | 35 (29–41) | 26 (24–31) | 0.0001 |
RV-GLS (%) | 20 (19–22) | 24 (22–27) | 0.0001 |
TAPSE/sPAP (mm/mmHg) | 0.60 (0.24–1.10) | 0.84 (0.39–1.32) | 0.0001 |
RV-GLS/sPAP (%/mmHg) | 0.55 (0.47–0.67) | 0.92 (0.77–1.07) | 0.0001 |
Left heart | |||
IVSd (cm) | 0.9 (0.8–0.95) | 0.9 (0.85–1.0) | 0.88 |
LVEDd (cm) | 4.8 (4.5–5.0) | 4.8 (4.5–5.1) | 0.6 |
LVESd (cm) | 2.9 (2.6–3.2) | 3.0 (2.6–3.4) | 0.65 |
RWT | 0.37 (0.34–0.42) | 0.36 (0.34–0.39) | 0.78 |
LVMi (g/m2) | 38 (33.3–46.1) | 39 (31.5–44.1) | 0.78 |
E/A ratio | 0.74 (0.62–0.87) | 0.85 (0.81–0.89) | 0.002 |
DT (ms) | 251 (209–273) | 22 (195–292) | 0.29 |
E/e’ ratio | 8.5 (7.1–10.4) | 7.3 (6.2–9.7) | 0.29 |
LV-EF (%) | 63 (60–67) | 62.5 (58.5–64.7) | 0.32 |
LV-GLS (%) | 20.9 (19.0–22.7) | 22.2 (20.3–23.7) | 0.09 |
Variable | Univariate Analysis | |
Odds Ratio (95% CI) | p | |
Age | 1.01 (0.95–1.08) | 0.69 |
Sex | 2.50 (0.87–7.40) | 0.09 |
BMI | 0.97 (0.87–1.08) | 1.59 |
Lung function | ||
paO2 | 0.93 (0.88–0.98) | 0.009 |
FVC | 0.99 (0.98–1.01) | 0.84 |
RV | 0.99 (0.98–1.01) | 0.63 |
TLC | 1.00 (0.99–1.01) | 0.33 |
DLCOsb | 0.97 (0.95–0.99) | 0.02 |
6-MWT | 1.00 (0.99–1.00) | 0.31 |
RV parameter | ||
sPAP | 1.05 (1.01–1.09) | 0.02 |
RV-GLS | 0.84 (0.65–1.08) | 0.17 |
RV-GLS/sPAP | 0.60 (0.44–0.81) | 0.001 |
Other | ||
IPF diagnosis | 2.51 (1.10–5.74) | 0.03 |
Variable | Multivariate Analysis | |
Odds Ratio (95% CI) | p | |
IPF diagnosis | 2.20 (0.95–5.09) | 0.04 |
RV-GLS/sPAP | 0.62(0.46–0.83) | 0.002 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santoro, C.; Buonauro, A.; Canora, A.; Rea, G.; Canonico, M.E.; Esposito, R.; Sanduzzi Zamparelli, A.; Esposito, G.; Bocchino, M. Non-Invasive Assessment of Right Ventricle to Arterial Coupling for Prognosis Stratification of Fibrotic Interstitial Lung Diseases. J. Clin. Med. 2022, 11, 6115. https://doi.org/10.3390/jcm11206115
Santoro C, Buonauro A, Canora A, Rea G, Canonico ME, Esposito R, Sanduzzi Zamparelli A, Esposito G, Bocchino M. Non-Invasive Assessment of Right Ventricle to Arterial Coupling for Prognosis Stratification of Fibrotic Interstitial Lung Diseases. Journal of Clinical Medicine. 2022; 11(20):6115. https://doi.org/10.3390/jcm11206115
Chicago/Turabian StyleSantoro, Ciro, Agostino Buonauro, Angelo Canora, Gaetano Rea, Mario Enrico Canonico, Roberta Esposito, Alessandro Sanduzzi Zamparelli, Giovanni Esposito, and Marialuisa Bocchino. 2022. "Non-Invasive Assessment of Right Ventricle to Arterial Coupling for Prognosis Stratification of Fibrotic Interstitial Lung Diseases" Journal of Clinical Medicine 11, no. 20: 6115. https://doi.org/10.3390/jcm11206115
APA StyleSantoro, C., Buonauro, A., Canora, A., Rea, G., Canonico, M. E., Esposito, R., Sanduzzi Zamparelli, A., Esposito, G., & Bocchino, M. (2022). Non-Invasive Assessment of Right Ventricle to Arterial Coupling for Prognosis Stratification of Fibrotic Interstitial Lung Diseases. Journal of Clinical Medicine, 11(20), 6115. https://doi.org/10.3390/jcm11206115