Moses and Moses 2.0 for Laser Lithotripsy: Expectations vs. Reality
Abstract
:1. Introduction
2. Methods
3. Results
3.1. Moses 1.0 Clinical Outcomes
3.2. Moses 2.0 Laboratory Experiences
3.3. MT 2.0 Clinical Experiences
4. Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fried, N.M.; Irby, P.B. Advances in laser technology and fibre-optic delivery systems in lithotripsy. Nat. Rev. Urol. 2018, 15, 563–573. [Google Scholar] [CrossRef] [PubMed]
- Terry, R.S.; Whelan, P.S.; Lipkin, M.E. New devices for kidney stone management. Curr. Opin. Urol. 2020, 30, 144–148. [Google Scholar] [CrossRef] [PubMed]
- Traxer, O.; Corrales, M. New Lasers for Stone Treatment. Urol. Clin. 2022, 49, 1–10. [Google Scholar] [CrossRef]
- Petzold, R.; Suarez-Ibarrola, R.; Miernik, A. Temperature assessment of a novel pulsed Thulium solid-state laser compared to a Holmium:YAG laser. J. Endourol. 2020, 35, 853–859. [Google Scholar] [CrossRef]
- Van Leeuwen, T.G.J.M.; Jansen, E.D.; Motamedi, M.; Welch, A.J.; Borst, C. Bubble formation during pulsed laser ablation: Mechanism and implications. In Laser-Tissue Interaction IV; Jacques, S.L., Katzir, A., Eds.; SPIE: Bellingham, WA, USA, 1993; Volume 1882, p. 13. [Google Scholar] [CrossRef]
- Ventimiglia, E.; Traxer, O. What Is Moses Effect: A Historical Perspective. J. Endourol. 2019, 33, 353–357. [Google Scholar] [CrossRef] [PubMed]
- Isner, J.; Clarke, R.; Katzir, A.; Gal, D. Transmission characteristics of individual wavelengths in blood do not predict ability to accomplish laser ablation in a blood field: Inferential evidence for the Moses effect. Circulation 1986, 74, 361. [Google Scholar]
- Chan, K.F.; Pfefer, T.J.; Teichman, J.M.H.; Welch, A.J. A Perspective on Laser Lithotripsy: The Fragmentation Processes. J. Endourol. 2004, 15, 257–273. [Google Scholar] [CrossRef]
- Taratkin, M.; Laukhtina, E.; Singla, N.; Tarasov, A.; Alekseeva, T.; Enikeev, M.; Enikeev, D. How Lasers Ablate Stones: In Vitro Study of Laser Lithotripsy (Ho:YAG and Tm-Fiber Lasers) in Different Environments. J. Endourol. 2021, 35, 931–936. [Google Scholar] [CrossRef]
- Lekarev, V.; Dymov, A.; Vinarov, A.; Sorokin, N.; Minaev, V.; Minaev, N.; Tsypina, S.; Yusupov, V. Mechanism of lithotripsy by superpulse thulium fiber laser and its clinical efficiency. Appl. Sci. 2020, 10, 7480. [Google Scholar] [CrossRef]
- Trost, D. Laser Pulse Format for Penetrating an Absorbing Fluid. U.S. Patent US5321715A, 14 June 1994. [Google Scholar]
- Leotsakos, I.; Katafigiotis, I.; Lorber, A.; Sfoungaristos, S.; Sabler, I.M.; Yutkin, V.; Gofrit, O.N.; Duvdevani, M. Initial experience in combined ultra-mini percutaneous nephrolithotomy with the use of 120-W laser and the anti-retropulsion “Moses effect”: The future of percutaneous nephrolithotomy? Lasers Med. Sci. 2020, 35, 1961–1966. [Google Scholar] [CrossRef]
- Reddy, N.K.; Patil, A.P.; Tak, G.R.; Shah, D.; Singh, A.G.; Ganpule, A.P.; Sabnis, R.B.; Desai, M.R. Size Distribution of Fragments by High-power Holmium Laser Lithotripsy in MiniPCNL with Suction. Curr. Urol. Rep. 2021, 22, 64. [Google Scholar] [CrossRef] [PubMed]
- Mullerad, M.; Aguinaga, J.R.; Aro, T.; Kastin, A.; Goldin, O.; Kravtsov, A.; Assadi, A.; Badaan, S.; Amiel, G.E. Initial Clinical Experience with a Modulated Holmium Laser Pulse—Moses Technology: Does It Enhance Laser Lithotripsy Efficacy? Rambam Maimonides Med. J. 2017, 8, e0038. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, A.; Elhilali, M.M.; Fahmy, N.; Carrier, S.; Andonian, S. Double-Blinded Prospective Randomized Clinical Trial Comparing Regular and Moses Modes of Holmium Laser Lithotripsy. J. Endourol. 2020, 34, 624–628. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Shao, Q.; Zhu, X.; Wang, Z.; Zheng, A. Efficiency and Clinical Outcomes of Moses Technology with Flexible Ureteroscopic Laser Lithotripsy for Treatment of Renal Calculus. Urol. Int. 2021, 105, 587–593. [Google Scholar] [CrossRef]
- Knoedler, M.A.; Li, S.; Best, S.L.; Hedican, S.P.; Penniston, K.L.; Nakada, S.Y. Clinical Impact of the Institution of Moses Technology on Efficiency During Retrograde Ureteroscopy for Stone Disease: Single-Center Experience. J. Endourol. 2022, 36, 65–70. [Google Scholar] [CrossRef]
- Mekayten, M.; Lorber, A.; Katafigiotis, I.; Sfoungaristos, S.; Leotsakos, I.; Heifetz, E.M.; Yutkin, V.; Gofrit, O.N.; Duvdevani, M. Will Stone Density Stop Being a Key Factor in Endourology? the Impact of Stone Density on Laser Time Using Lumenis Laser p120w and Standard 20 W Laser: A Comparative Study. J. Endourol. 2019, 33, 585–589. [Google Scholar] [CrossRef]
- Pietropaolo, A.; Hughes, T.; Mani, M.; Somani, B. Outcomes of Ureteroscopy and Laser Stone Fragmentation (URSL) for Kidney Stone Disease (KSD): Comparative Cohort Study Using MOSES Technology 60 W Laser System versus Regular Holmium 20 W Laser. J. Clin. Med. 2021, 10, 2742. [Google Scholar] [CrossRef]
- Whelan, P.; Kim, C.; Ho, D.; Tabib, C.; Soto-Paulo, F.; Chen, J.; Zhong, P.; Preminger, M.; Lipkin, M. MP 05-13 Dusting Efficiency of the Moses Pulse 120H 2.0 Laser System: An In Vitro Assessment. J. Endourol. 2021, 35, P91-A43. [Google Scholar]
- Whelan, P.; Kim, C.; Ho, D.; Tabib, C.; Premo, H.; Zhong, P.; Preminger, M.; Lipkin, M.; Soto-Paulo, F. MP20-12 Popcorn Laser Lithotripsy Efficacy of the Moses 2.0 Laser System: An In Vitro Assessment. J. Endourol. 2021, 35, P271-A223. [Google Scholar]
- Whelan, P.; Kim, C.; Ho, D.; Tabib, C.; Soto-Paulo, F.; Chen, J.; Zhong, P.; Preminger, M.; Lipkin, M. MP15-12 The Effect of Scanning Speed in a Dusting Model of the Moses Pulse 120H 2.0 Laser. J. Endourol. 2021, 35, P205-A157. [Google Scholar]
- Khajeh, N.; Ghani, K. V06-03 5 Key Steps for High-Frequency Uretero-scopic Dusting Technique: Illustration with Moses 2.0 Technology. J. Endourol. 2021, 35, P238-VS06. [Google Scholar]
- Majdalany, S.E.; Levin, B.A.; Ghani, K.R. The Efficiency of Moses Technology Holmium Laser for Treating Renal Stones during Flexible Ureteroscopy: Relationship between Stone Volume, Time, and Energy. J. Endourol. 2021, 35, S14–S21. [Google Scholar] [CrossRef] [PubMed]
- Rezakahn Khajeh, N.; Majdalany, S.E.; Ghani, K.R. Moses 2.0 for High-Power Ureteroscopic Stone Dusting: Clinical Principles for Step-by-Step Video Technique. J. Endourol. 2021, 35, S22–S28. [Google Scholar] [CrossRef] [PubMed]
- Elhilali, M.M.; Badaan, S.; Ibrahim, A.; Andonian, S. Use of the Moses Technology to Improve Holmium Laser Lithotripsy Outcomes: A Preclinical Study. J. Endourol. 2017, 31, 598–604. [Google Scholar] [CrossRef]
- Laser Fibers & Accessories for Holmium Lasers Lumenis n.d. Available online: https://lumenis.com/medical/holmium-products/holmium-accessories/ (accessed on 7 May 2021).
- Winship, B.; Wollin, D.; Carlos, E.; Li, J.; Peters, C.; Simmons, W.N.; Preminger, G.M.; Lipkin, M. Dusting Efficiency of the Moses Holmium Laser: An Automated In Vitro Assessment. J. Endourol. 2018, 32, 1131–1135. [Google Scholar] [CrossRef] [PubMed]
- Aldoukhi, A.H.; Black, K.M.; Hall, T.L.; Roberts, W.W.; Ghani, K.R. Frequency threshold for ablation during holmium laser lithotripsy: How high can you go? J. Endourol. 2020, 34, 1075–1081. [Google Scholar] [CrossRef]
- Ventimiglia, E.; Pauchard, F.; Quadrini, F.; Sindhubodee, S.; Kamkoum, H.; Jiménez Godínez, A.; Doizi, S.; Traxer, O. High- And Low-Power Laser Lithotripsy Achieves Similar Results: A Systematic Review and Meta-Analysis of Available Clinical Series. J. Endourol. 2021, 35, 1146–1152. [Google Scholar] [CrossRef]
- Ventimiglia, E.; Pauchard, F.; Gorgen, A.R.H.; Panthier, F.; Doizi, S.; Traxer, O. How do we assess the efficacy of Ho:YAG low-power laser lithotripsy for the treatment of upper tract urinary stones? Introducing the Joules/mm3 and laser activity concepts. World J. Urol. 2020, 39, 891–896. [Google Scholar] [CrossRef]
- Shrestha, A.; Corrales, M.; Adhikari, B.; Chapagain, A.; Traxer, O. Comparison of low power and high power holmium YAG laser settings in flexible ureteroscopy. World J. Urol. 2022, 40, 1839–1844. [Google Scholar] [CrossRef]
- Aldoukhi, A.H.; Hall, T.L.; Ghani, K.R.; Maxwell, A.D.; MacConaghy, B.; Roberts, W.W. Caliceal Fluid Temperature during High-Power Holmium Laser Lithotripsy in an In Vivo Porcine Model. J. Endourol. 2018, 32, 724–729. [Google Scholar] [CrossRef]
- Maxwell, A.D.; MacConaghy, B.; Harper, J.D.; Aldoukhi, A.H.; Hall, T.L.; Roberts, W.W. Simulation of laser lithotripsy-induced heating in the urinary tract. J. Endourol. 2019, 33, 113–119. [Google Scholar] [CrossRef] [PubMed]
- Aldoukhi, A.H.; Ghani, K.R.; Hall, T.L.; Roberts, W.W. Thermal Response to High-Power Holmium Laser Lithotripsy. J. Endourol. 2017, 31, 1308–1312. [Google Scholar] [CrossRef] [PubMed]
- Winship, B.; Wollin, D.; Carlos, E.; Peters, C.; Li, J.; Terry, R.; Boydston, K.; Preminger, G.M.; Lipkin, M.E. The Rise and Fall of High Temperatures During Ureteroscopic Holmium Laser Lithotripsy. J. Endourol. 2019, 33, 794–799. [Google Scholar] [CrossRef] [PubMed]
- Osther, P.J.S. Risks of flexible ureterorenoscopy: Pathophysiology and prevention. Urolithiasis 2018, 46, 59–67. [Google Scholar] [CrossRef] [PubMed]
- Black, K.M.; Aldoukhi, A.H.; Teichman, J.M.; Majdalany, S.E.; Hall, T.L.; Roberts, W.W.; Ghani, K.R. Pulse modulation with Moses technology improves popcorn laser lithotripsy. World J. Urol. 2021, 39, 1699–1705. [Google Scholar] [CrossRef]
- Corsini, C.; de Angelis, M.; Villa, L.; Somani, B.K.; Pietropaolo, A.; Montorsi, F.; Goumas, I.K.; Traxer, O.; Salonia, A.; Ventimiglia, E. Holmium: Yttrium-aluminum-garnet laser with Moses: Does it make a difference? Curr. Opin. Urol. 2022, 32, 324–329. [Google Scholar] [CrossRef]
- Stern, K.L.; Monga, M. The Moses holmium system—Time is money. Can. J. Urol. 2018, 25, 9313–9316. [Google Scholar]
- Keller, E.X.; De Coninck, V.; Audouin, M.; Doizi, S.; Bazin, D.; Daudon, M.; Traxer, O. Fragments and dust after Holmium laser lithotripsy with or without “Moses technology”: How are they different? J. Biophotonics 2019, 12, e201800227. [Google Scholar] [CrossRef]
- Ventimiglia, E.; Villa, L.; Doizi, S.; Briganti, A.; Proietti, S.; Giusti, G.; Montorsi, F.; Montanari, E.; Traxer, O.; Salonia, A. Laser Lithotripsy: The Importance of Peak Power and Pulse Modulation. Eur. Urol. Focus 2021, 7, 22–25. [Google Scholar] [CrossRef]
- Lumenis Launches Next-Generation MOSESTM 2.0 Holmium Laser Technology—Lumenis n.d. Available online: https://lumenis.com/medical/specialties/urology/resource-hub/lumenis-launches-next-generation-moses-2-0-holmium-laser-technology/ (accessed on 9 May 2021).
Author, Year, Type of Study | I | n | Type of Laser | Pulse Modulation Setting: n | Fiber Size (μ) | Laser Settings | Stone Size Mean ± SD (cm) | Stone Volume Mean ± SD (mm3) | Stone Density Mean ± SD (HU) | Stone Location | Lasing Time Mean ± SD (min) | Operative Time Mean ± SD (min) | Energy Mean ± SD (kJ) | Ablation Speed (mm3/s) | J/mm3 | SFR (%) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Leotsakos et al., 2020, R [11] | Ultra-mini PCNL | 12 | Lumenis Moses PulseTM 120 H | MC | 550 | 0.6–0.8 J/80 Hz | 3.15 | 7810.6 | 1252 | Kidney | 13 ± 16 | 86.4 ± 36.8 | 39.7 ± 52 | N.A | N.A | 91.7 |
Reddy et al., 2021, P [12] | Ultra-mini PCNL | 110 | Lumenis Moses PulseTM 120 H | MC and MD | 365 | 0.4–0.6 J/40–60 Hz | 1.75 | N.A | 1140 | Kidney | 7.9 | 38.6 | N.A | N.A | N.A | 100 |
Moses technology vs. High-power Ho:YAG laser regular mode | ||||||||||||||||
Mullerad et al., 2017, P [13] | URS | 34 | Lumenis Moses PulseTM 120 H | Moses: 23 | 200, 365, 550 | N.A | N.A | 781.9 median | 901.5 | Kidney or ureter | 6 (median) | N.A | 4.5 (median) | N.A | N.A | N.A |
RM: 11 | 200, 365 | 422.5 median | 867 | 10 (median) | 6.4 (median) | |||||||||||
Ibrahim et al., 2020, RCT [14] | URS | 72 | Lumenis Moses PulseTM 120 H | Moses: 36 | 200 | D: 0.4 J/80 Hz | 1.7 ± 1.5 | N.A | 991 ± 213 | Kidney or ureter ** | 6.1 ± 9.8 | 41.1 ± 21.1 * | 10.8 ± 14.1 | N.A | N.A | 88.4 |
RM: 36 | F: 1 J/10 Hz | 1.4 ± 0.97 | 841 ± 348 | 7.4 ± 5.7 | 50.9 ± 27.9 * | 11.1 ± 20.3 | 88.3 | |||||||||
Wang et al., 2021, RC [15] | URS | 216 | Lumenis Moses PulseTM 120 H | MC: 114 | 200 | 0.3 J/60 Hz | 1.2 | 674 ± 41 | 990 ± 150 | Kidney | 4.99 ± 1.06 * | 18.39 ± 5.13 * | N.A | N.A | N.A | 86.8 |
RM: 102 | 1.2 | 683 ± 39 | 994 ± 150 | 5.94 ± 0.96 * | 21.17 ± 6.78 * | 85.3 | ||||||||||
Knoedler et al., 2022, RC [16] | URS | 176 | Lumenis Moses PulseTM 120 H | Moses: 110 | 200 | D: 0.3 J/80 Hz | 1.18 ± 0.79 | N.A | N.A | Kidney and/or ureter | 7.5 ± 11.1 | 43.5 ± 32.1 | 5.1 ± 6.7 | N.A | N.A | 52.3 |
RM: 66 | F: 0.8 J/8 Hz | 1.16 ± 0.92 | 6.7 ± 7.9 | 39.8 ± 24.6 | 3.8 ± 4.8 | 65.3 | ||||||||||
Moses technology vs. Low-power Ho:YAG laser regular mode | ||||||||||||||||
Mekayten et al., 2019, RC [17] | URS | 631 | Lumenis Moses PulseTM 120 H | Moses: 169 | 200, 365, 550 | 0.5 J/63 Hz * (mean) | N.A | 427 | 1085 * | Kidney or ureter | 3.3 * | 21.13 * | 4.7 ± 5 * | 0.8 * | 17.2 * | 84.5 |
Ho:YAG 20 W | RM: 462 | 0.7 J/14 Hz * (mean) | 367 | 1022 * | 6.6 * | 31.84 * | 3.6 ± 4 * | 1.51 * | 13 * | 87.2 | ||||||
Pietropaolo et al., 2021, RC [18] | URS | 76 | Lumenis Moses 60 W | Moses: 38 | 200 | 0.4–0.8 J/20–25 Hz | 1.09 ± 0.4 | N.A | N.A | Kidney or ureter | N.A | 51.6 ± 17.1 * | N.A | N.A | N.A | 100 |
Ho:YAG 20 W | RM: 38 | 0.4–0.8 J/12–18 Hz | 1.18 ± 0.4 | 82.1 ± 27.0 * | 97.3 |
MD Settings | SP Settings | Moses 2.0 (EFR) Settings | Results | |
---|---|---|---|---|
Whelan, P., et al., 2021, abstract [19] | 0.3 J/80 Hz (24 W); | - | 0.2 J/120 Hz (24 W); | At comparable power settings, EFR had a superior stone ablation volume than MD at SD 0 mm. |
Ablation volume: Higher with lower energy in soft stones. | ||||
0.4 J/80 Hz (32 W) | 0.3 J/120 Hz (36 W) | Retropulsion: Lower with lower pulse energy. | ||
Efficiency: Higher with higher pulse frequency | ||||
Whelan, P., et al., 2021, abstract [20] | 0.5 J/70 Hz (35 W) | 0.5 J/70 Hz (35 W) | 0.3 J/120 Hz (36 W) | Hard stones: |
0.6 J/80 Hz (48 W) | 0.6 J/80 Hz (48 W) | 0.4 J/100 Hz (40 W) | - EFR: Provides a more efficient popcorn lithotripsy. | |
1 J/20 Hz (20 W) | 1 J/20 Hz (20 W) | 0.5 J/100 Hz (50 W) | - EFR 0.5 J/90 Hz offers the greatest fragmentation among the other modes. | |
0.5 J/90 Hz (45 W) | Soft stones: EFR did not demonstrate benefits over the other modes, for a similar total power. | |||
Whelan, P., et al., 2021, abstract [21] | 0.3 J/80 Hz (24 W) | - | 0.2 J/120 Hz (24 W) | Ablation speed: Is highest, with higher scanning speeds of the laser fiber. |
0.2 J/100 Hz (20 W) | 0.3 J is superior to 0.2 J at all frequencies | |||
0.2 J/80 Hz (16 W) | 0.3 J/120 Hz (36 W) | |||
0.3 J/100 Hz (30 W) | Efficiency: Higher with a more rapid scanning of the laser fiber |
Author, Year, Type of Study | I | n | Type of Laser | Pulse Modulation Setting: n | Fiber Size (μ) | Laser Settings | Stone Size Mean ± SD (cm) | Stone Volume Mean ± SD (mm3) | Stone Density Mean ± SD (HU) | Stone Location | Lasing Time Mean ± SD (min) | Operative Time Mean ± SD (min) | Energy Mean ± SD (kJ) | Ablation Speed (mm3/s) | J/mm3 | SFR (%) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Khajeh et al., 2021, SCR [22] | URS | 1 | Lumenis Moses PulseTM 120 H | Moses 2.0 | 230 | Debulk: | 1.7 | N.A | N.A | Kidney | 16 | 23 | 33.3 | N.A | N.A | N.A |
0.3 J/120 Hz | ||||||||||||||||
Pop-dusting: | ||||||||||||||||
0.5 J/80 Hz | ||||||||||||||||
Majdalany et al., 2021, RC [23] | URS | 29 | Lumenis Moses PulseTM 120 H | Moses 1.0: 18 | 230 | 0.5 J/50–80 Hz | 0.94 | 242 | 784 | Kidney | 5.3 | 10.4 | 6.4 | 0.88 | 32.4 | 71 |
Moses 2.0: 11 | 0.5 J/50–120 Hz | 368 | 865 | 7.0 | 14.3 | 12.4 | 0.97 | 47.8 | 90 | |||||||
Rezakahn et al., 2021, P [24] | URS | 12 | Lumenis Moses PulseTM 120 H | Moses 2.0 | 230 | Debulk: | 1.04 | N.A | 865 | Kidney | 6.9 | 15 | 12 | N.A | N.A | 82 |
0.2–0.3 J/100–120 Hz | ||||||||||||||||
Pop-dusting: | ||||||||||||||||
0.5 J/80 Hz (MD) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Corrales, M.; Sierra, A.; Traxer, O. Moses and Moses 2.0 for Laser Lithotripsy: Expectations vs. Reality. J. Clin. Med. 2022, 11, 4828. https://doi.org/10.3390/jcm11164828
Corrales M, Sierra A, Traxer O. Moses and Moses 2.0 for Laser Lithotripsy: Expectations vs. Reality. Journal of Clinical Medicine. 2022; 11(16):4828. https://doi.org/10.3390/jcm11164828
Chicago/Turabian StyleCorrales, Mariela, Alba Sierra, and Olivier Traxer. 2022. "Moses and Moses 2.0 for Laser Lithotripsy: Expectations vs. Reality" Journal of Clinical Medicine 11, no. 16: 4828. https://doi.org/10.3390/jcm11164828
APA StyleCorrales, M., Sierra, A., & Traxer, O. (2022). Moses and Moses 2.0 for Laser Lithotripsy: Expectations vs. Reality. Journal of Clinical Medicine, 11(16), 4828. https://doi.org/10.3390/jcm11164828