Antibody-Mediated Rejection and Recurrent Primary Disease: Two Main Obstacles in Abdominal Kidney, Liver, and Pancreas Transplants
Abstract
:1. Introduction
2. Methods
3. An Overview of Antibody-Mediated Rejection
3.1. Kidney Transplantation
3.2. Liver Transplantation
3.3. Pancreas Transplantation
4. An Overview of Recurrent Primary Disease
4.1. Kidney Transplantation
4.1.1. IgA nephropathy
4.1.2. Focal Segmental Glomerulosclerosis
4.1.3. Membranoproliferative Glomerulonephritis
4.1.4. Membranous Nephropathy
4.1.5. Lupus Nephritis
4.1.6. Anti-Neutrophil Cytoplasmic Autoantibody or Anti-Glomerular Basement Membrane Antibody Positive Rapidly Progressive Glomerulonephritis
4.1.7. Amyloidosis and Mimickers
4.2. Liver Transplantation
4.2.1. Viral Hepatitis
4.2.2. Malignant Tumor
4.2.3. Primary Biliary Cholangitis
4.2.4. Primary Sclerosing Cholangitis
4.2.5. Autoimmune Hepatitis
4.3. Pancreas Transplantation
Type 1 Diabetes Mellitus
5. Feature Perspective and Concluding Remarks
Author Contributions
Funding
Conflicts of Interest
Abbreviations
ABMR | antibody-mediated rejection |
Abs | antibodies |
AIH | autoimmune hepatitis |
AMA | anti-mitochondrial antibodies |
ANCA | anti-neutrophil cytoplasmic autoantibodies |
anti-HBc Abs | anti-hepatitis B core antibodies |
CNI | calcineurin inhibitors |
CR | clinical recurrence |
DAA | direct-acting antivirals |
DM | diabetes mellitus |
dnDSA | de novo donor specific anti-HLA antibodies |
DSA | donor specific anti-HLA antibodies |
FGN | fibrillary glomerulonephritis |
FSGS | focal segmental glomerulosclerosis |
g-DSA | intra-graft DSA |
GAD65 | glutamic acid decarboxylase 65 |
GBM | anti-glomerular basement membrane |
GdIgA1 | galactose-deficient IgA1 |
HBeAg | hepatitis B e antigen |
HBsAg | hepatitis B surface antigen |
HBV | hepatitis B virus |
HCC | hepatocellular carcinoma |
HCV | hepatitis C virus |
HLA | human leukocyte antigen |
IAA | insulin autoantibody |
IA-2 | insulinoma-associated protein-2 |
ICA | islet cell antibodies |
IFTA | interstitial fibrosis and tubular atrophy |
IgAN | IgA nephropathy |
IVIG | intravenous immunoglobulin therapy |
mCR | mild-to-moderate clinical recurrence |
MELD | model for end-stage liver disease |
MN | membranous nephropathy |
MPGN | membranoproliferative glomerulonephritis |
mTOR | mammalian target of rapamycin |
PBC | primary biliary cholangitis |
PLA2R | anti-phospholipase A2 receptor antibodies |
PR | pathological recurrence |
PSC | primary sclerosing cholangitis |
RPGN | rapidly progressive glomerulonephritis |
s-DSA | serum DSA |
sCR | severe clinical recurrence |
SLE | systemic lupus erythematosus |
suPAR | soluble urokinase type plasminogen activator receptor |
SVR | sustained virological response |
TCMR | T cell-mediated rejection |
THSD7A | thrombospondin type-1 domain-containing 7A antibodies |
UDCA | ursodeoxycholic acid |
ZnT8 | zinc transporter 8 |
αIgA | anti-GdIgA1 IgG |
References
- Wiebe, C.; Gibson, I.W.; Blydt-Hansen, T.D.; Karpinski, M.; Ho, J.; Storsley, L.J.; Goldberg, A.; Birk, P.E.; Rush, D.N.; Nickerson, P.W. Evolution and clinical pathologic correlations of de novo donor-specific HLA antibody post kidney transplant. Am. J. Transplant. 2012, 12, 1157–1167. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, T.; Shirouzu, T.; Nakata, K.; Yoshimura, N.; Ushigome, H. The Role of Major Histocompatibility Complex in Organ Transplantation-Donor Specific Anti-Major Histocompatibility Complex Antibodies Analysis Goes to the Next Stage. Int. J. Mol. Sci. 2019, 20, 4544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakamura, T.; Ushigome, H.; Watabe, K.; Imanishi, Y.; Masuda, K.; Matsuyama, T.; Harada, S.; Koshino, K.; Iida, T.; Nobori, S.; et al. Graft Immunocomplex Capture Fluorescence Analysis to Detect Donor-Specific Antibodies and HLA Antigen Complexes in the Allograft. Immunol. Investig. 2017, 46, 295–304. [Google Scholar] [CrossRef]
- Solez, K.; Axelsen, R.A.; Benediktsson, H.; Burdick, J.F.; Cohen, A.H.; Colvin, R.B.; Croker, B.P.; Droz, D.; Dunnill, M.S.; Halloran, P.F.; et al. International standardization of criteria for the histologic diagnosis of renal allograft rejection: The Banff working classification of kidney transplant pathology. Kidney Int. 1993, 44, 411–422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Racusen, L.C.; Colvin, R.B.; Solez, K.; Mihatsch, M.J.; Halloran, P.F.; Campbell, P.M.; Cecka, M.J.; Cosyns, J.P.; Demetris, A.J.; Fishbein, M.C.; et al. Antibody-mediated rejection criteria—An addition to the Banff 97 classification of renal allograft rejection. Am. J. Transplant. 2003, 3, 708–714. [Google Scholar] [CrossRef] [PubMed]
- Mannon, R.B.; Matas, A.J.; Grande, J.; Leduc, R.; Connett, J.; Kasiske, B.; Cecka, J.M.; Gaston, R.S.; Cosio, F.; Gourishankar, S.; et al. Inflammation in areas of tubular atrophy in kidney allograft biopsies: A potent predictor of allograft failure. Am. J. Transplant. 2010, 10, 2066–2073. [Google Scholar] [CrossRef] [Green Version]
- Cherukuri, A.; Mehta, R.; Sharma, A.; Sood, P.; Zeevi, A.; Tevar, A.D.; Rothstein, D.M.; Hariharan, S. Post-transplant donor specific antibody is associated with poor kidney transplant outcomes only when combined with both T-cell-mediated rejection and non-adherence. Kidney Int. 2019, 96, 202–213. [Google Scholar] [CrossRef] [PubMed]
- Devos, J.M.; Gaber, A.O.; Teeter, L.D.; Graviss, E.A.; Patel, S.J.; Land, G.A.; Moore, L.W.; Knight, R.J. Intermediate-term graft loss after renal transplantation is associated with both donor-specific antibody and acute rejection. Transplantation 2014, 97, 534–540. [Google Scholar] [CrossRef] [PubMed]
- Heilman, R.L.; Nijim, A.; Desmarteau, Y.M.; Khamash, H.; Pando, M.J.; Smith, M.L.; Chakkera, H.A.; Huskey, J.; Valdez, R.; Reddy, K.S. De novo donor-specific human leukocyte antigen antibodies early after kidney transplantation. Transplantation 2014, 98, 1310–1315. [Google Scholar] [CrossRef] [PubMed]
- Everly, M.J.; Rebellato, L.M.; Haisch, C.E.; Ozawa, M.; Parker, K.; Briley, K.P.; Catrou, P.G.; Bolin, P.; Kendrick, W.T.; Kendrick, S.A.; et al. Incidence and impact of de novo donor-specific alloantibody in primary renal allografts. Transplantation 2013, 95, 410–417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wan, S.S.; Chadban, S.J.; Watson, N.; Wyburn, K. Development and outcomes of de novo donor-specific antibodies in low, moderate, and high immunological risk kidney transplant recipients. Am. J. Transplant. 2020, 20, 1351–1364. [Google Scholar] [CrossRef] [PubMed]
- De Fijter, J.W.; Holdaas, H.; Øyen, O.; Sanders, J.S.; Sundar, S.; Bemelman, F.J.; Sommerer, C.; Pascual, J.; Avihingsanon, Y.; Pongskul, C.; et al. Early Conversion From Calcineurin Inhibitor- to Everolimus-Based Therapy Following Kidney Transplantation: Results of the Randomized ELEVATE Trial. Am. J. Transplant. 2017, 17, 1853–1867. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Filler, G.; Todorova, E.K.; Bax, K.; Alvarez-Elías, A.C.; Huang, S.H.; Kobrzynski, M.C. Minimum mycophenolic acid levels are associated with donor-specific antibody formation. Pediatr. Transplant. 2016, 20, 34–38. [Google Scholar] [CrossRef]
- Solomon, S.; Colovai, A.; Del Rio, M.; Hayde, N. Tacrolimus variability is associated with de novo donor-specific antibody development in pediatric renal transplant recipients. Pediatr. Nephrol. 2020, 35, 261–270. [Google Scholar] [CrossRef] [PubMed]
- Croze, L.E.; Tetaz, R.; Roustit, M.; Malvezzi, P.; Janbon, B.; Jouve, T.; Pinel, N.; Masson, D.; Quesada, J.L.; Bayle, F.; et al. Conversion to mammalian target of rapamycin inhibitors increases risk of de novo donor-specific antibodies. Transpl. Int. 2014, 27, 775–783. [Google Scholar] [CrossRef]
- Bertrand, D.; Gatault, P.; Jauréguy, M.; Garrouste, C.; Sayegh, J.; Bouvier, N.; Caillard, S.; Lanfranco, L.; Galinier, A.; Laurent, C.; et al. Protocol Biopsies in Patients With Subclinical De Novo Donor-specific Antibodies After Kidney Transplantation: A Multicentric Study. Transplantation 2020, 104, 1726–1737. [Google Scholar] [CrossRef] [PubMed]
- Delgado, J.C.; Fuller, A.; Ozawa, M.; Smith, L.; Terasaki, P.I.; Shihab, F.S.; Eckels, D.D. No occurrence of de novo HLA antibodies in patients with early corticosteroid withdrawal in a 5-year prospective randomized study. Transplantation 2009, 87, 546–548. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, T.; Ushigome, H.; Shirouzu, T.; Yoshimura, N. Donor Specific anti-HLA Antibodies in Organ Transplantation—Transition from Serum DSA to Intra-Graft DSA, November 5th 2018 ed.; Mahdi, B.M., Ed.; Intech: London, UK, 2019; pp. 19–41. [Google Scholar]
- Eskandary, F.; Regele, H.; Baumann, L.; Bond, G.; Kozakowski, N.; Wahrmann, M.; Hidalgo, L.G.; Haslacher, H.; Kaltenecker, C.C.; Aretin, M.B.; et al. A Randomized Trial of Bortezomib in Late Antibody-Mediated Kidney Transplant Rejection. J. Am. Soc. Nephrol. JASN 2018, 29, 591–605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kulkarni, S.; Kirkiles-Smith, N.C.; Deng, Y.H.; Formica, R.N.; Moeckel, G.; Broecker, V.; Bow, L.; Tomlin, R.; Pober, J.S. Eculizumab Therapy for Chronic Antibody-Mediated Injury in Kidney Transplant Recipients: A Pilot Randomized Controlled Trial. Am. J. Transplant 2017, 17, 682–691. [Google Scholar] [CrossRef] [Green Version]
- Choi, J.; Aubert, O.; Vo, A.; Loupy, A.; Haas, M.; Puliyanda, D.; Kim, I.; Louie, S.; Kang, A.; Peng, A.; et al. Assessment of Tocilizumab (Anti-Interleukin-6 Receptor Monoclonal) as a Potential Treatment for Chronic Antibody-Mediated Rejection and Transplant Glomerulopathy in HLA-Sensitized Renal Allograft Recipients. Am. J. Transplant. 2017, 17, 2381–2389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shin, B.H.; Everly, M.J.; Zhang, H.; Choi, J.; Vo, A.; Zhang, X.; Huang, E.; Jordan, S.C.; Toyoda, M. Impact of Tocilizumab (Anti-IL-6R) Treatment on Immunoglobulins and Anti-HLA Antibodies in Kidney Transplant Patients With Chronic Antibody-mediated Rejection. Transplantation 2020, 104, 856–863. [Google Scholar] [CrossRef]
- Doberer, K.; Duerr, M.; Halloran, P.F.; Eskandary, F.; Budde, K.; Regele, H.; Reeve, J.; Borski, A.; Kozakowski, N.; Reindl-Schwaighofer, R.; et al. A Randomized Clinical Trial of Anti-IL-6 Antibody Clazakizumab in Late Antibody-Mediated Kidney Transplant Rejection. J. Am. Soc. Nephrol. JASN 2021, 32, 708–722. [Google Scholar] [CrossRef] [PubMed]
- Bray, R.A.; Gebel, H.M.; Townsend, R.; Roberts, M.E.; Polinsky, M.; Yang, L.; Meier-Kriesche, H.U.; Larsen, C.P. De novo donor-specific antibodies in belatacept-treated vs cyclosporine-treated kidney-transplant recipients: Post hoc analyses of the randomized phase III BENEFIT and BENEFIT-EXT studies. Am. J. Transplant. 2018, 18, 1783–1789. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vandevoorde, K.; Ducreux, S.; Bosch, A.; Guillaud, O.; Hervieu, V.; Chambon-Augoyard, C.; Poinsot, D.; André, P.; Scoazec, J.Y.; Robinson, P.; et al. Prevalence, Risk Factors, and Impact of Donor-Specific Alloantibodies After Adult Liver Transplantation. Liver Transplant. 2018, 24, 1091–1100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Demetris, A.J.; Bellamy, C.; Hubscher, S.G.; O’Leary, J.; Randhawa, P.S.; Feng, S.; Neil, D.; Colvin, R.B.; McCaughan, G.; Fung, J.J.; et al. 2016 Comprehensive Update of the Banff Working Group on Liver Allograft Pathology: Introduction of Antibody-Mediated Rejection. Am. J. Transplant. 2016, 16, 2816–2835. [Google Scholar] [CrossRef]
- Nakamura, T.; Shirouzu, T.; Kawai, S.; Sugimoto, R.; Harada, S.; Yoshikawa, M.; Nobori, S.; Ushigome, H. Intra–Liver Allograft C3d–Binding Donor Specific anti–HLA Antibodies Predict Rejection after Liver Transplantation. Transplant. Proc. 2022, in press. [Google Scholar]
- Gugenheim, J.; Le Thai, B.; Rouger, P.; Gigou, M.; Gane, P.; Vial, M.C.; Charpentier, B.; Reynes, M.; Bismuth, H. Relationship between the liver and lymphocytotoxic alloantibodies in inbred rats. Specific absorption by nonparenchymal liver cells. Transplantation 1988, 45, 474–478. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, B.; Phelan, D.L.; Marsh, J.W.; Mohanakumar, T. Characterization of antiidiotypic antibodies to donor HLA that develop after liver transplantation. Transplantation 1993, 56, 443–448. [Google Scholar] [CrossRef]
- Astarcioglu, I.; Cursio, R.; Reynes, M.; Gugenheim, J. Increased risk of antibody-mediated rejection of reduced-size liver allografts. J. Surg. Res. 1999, 87, 258–262. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Xu, J.; Brenner, D.A.; Kisseleva, T. Reversibility of Liver Fibrosis and Inactivation of Fibrogenic Myofibroblasts. Curr. Pathobiol. Rep. 2013, 1, 209–214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, S.; Bucuvalas, J.C.; Mazariegos, G.V.; Magee, J.C.; Sanchez-Fueyo, A.; Spain, K.M.; Lesniak, A.; Kanaparthi, S.; Perito, E.; Venkat, V.L.; et al. Efficacy and Safety of Immunosuppression Withdrawal in Pediatric Liver Transplant Recipients: Moving Toward Personalized Management. Hepatology 2021, 73, 1985–2004. [Google Scholar] [CrossRef] [PubMed]
- Schluckebier, D.; Cousin, V.L.; Petit, L.M.; Belli, D.; Wildhaber, B.; Rougemont, A.L.; Villard, J.; Ferrari-Lacraz, S.; McLin, V.A. Preformed and de novo DSA are associated with T-cell-mediated rejection in pediatric liver transplant recipients requiring clinically indicated liver biopsy. Pediatr. Transplant. 2020, 24, e13611. [Google Scholar] [CrossRef] [PubMed]
- Miyagawa-Hayashino, A.; Yoshizawa, A.; Uchida, Y.; Egawa, H.; Yurugi, K.; Masuda, S.; Minamiguchi, S.; Maekawa, T.; Uemoto, S.; Haga, H. Progressive graft fibrosis and donor-specific human leukocyte antigen antibodies in pediatric late liver allografts. Liver Transplant. 2012, 18, 1333–1342. [Google Scholar] [CrossRef] [PubMed]
- Del Bello, A.; Congy-Jolivet, N.; Muscari, F.; Lavayssière, L.; Esposito, L.; Cardeau-Desangles, I.; Guitard, J.; Dörr, G.; Suc, B.; Duffas, J.P.; et al. Prevalence, incidence and risk factors for donor-specific anti-HLA antibodies in maintenance liver transplant patients. Am. J. Transplant. 2014, 14, 867–875. [Google Scholar] [CrossRef] [PubMed]
- Höfer, A.; Jonigk, D.; Hartleben, B.; Verboom, M.; Hallensleben, M.; Hübscher, S.G.; Manns, M.P.; Jaeckel, E.; Taubert, R. DSA Are Associated With More Graft Injury, More Fibrosis, and Upregulation of Rejection-associated Transcripts in Subclinical Rejection. Transplantation 2020, 104, 551–561. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaneku, H.; O’Leary, J.G.; Banuelos, N.; Jennings, L.W.; Susskind, B.M.; Klintmalm, G.B.; Terasaki, P.I. De novo donor-specific HLA antibodies decrease patient and graft survival in liver transplant recipients. Am. J. Transplant. 2013, 13, 1541–1548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Del Bello, A.; Congy-Jolivet, N.; Danjoux, M.; Muscari, F.; Lavayssière, L.; Esposito, L.; Cardeau-Desangles, I.; Guitard, J.; Dörr, G.; Milongo, D.; et al. De novo donor-specific anti-HLA antibodies mediated rejection in liver-transplant patients. Transpl. Int. 2015, 28, 1371–1382. [Google Scholar] [CrossRef] [PubMed]
- Sakamoto, S.; Akamatsu, N.; Hasegawa, K.; Ohdan, H.; Nakagawa, K.; Egawa, H. The efficacy of rituximab treatment for antibody-mediated rejection in liver transplantation: A retrospective Japanese nationwide study. Hepatol. Res. 2021, 51, 990–999. [Google Scholar] [CrossRef]
- De Kort, H.; Munivenkatappa, R.B.; Berger, S.P.; Eikmans, M.; van der Wal, A.; de Koning, E.J.; van Kooten, C.; de Heer, E.; Barth, R.N.; Bruijn, J.A.; et al. Pancreas allograft biopsies with positive c4d staining and anti-donor antibodies related to worse outcome for patients. Am. J. Transpl. 2010, 10, 1660–1667. [Google Scholar] [CrossRef] [PubMed]
- De Kort, H.; Mallat, M.J.; van Kooten, C.; de Heer, E.; Brand-Schaaf, S.H.; van der Wal, A.M.; Roufosse, C.; Roelen, D.L.; Bruijn, J.A.; Claas, F.H.; et al. Diagnosis of early pancreas graft failure via antibody-mediated rejection: Single-center experience with 256 pancreas transplantations. Am. J. Transpl. 2014, 14, 936–942. [Google Scholar] [CrossRef]
- Cantarovich, D.; De Amicis, S.; Akl, A.; Devys, A.; Vistoli, F.; Karam, G.; Soulillou, J.P. Posttransplant donor-specific anti-HLA antibodies negatively impact pancreas transplantation outcome. Am. J. Transpl. 2011, 11, 2737–2746. [Google Scholar] [CrossRef] [PubMed]
- Parajuli, S.; Alagusundaramoorthy, S.; Aziz, F.; Garg, N.; Redfield, R.R.; Sollinger, H.; Kaufman, D.; Djamali, A.; Odorico, J.; Mandelbrot, D. Outcomes of Pancreas Transplant Recipients with De Novo Donor-specific Antibodies. Transplantation 2019, 103, 435–440. [Google Scholar] [CrossRef]
- Ladowski, J.M.; Mullins, H.; Romine, M.; Kloda, D.; Young, C.; Hauptfeld-Dolejsek, V.; Houp, J.; Locke, J. Eplet mismatch scores and de novo donor-specific antibody development in simultaneous pancreas-kidney transplantation. Hum. Immunol. 2021, 82, 139–146. [Google Scholar] [CrossRef] [PubMed]
- Chaigne, B.; Geneugelijk, K.; Bédat, B.; Ahmed, M.A.; Hönger, G.; De Seigneux, S.; Demuylder-Mischler, S.; Berney, T.; Spierings, E.; Ferrari-Lacraz, S.; et al. Immunogenicity of Anti-HLA Antibodies in Pancreas and Islet Transplantation. Cell Transpl. 2016, 25, 2041–2050. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uva, P.D.; Quevedo, A.; Roses, J.; Toniolo, M.F.; Pilotti, R.; Chuluyan, E.; Casadei, D.H. Anti-Hla donor-specific antibody monitoring in pancreas transplantation: Role of protocol biopsies. Clin. Transpl. 2020, 34, e13998. [Google Scholar] [CrossRef] [PubMed]
- Drachenberg, C.B.; Torrealba, J.R.; Nankivell, B.J.; Rangel, E.B.; Bajema, I.M.; Kim, D.U.; Arend, L.; Bracamonte, E.R.; Bromberg, J.S.; Bruijn, J.A.; et al. Guidelines for the diagnosis of antibody-mediated rejection in pancreas allografts-updated Banff grading schema. Am. J. Transpl. 2011, 11, 1792–1802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gunther Brockmann, J.; Butt, A.; AlHussaini, H.F.; AlMana, H.; AlSaad, K.; Al-Awwami, M.; Clemens Broering, D.; Ali, T. Protocol Duodenal Graft Biopsies Aid Pancreas Graft Surveillance. Transplantation 2019, 103, 622–629. [Google Scholar] [CrossRef]
- Moreso, F.; Crespo, M.; Ruiz, J.C.; Torres, A.; Gutierrez-Dalmau, A.; Osuna, A.; Perello, M.; Pascual, J.; Torres, I.B.; Redondo-Pachon, D.; et al. Treatment of chronic antibody mediated rejection with intravenous immunoglobulins and rituximab: A multicenter, prospective, randomized, double-blind clinical trial. Am. J. Transplant. 2018, 18, 927–935. [Google Scholar] [CrossRef] [Green Version]
- Redfield, R.R.; Ellis, T.M.; Zhong, W.; Scalea, J.R.; Zens, T.J.; Mandelbrot, D.; Muth, B.L.; Panzer, S.; Samaniego, M.; Kaufman, D.B.; et al. Current outcomes of chronic active antibody mediated rejection—A large single center retrospective review using the updated BANFF 2013 criteria. Hum. Immunol. 2016, 77, 346–352. [Google Scholar] [CrossRef]
- Guerra, M.R.; Naini, B.V.; Scapa, J.V.; Reed, E.F.; Busuttil, R.W.; Cheng, E.Y.; Farmer, D.G.; Vargas, J.H.; Venick, R.S.; McDiarmid, S.V.; et al. Obliterative portal venopathy: A histopathologic finding associated with chronic antibody-mediated rejection in pediatric liver allografts. Pediatr. Transplant. 2018, 22, e13124. [Google Scholar] [CrossRef] [PubMed]
- Kawabe, M.; Yamamoto, I.; Komatsuzaki, Y.; Yamakawa, T.; Katsumata, H.; Katsuma, A.; Mafune, A.; Nakada, Y.; Kobayashi, A.; Tanno, Y.; et al. Recurrence and graft loss after renal transplantation in adults with IgA vasculitis. Clin. Exp. Nephrol. 2017, 21, 714–720. [Google Scholar] [CrossRef]
- Ponticelli, C.; Traversi, L.; Feliciani, A.; Cesana, B.M.; Banfi, G.; Tarantino, A. Kidney transplantation in patients with IgA mesangial glomerulonephritis. Kidney Int. 2001, 60, 1948–1954. [Google Scholar] [CrossRef] [Green Version]
- Di Vico, M.C.; Messina, M.; Fop, F.; Barreca, A.; Segoloni, G.P.; Biancone, L. Recurrent IgA nephropathy after renal transplantation and steroid withdrawal. Clin. Transplant. 2018, 32, e13207. [Google Scholar] [CrossRef] [PubMed]
- Mousson, C.; Charon-Barra, C.; Funes de la Vega, M.; Tanter, Y.; Justrabo, E.; Martin, L.; Rifle, G. Recurrence of IgA nephropathy with crescents in kidney transplants. Transplant. Proc. 2007, 39, 2595–2596. [Google Scholar] [CrossRef]
- Clayton, P.; McDonald, S.; Chadban, S. Steroids and recurrent IgA nephropathy after kidney transplantation. Am. J. Transplant. 2011, 11, 1645–1649. [Google Scholar] [CrossRef] [PubMed]
- Rodas, L.M.; Ruiz-Ortiz, E.; Garcia-Herrera, A.; Pereira, A.; Blasco, M.; Ventura-Aguiar, P.; Viñas Gomis, O.; Egri, N.; De Sousa, E.; Palou, E.; et al. IgA Nephropathy Recurrence after Kidney Transplantation: Role of Recipient Age and Human Leukocyte Antigen-B Mismatch. Am. J. Nephrol. 2020, 51, 357–365. [Google Scholar] [CrossRef]
- Suzuki, H.; Fan, R.; Zhang, Z.; Brown, R.; Hall, S.; Julian, B.A.; Chatham, W.W.; Suzuki, Y.; Wyatt, R.J.; Moldoveanu, Z.; et al. Aberrantly glycosylated IgA1 in IgA nephropathy patients is recognized by IgG antibodies with restricted heterogeneity. J. Clin. Investig. 2009, 119, 1668–1677. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suzuki, Y.; Matsuzaki, K.; Suzuki, H.; Okazaki, K.; Yanagawa, H.; Ieiri, N.; Sato, M.; Sato, T.; Taguma, Y.; Matsuoka, J.; et al. Serum levels of galactose-deficient immunoglobulin (Ig) A1 and related immune complex are associated with disease activity of IgA nephropathy. Clin. Exp. Nephrol. 2014, 18, 770–777. [Google Scholar] [CrossRef] [Green Version]
- Rizk, D.V.; Saha, M.K.; Hall, S.; Novak, L.; Brown, R.; Huang, Z.Q.; Fatima, H.; Julian, B.A.; Novak, J. Glomerular Immunodeposits of Patients with IgA Nephropathy Are Enriched for IgG Autoantibodies Specific for Galactose-Deficient IgA1. J. Am. Soc. Nephrol. JASN 2019, 30, 2017–2026. [Google Scholar] [CrossRef] [PubMed]
- Berthoux, F.; Suzuki, H.; Mohey, H.; Maillard, N.; Mariat, C.; Novak, J.; Julian, B.A. Prognostic Value of Serum Biomarkers of Autoimmunity for Recurrence of IgA Nephropathy after Kidney Transplantation. J. Am. Soc. Nephrol. JASN 2017, 28, 1943–1950. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, T.; Shirouzu, T.; Harada, S.; Sugimoto, R.; Nobori, S.; Yoshikawa, M.; Ushigome, H.; Kawai, S. The Abundance of Anti-Galactose-deficient IgA1 Autoantibodies Results in Glomerular Deposition and IgA Nephropathy Recurrence after Renal Transplantation. Transplantation 2021, 105. in press. [Google Scholar] [CrossRef]
- Kawabe, M.; Yamamoto, I.; Yamakawa, T.; Katsumata, H.; Isaka, N.; Katsuma, A.; Nakada, Y.; Kobayashi, A.; Koike, K.; Ueda, H.; et al. Association Between Galactose-Deficient IgA1 Derived From the Tonsils and Recurrence of IgA Nephropathy in Patients Who Underwent Kidney Transplantation. Front. Immunol. 2020, 11, 2068. [Google Scholar] [CrossRef]
- Okumi, M.; Okada, D.; Unagami, K.; Kakuta, Y.; Iizuka, J.; Takagi, T.; Shirakawa, H.; Omoto, K.; Ishida, H.; Tanabe, K. Higher immunoglobulin A nephropathy recurrence in related-donor kidney transplants: The Japan Academic Consortium of Kidney Transplantation study. Int. J. Urol. 2019, 26, 903–909. [Google Scholar] [CrossRef]
- Messina, M.; di Vico, M.C.; Ariaudo, C.; Mazzucco, G.; Fop, F.; Segoloni, G.P.; Biancone, L. Treatment protocol with pulse and oral steroids for IgA Nephropathy after kidney transplantation. J. Nephrol. 2016, 29, 575–583. [Google Scholar] [CrossRef]
- Jiang, S.H.; Kennard, A.L.; Walters, G.D. Recurrent glomerulonephritis following renal transplantation and impact on graft survival. BMC Nephrol. 2018, 19, 344. [Google Scholar] [CrossRef]
- Alasfar, S.; Matar, D.; Montgomery, R.A.; Desai, N.; Lonze, B.; Vujjini, V.; Estrella, M.M.; Manllo Dieck, J.; Khneizer, G.; Sever, S.; et al. Rituximab and Therapeutic Plasma Exchange in Recurrent Focal Segmental Glomerulosclerosis Postkidney Transplantation. Transplantation 2018, 102, e115–e120. [Google Scholar] [CrossRef]
- Francis, A.; Trnka, P.; McTaggart, S.J. Long-Term Outcome of Kidney Transplantation in Recipients with Focal Segmental Glomerulosclerosis. Clin. J. Am. Soc. Nephrol. CJASN 2016, 11, 2041–2046. [Google Scholar] [CrossRef]
- Uffing, A.; Pérez-Sáez, M.J.; Mazzali, M.; Manfro, R.C.; Bauer, A.C.; de Sottomaior Drumond, F.; O’Shaughnessy, M.M.; Cheng, X.S.; Chin, K.K.; Ventura, C.G.; et al. Recurrence of FSGS after Kidney Transplantation in Adults. Clin. J. Am. Soc. Nephrol. CJASN 2020, 15, 247–256. [Google Scholar] [CrossRef]
- Allen, P.J.; Chadban, S.J.; Craig, J.C.; Lim, W.H.; Allen, R.D.M.; Clayton, P.A.; Teixeira-Pinto, A.; Wong, G. Recurrent glomerulonephritis after kidney transplantation: Risk factors and allograft outcomes. Kidney Int. 2017, 92, 461–469. [Google Scholar] [CrossRef]
- Gallon, L.; Leventhal, J.; Skaro, A.; Kanwar, Y.; Alvarado, A. Resolution of recurrent focal segmental glomerulosclerosis after retransplantation. N. Engl. J. Med. 2012, 366, 1648–1649. [Google Scholar] [CrossRef]
- Sharma, M.; Sharma, R.; Reddy, S.R.; McCarthy, E.T.; Savin, V.J. Proteinuria after injection of human focal segmental glomerulosclerosis factor. Transplantation 2002, 73, 366–372. [Google Scholar] [CrossRef] [PubMed]
- Wei, C.; El Hindi, S.; Li, J.; Fornoni, A.; Goes, N.; Sageshima, J.; Maiguel, D.; Karumanchi, S.A.; Yap, H.K.; Saleem, M.; et al. Circulating urokinase receptor as a cause of focal segmental glomerulosclerosis. Nat. Med. 2011, 17, 952–960. [Google Scholar] [CrossRef] [Green Version]
- Alachkar, N.; Wei, C.; Arend, L.J.; Jackson, A.M.; Racusen, L.C.; Fornoni, A.; Burke, G.; Rabb, H.; Kakkad, K.; Reiser, J.; et al. Podocyte effacement closely links to suPAR levels at time of posttransplantation focal segmental glomerulosclerosis occurrence and improves with therapy. Transplantation 2013, 96, 649–656. [Google Scholar] [CrossRef] [Green Version]
- Verghese, P.S.; Rheault, M.N.; Jackson, S.; Matas, A.J.; Chinnakotla, S.; Chavers, B. The effect of peri-transplant plasmapheresis in the prevention of recurrent FSGS. Pediatr. Transplant. 2018, 22, e13154. [Google Scholar] [CrossRef]
- Kennard, A.L.; Jiang, S.H.; Walters, G.D. Increased glomerulonephritis recurrence after living related donation. BMC Nephrol. 2017, 18, 25. [Google Scholar] [CrossRef] [Green Version]
- Lanaret, C.; Anglicheau, D.; Audard, V.; Büchler, M.; Caillard, S.; Couzi, L.; Malvezzi, P.; Mesnard, L.; Bertrand, D.; Martinez, F.; et al. Rituximab for recurrence of primary focal segmental glomerulosclerosis after kidney transplantation: Results of a nationwide study. Am. J. Transplant. 2021, 21, 3021–3033. [Google Scholar] [CrossRef] [PubMed]
- Staeck, O.; Slowinski, T.; Lieker, I.; Wu, K.; Rudolph, B.; Schmidt, D.; Brakemeier, S.; Neumayer, H.H.; Wei, C.; Reiser, J.; et al. Recurrent Primary Focal Segmental Glomerulosclerosis Managed With Intensified Plasma Exchange and Concomitant Monitoring of Soluble Urokinase-Type Plasminogen Activator Receptor-Mediated Podocyte β3-integrin Activation. Transplantation 2015, 99, 2593–2597. [Google Scholar] [CrossRef] [Green Version]
- Sethi, S.; Nester, C.M.; Smith, R.J. Membranoproliferative glomerulonephritis and C3 glomerulopathy: Resolving the confusion. Kidney Int. 2012, 81, 434–441. [Google Scholar] [CrossRef] [Green Version]
- Fakhouri, F.; Le Quintrec, M.; Frémeaux-Bacchi, V. Practical management of C3 glomerulopathy and Ig-mediated MPGN: Facts and uncertainties. Kidney Int. 2020, 98, 1135–1148. [Google Scholar] [CrossRef]
- Sethi, S.; Fervenza, F.C. Membranoproliferative glomerulonephritis: Pathogenetic heterogeneity and proposal for a new classification. Semin. Nephrol. 2011, 31, 341–348. [Google Scholar] [CrossRef]
- Regunathan-Shenk, R.; Avasare, R.S.; Ahn, W.; Canetta, P.A.; Cohen, D.J.; Appel, G.B.; Bomback, A.S. Kidney Transplantation in C3 Glomerulopathy: A Case Series. Am. J. Kidney Dis. 2019, 73, 316–323. [Google Scholar] [CrossRef]
- Green, H.; Rahamimov, R.; Rozen-Zvi, B.; Pertzov, B.; Tobar, A.; Lichtenberg, S.; Gafter, U.; Mor, E. Recurrent membranoproliferative glomerulonephritis type I after kidney transplantation: A 17-year single-center experience. Transplantation 2015, 99, 1172–1177. [Google Scholar] [CrossRef]
- Gonzalez Suarez, M.L.; Thongprayoon, C.; Hansrivijit, P.; Kovvuru, K.; Kanduri, S.R.; Aeddula, N.R.; Pivovarova, A.I.; Chewcharat, A.; Bathini, T.; Mao, M.A.; et al. Treatment of C3 Glomerulopathy in Adult Kidney Transplant Recipients: A Systematic Review. Med. Sci. 2020, 8, 44. [Google Scholar] [CrossRef] [PubMed]
- Moszczuk, B.; Kiryluk, K.; Pączek, L.; Mucha, K. Membranous Nephropathy: From Research Bench to Personalized Care. J. Clin. Med. 2021, 10, 1205. [Google Scholar] [CrossRef]
- Beck, L.H., Jr.; Bonegio, R.G.; Lambeau, G.; Beck, D.M.; Powell, D.W.; Cummins, T.D.; Klein, J.B.; Salant, D.J. M-type phospholipase A2 receptor as target antigen in idiopathic membranous nephropathy. N. Engl. J. Med. 2009, 361, 11–21. [Google Scholar] [CrossRef] [Green Version]
- Tomas, N.M.; Beck, L.H., Jr.; Meyer-Schwesinger, C.; Seitz-Polski, B.; Ma, H.; Zahner, G.; Dolla, G.; Hoxha, E.; Helmchen, U.; Dabert-Gay, A.S.; et al. Thrombospondin type-1 domain-containing 7A in idiopathic membranous nephropathy. N. Engl. J. Med. 2014, 371, 2277–2287. [Google Scholar] [CrossRef] [Green Version]
- Sprangers, B.; Lefkowitz, G.I.; Cohen, S.D.; Stokes, M.B.; Valeri, A.; Appel, G.B.; Kunis, C.L. Beneficial effect of rituximab in the treatment of recurrent idiopathic membranous nephropathy after kidney transplantation. Clin. J. Am. Soc. Nephrol. CJASN 2010, 5, 790–797. [Google Scholar] [CrossRef]
- Kattah, A.; Ayalon, R.; Beck, L.H., Jr.; Sethi, S.; Sandor, D.G.; Cosio, F.G.; Gandhi, M.J.; Lorenz, E.C.; Salant, D.J.; Fervenza, F.C. Anti-phospholipase A₂ receptor antibodies in recurrent membranous nephropathy. Am. J. Transplant. 2015, 15, 1349–1359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tomas, N.M.; Hoxha, E.; Reinicke, A.T.; Fester, L.; Helmchen, U.; Gerth, J.; Bachmann, F.; Budde, K.; Koch-Nolte, F.; Zahner, G.; et al. Autoantibodies against thrombospondin type 1 domain-containing 7A induce membranous nephropathy. J. Clin. Investig. 2016, 126, 2519–2532. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Batal, I.; Vasilescu, E.R.; Dadhania, D.M.; Adel, A.A.; Husain, S.A.; Avasare, R.; Serban, G.; Santoriello, D.; Khairallah, P.; Patel, A.; et al. Association of HLA Typing and Alloimmunity With Posttransplantation Membranous Nephropathy: A Multicenter Case Series. Am. J. Kidney Dis. 2020, 76, 374–383. [Google Scholar] [CrossRef] [PubMed]
- Hickson, L.J.; Gera, M.; Amer, H.; Iqbal, C.W.; Moore, T.B.; Milliner, D.S.; Cosio, F.G.; Larson, T.S.; Stegall, M.D.; Ishitani, M.B.; et al. Kidney transplantation for primary focal segmental glomerulosclerosis: Outcomes and response to therapy for recurrence. Transplantation 2009, 87, 1232–1239. [Google Scholar] [CrossRef] [Green Version]
- Yang, W.L.; Bose, B.; Zhang, L.; McStea, M.; Cho, Y.; Fahim, M.; Hawley, C.M.; Pascoe, E.M.; Johnson, D.W. Long-term outcomes of patients with end-stage kidney disease due to membranous nephropathy: A cohort study using the Australia and New Zealand Dialysis and Transplant Registry. PLoS ONE 2019, 14, e0221531. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choy, B.Y.; Chan, T.M.; Lo, S.K.; Lo, W.K.; Lai, K.N. Renal transplantation in patients with primary immunoglobulin A nephropathy. Nephrol. Dial. Transplant. 2003, 18, 2399–2404. [Google Scholar] [CrossRef] [Green Version]
- Tamirou, F.; Houssiau, F.A. Management of Lupus Nephritis. J. Clin. Med. 2021, 10, 670. [Google Scholar] [CrossRef] [PubMed]
- Seligman, V.A.; Lum, R.F.; Olson, J.L.; Li, H.; Criswell, L.A. Demographic differences in the development of lupus nephritis: A retrospective analysis. Am. J. Med. 2002, 112, 726–729. [Google Scholar] [CrossRef]
- Hoffman, I.E.; Peene, I.; Meheus, L.; Huizinga, T.W.; Cebecauer, L.; Isenberg, D.; De Bosschere, K.; Hulstaert, F.; Veys, E.M.; De Keyser, F. Specific antinuclear antibodies are associated with clinical features in systemic lupus erythematosus. Ann. Rheum. Dis. 2004, 63, 1155–1158. [Google Scholar] [CrossRef]
- Contreras, G.; Mattiazzi, A.; Guerra, G.; Ortega, L.M.; Tozman, E.C.; Li, H.; Tamariz, L.; Carvalho, C.; Kupin, W.; Ladino, M.; et al. Recurrence of lupus nephritis after kidney transplantation. J. Am. Soc. Nephrol. JASN 2010, 21, 1200–1207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bunnapradist, S.; Chung, P.; Peng, A.; Hong, A.; Chung, P.; Lee, B.; Fukami, S.; Takemoto, S.K.; Singh, A.K. Outcomes of renal transplantation for recipients with lupus nephritis: Analysis of the Organ Procurement and Transplantation Network database. Transplantation 2006, 82, 612–618. [Google Scholar] [CrossRef]
- Deegens, J.K.; Artz, M.A.; Hoitsma, A.J.; Wetzels, J.F. Outcome of renal transplantation in patients with systemic lupus erythematosus. Transpl. Int. 2003, 16, 411–418. [Google Scholar] [CrossRef]
- Goral, S.; Ynares, C.; Shappell, S.B.; Snyder, S.; Feurer, I.D.; Kazancioglu, R.; Fogo, A.B.; Helderman, J.H. Recurrent lupus nephritis in renal transplant recipients revisited: It is not rare. Transplantation 2003, 75, 651–656. [Google Scholar] [CrossRef]
- Ponticelli, C.; Moroni, G. Renal transplantation in lupus nephritis. Lupus 2005, 14, 95–98. [Google Scholar] [CrossRef]
- Rovin, B.H.; Furie, R.; Latinis, K.; Looney, R.J.; Fervenza, F.C.; Sanchez-Guerrero, J.; Maciuca, R.; Zhang, D.; Garg, J.P.; Brunetta, P.; et al. Efficacy and safety of rituximab in patients with active proliferative lupus nephritis: The Lupus Nephritis Assessment with Rituximab study. Arthritis Rheum. 2012, 64, 1215–1226. [Google Scholar] [CrossRef] [PubMed]
- Moroni, G.; Ponticelli, C. Rapidly progressive crescentic glomerulonephritis: Early treatment is a must. Autoimmun. Rev. 2014, 13, 723–729. [Google Scholar] [CrossRef] [PubMed]
- Göçeroğlu, A.; Rahmattulla, C.; Berden, A.E.; Reinders, M.E.; Wolterbeek, R.; Steenbergen, E.J.; Hilbrands, L.B.; Noorlander, I.; Berger, S.P.; Peutz-Kootstra, C.J.; et al. The Dutch Transplantation in Vasculitis (DUTRAVAS) Study: Outcome of Renal Transplantation in Antineutrophil Cytoplasmic Antibody-associated Glomerulonephritis. Transplantation 2016, 100, 916–924. [Google Scholar] [CrossRef] [PubMed]
- Little, M.A.; Hassan, B.; Jacques, S.; Game, D.; Salisbury, E.; Courtney, A.E.; Brown, C.; Salama, A.D.; Harper, L. Renal transplantation in systemic vasculitis: When is it safe? Nephrol. Dial. Transplant. 2009, 24, 3219–3225. [Google Scholar] [CrossRef] [Green Version]
- Nachman, P.H.; Segelmark, M.; Westman, K.; Hogan, S.L.; Satterly, K.K.; Jennette, J.C.; Falk, R. Recurrent ANCA-associated small vessel vasculitis after transplantation: A pooled analysis. Kidney Int. 1999, 56, 1544–1550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kluth, D.C.; Rees, A.J. Anti-glomerular basement membrane disease. J. Am. Soc. Nephrol. JASN 1999, 10, 2446–2453. [Google Scholar] [CrossRef]
- Singh, T.; Kharadjian, T.B.; Astor, B.C.; Panzer, S.E. Long-term outcomes in kidney transplant recipients with end-stage kidney disease due to anti-glomerular basement membrane disease. Clin. Transplant. 2021, 35, e14179. [Google Scholar] [CrossRef]
- Tang, W.; McDonald, S.P.; Hawley, C.M.; Badve, S.V.; Boudville, N.C.; Brown, F.G.; Clayton, P.A.; Campbell, S.B.; de Zoysa, J.R.; Johnson, D.W. Anti-glomerular basement membrane antibody disease is an uncommon cause of end-stage renal disease. Kidney Int. 2013, 83, 503–510. [Google Scholar] [CrossRef] [Green Version]
- Netzer, K.O.; Merkel, F.; Weber, M. Goodpasture syndrome and end-stage renal failure--to transplant or not to transplant? Nephrol. Dial. Transplant. 1998, 13, 1346–1348. [Google Scholar] [CrossRef] [Green Version]
- Lochhead, K.M.; Pirsch, J.D.; D’Alessandro, A.M.; Knechtle, S.J.; Kalayoglu, M.; Sollinger, H.W.; Belzer, F.O. Risk factors for renal allograft loss in patients with systemic lupus erythematosus. Kidney Int. 1996, 49, 512–517. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jennette, J.C.; Nachman, P.H. ANCA Glomerulonephritis and Vasculitis. Clin. J. Am. Soc. Nephrol. CJASN 2017, 12, 1680–1691. [Google Scholar] [CrossRef]
- Ronco, P.M.; Aucouturier, P. The molecular bases of plasma cell dyscrasia-related renal diseases. Nephrol. Dial. Transplant. 1999, 14 (Suppl. S1), 4–8. [Google Scholar] [CrossRef] [Green Version]
- Röcken, C.; Sletten, K. Amyloid in surgical pathology. Virchows Arch. 2003, 443, 3–16. [Google Scholar] [CrossRef]
- Vrana, J.A.; Gamez, J.D.; Madden, B.J.; Theis, J.D.; Bergen, H.R., 3rd; Dogan, A. Classification of amyloidosis by laser microdissection and mass spectrometry-based proteomic analysis in clinical biopsy specimens. Blood 2009, 114, 4957–4959. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abe, R.; Katoh, N.; Takahashi, Y.; Takasone, K.; Yoshinaga, T.; Yazaki, M.; Kametani, F.; Sekijima, Y. Distribution of amyloidosis subtypes based on tissue biopsy site—Consecutive analysis of 729 patients at a single amyloidosis center in Japan. Pathol. Int. 2021, 71, 70–79. [Google Scholar] [CrossRef]
- Westermark, P.; Benson, M.D.; Buxbaum, J.N.; Cohen, A.S.; Frangione, B.; Ikeda, S.; Masters, C.L.; Merlini, G.; Saraiva, M.J.; Sipe, J.D. Amyloid: Toward terminology clarification. Report from the Nomenclature Committee of the International Society of Amyloidosis. Amyloid 2005, 12, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Pinney, J.H.; Lachmann, H.J.; Sattianayagam, P.T.; Gibbs, S.D.; Wechalekar, A.D.; Venner, C.P.; Whelan, C.J.; Gilbertson, J.A.; Rowczenio, D.; Hawkins, P.N.; et al. Renal transplantation in systemic amyloidosis-importance of amyloid fibril type and precursor protein abundance. Am. J. Transplant. 2013, 13, 433–441. [Google Scholar] [CrossRef]
- Angel-Korman, A.; Stern, L.; Sarosiek, S.; Sloan, J.M.; Doros, G.; Sanchorawala, V.; Havasi, A. Long-term outcome of kidney transplantation in AL amyloidosis. Kidney Int. 2019, 95, 405–411. [Google Scholar] [CrossRef]
- Andeen, N.K.; Yang, H.Y.; Dai, D.F.; MacCoss, M.J.; Smith, K.D. DnaJ Homolog Subfamily B Member 9 Is a Putative Autoantigen in Fibrillary GN. J. Am. Soc. Nephrol. JASN 2018, 29, 231–239. [Google Scholar] [CrossRef] [Green Version]
- El Ters, M.; Bobart, S.A.; Cornell, L.D.; Leung, N.; Bentall, A.; Sethi, S.; Fidler, M.; Grande, J.; Hernandez, L.H.; Cosio, F.G.; et al. Recurrence of DNAJB9-Positive Fibrillary Glomerulonephritis After Kidney Transplantation: A Case Series. Am. J. Kidney Dis. 2020, 76, 500–510. [Google Scholar] [CrossRef] [PubMed]
- Kim, W.R.; Terrault, N.A.; Pedersen, R.A.; Therneau, T.M.; Edwards, E.; Hindman, A.A.; Brosgart, C.L. Trends in waiting list registration for liver transplantation for viral hepatitis in the United States. Gastroenterology 2009, 137, 1680–1686. [Google Scholar] [CrossRef] [Green Version]
- Younossi, Z.M.; Stepanova, M.; Ong, J.; Trimble, G.; AlQahtani, S.; Younossi, I.; Ahmed, A.; Racila, A.; Henry, L. Nonalcoholic Steatohepatitis Is the Most Rapidly Increasing Indication for Liver Transplantation in the United States. Clin. Gastroenterol. Hepatol. 2021, 19, 580–589.e5. [Google Scholar] [CrossRef] [PubMed]
- Samuel, D.; Muller, R.; Alexander, G.; Fassati, L.; Ducot, B.; Benhamou, J.P.; Bismuth, H. Liver transplantation in European patients with the hepatitis B surface antigen. N. Engl. J. Med. 1993, 329, 1842–1847. [Google Scholar] [CrossRef] [Green Version]
- Todo, S.; Demetris, A.J.; Van Thiel, D.; Teperman, L.; Fung, J.J.; Starzl, T.E. Orthotopic liver transplantation for patients with hepatitis B virus-related liver disease. Hepatology 1991, 13, 619–626. [Google Scholar]
- Mutimer, D.; Pillay, D.; Dragon, E.; Tang, H.; Ahmed, M.; O’Donnell, K.; Shaw, J.; Burroughs, N.; Rand, D.; Cane, P.; et al. High pre-treatment serum hepatitis B virus titre predicts failure of lamivudine prophylaxis and graft re-infection after liver transplantation. J. Hepatol. 1999, 30, 715–721. [Google Scholar] [CrossRef]
- Markowitz, J.S.; Martin, P.; Conrad, A.J.; Markmann, J.F.; Seu, P.; Yersiz, H.; Goss, J.A.; Schmidt, P.; Pakrasi, A.; Artinian, L.; et al. Prophylaxis against hepatitis B recurrence following liver transplantation using combination lamivudine and hepatitis B immune globulin. Hepatology 1998, 28, 585–589. [Google Scholar] [CrossRef]
- Degertekin, B.; Lok, A.S. What is the optimal regimen for preventing hepatitis B recurrence after liver transplantation? Nat. Clin. Pract. Gastroenterol. Hepatol. 2009, 6, 68–69. [Google Scholar] [CrossRef] [PubMed]
- Cotter, T.G.; Paul, S.; Sandıkçı, B.; Couri, T.; Bodzin, A.S.; Little, E.C.; Sundaram, V.; Charlton, M. Improved Graft Survival After Liver Transplantation for Recipients With Hepatitis C Virus in the Direct-Acting Antiviral Era. Liver Transplant. 2019, 25, 598–609. [Google Scholar] [CrossRef] [PubMed]
- Bethea, E.; Arvind, A.; Gustafson, J.; Andersson, K.; Pratt, D.; Bhan, I.; Thiim, M.; Corey, K.; Bloom, P.; Markmann, J.; et al. Immediate administration of antiviral therapy after transplantation of hepatitis C-infected livers into uninfected recipients: Implications for therapeutic planning. Am. J. Transplant. 2020, 20, 1619–1628. [Google Scholar] [CrossRef]
- Bizollon, T.; Ducerf, C.; Trepo, C.; Mutimer, D. Hepatitis C virus recurrence after liver transplantation. Gut 1999, 44, 575–578. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teixeira, R.; Pastacaldi, S.; Papatheodoridis, G.V.; Burroughs, A.K. Recurrent hepatitis C after liver transplantation. J. Med. Virol. 2000, 61, 443–454. [Google Scholar] [CrossRef]
- Ghobrial, R.M.; Farmer, D.G.; Baquerizo, A.; Colquhoun, S.; Rosen, H.R.; Yersiz, H.; Markmann, J.F.; Drazan, K.E.; Holt, C.; Imagawa, D.; et al. Orthotopic liver transplantation for hepatitis C: Outcome, effect of immunosuppression, and causes of retransplantation during an 8-year single-center experience. Ann. Surg. 1999, 229, 824–831, discussion 831–823. [Google Scholar] [CrossRef]
- Verna, E.C.; Abdelmessih, R.; Salomao, M.A.; Lefkowitch, J.; Moreira, R.K.; Brown, R.S., Jr. Cholestatic hepatitis C following liver transplantation: An outcome-based histological definition, clinical predictors, and prognosis. Liver Transplant. Off. Publ. Am. Assoc. Study Liver Dis. Int. Liver Transplant. Soc. 2013, 19, 78–88. [Google Scholar] [CrossRef]
- Neumann, U.P.; Berg, T.; Bahra, M.; Seehofer, D.; Langrehr, J.M.; Neuhaus, R.; Radke, C.; Neuhaus, P. Fibrosis progression after liver transplantation in patients with recurrent hepatitis C. J. Hepatol. 2004, 41, 830–836. [Google Scholar] [CrossRef]
- Mutimer, D.J.; Gunson, B.; Chen, J.; Berenguer, J.; Neuhaus, P.; Castaing, D.; Garcia-Valdecasas, J.C.; Salizzoni, M.; Moreno, G.E.; Mirza, D. Impact of donor age and year of transplantation on graft and patient survival following liver transplantation for hepatitis C virus. Transplantation 2006, 81, 7–14. [Google Scholar] [CrossRef]
- Omata, M.; Yokosuka, O.; Takano, S.; Kato, N.; Hosoda, K.; Imazeki, F.; Tada, M.; Ito, Y.; Ohto, M. Resolution of acute hepatitis C after therapy with natural beta interferon. Lancet 1991, 338, 914–915. [Google Scholar] [CrossRef]
- Berg, T.; Hoffmann, R.M.; Teuber, G.; Leifeld, L.; Lafrenz, M.; Baumgarten, R.; Spengler, U.; Zeuzem, S.; Pape, G.R.; Hopf, U. Efficacy of a short-term ribavirin plus interferon alpha combination therapy followed by interferon alpha alone in previously untreated patients with chronic hepatitis C: A randomized multicenter trial. Liver 2000, 20, 427–436. [Google Scholar] [CrossRef] [PubMed]
- Carrat, F.; Bani-Sadr, F.; Pol, S.; Rosenthal, E.; Lunel-Fabiani, F.; Benzekri, A.; Morand, P.; Goujard, C.; Pialoux, G.; Piroth, L.; et al. Pegylated interferon alfa-2b vs standard interferon alfa-2b, plus ribavirin, for chronic hepatitis C in HIV-infected patients: A randomized controlled trial. JAMA 2004, 292, 2839–2848. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Terrault, N.A. Prophylactic and preemptive therapies for hepatitis C virus-infected patients undergoing liver transplantation. Liver Transplant. 2003, 9, S95–S100. [Google Scholar] [CrossRef]
- Bzowej, N.; Nelson, D.R.; Terrault, N.A.; Everson, G.T.; Teng, L.L.; Prabhakar, A.; Charlton, M.R. PHOENIX: A randomized controlled trial of peginterferon alfa-2a plus ribavirin as a prophylactic treatment after liver transplantation for hepatitis C virus. Liver Transplant. 2011, 17, 528–538. [Google Scholar] [CrossRef] [PubMed]
- Kumada, H.; Toyota, J.; Okanoue, T.; Chayama, K.; Tsubouchi, H.; Hayashi, N. Telaprevir with peginterferon and ribavirin for treatment-naive patients chronically infected with HCV of genotype 1 in Japan. J. Hepatol. 2012, 56, 78–84. [Google Scholar] [CrossRef] [PubMed]
- Fried, M.W.; Buti, M.; Dore, G.J.; Flisiak, R.; Ferenci, P.; Jacobson, I.; Marcellin, P.; Manns, M.; Nikitin, I.; Poordad, F.; et al. Once-daily simeprevir (TMC435) with pegylated interferon and ribavirin in treatment-naïve genotype 1 hepatitis C: The randomized PILLAR study. Hepatology 2013, 58, 1918–1929. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manns, M.; Pol, S.; Jacobson, I.M.; Marcellin, P.; Gordon, S.C.; Peng, C.Y.; Chang, T.T.; Everson, G.T.; Heo, J.; Gerken, G.; et al. All-oral daclatasvir plus asunaprevir for hepatitis C virus genotype 1b: A multinational, phase 3, multicohort study. Lancet 2014, 384, 1597–1605. [Google Scholar] [CrossRef]
- Ikegami, T.; Ueda, Y.; Akamatsu, N.; Ishiyama, K.; Goto, R.; Soyama, A.; Kuramitsu, K.; Honda, M.; Shinoda, M.; Yoshizumi, T.; et al. Asunaprevir and daclatasvir for recurrent hepatitis C after liver transplantation: A Japanese multicenter experience. Clin. Transplant. 2017, 31, e13109. [Google Scholar] [CrossRef] [PubMed]
- Bourlière, M.; Bronowicki, J.P.; de Ledinghen, V.; Hézode, C.; Zoulim, F.; Mathurin, P.; Tran, A.; Larrey, D.G.; Ratziu, V.; Alric, L.; et al. Ledipasvir-sofosbuvir with or without ribavirin to treat patients with HCV genotype 1 infection and cirrhosis non-responsive to previous protease-inhibitor therapy: A randomised, double-blind, phase 2 trial (SIRIUS). Lancet. Infect. Dis. 2015, 15, 397–404. [Google Scholar] [CrossRef]
- Elfeki, M.A.; Abou Mrad, R.; Modaresi Esfeh, J.; Zein, N.N.; Eghtesad, B.; Zervos, X.; Hanouneh, I.A.; O’Shea, R.; Carey, W.D.; Alkhouri, N. Sofosbuvir/Ledipasvir Without Ribavirin Achieved High Sustained Virologic Response for Hepatitis C Recurrence After Liver Transplantation: Two-Center Experience. Transplantation 2017, 101, 996–1000. [Google Scholar] [CrossRef]
- Ueda, Y.; Kobayashi, T.; Ikegami, T.; Miuma, S.; Mizuno, S.; Akamatsu, N.; Takaki, A.; Ishigami, M.; Takatsuki, M.; Sugawara, Y.; et al. Efficacy and safety of glecaprevir and pibrentasvir treatment for 8 or 12 weeks in patients with recurrent hepatitis C after liver transplantation: A Japanese multicenter experience. J. Gastroenterol. 2019, 54, 660–666. [Google Scholar] [CrossRef] [PubMed]
- Figueras, J.; Jaurrieta, E.; Valls, C.; Benasco, C.; Rafecas, A.; Xiol, X.; Fabregat, J.; Casanovas, T.; Torras, J.; Baliellas, C.; et al. Survival after liver transplantation in cirrhotic patients with and without hepatocellular carcinoma: A comparative study. Hepatology 1997, 25, 1485–1489. [Google Scholar] [CrossRef]
- Mazzaferro, V.; Regalia, E.; Doci, R.; Andreola, S.; Pulvirenti, A.; Bozzetti, F.; Montalto, F.; Ammatuna, M.; Morabito, A.; Gennari, L. Liver transplantation for the treatment of small hepatocellular carcinomas in patients with cirrhosis. N. Engl. J. Med. 1996, 334, 693–699. [Google Scholar] [CrossRef] [PubMed]
- Yao, F.Y.; Ferrell, L.; Bass, N.M.; Watson, J.J.; Bacchetti, P.; Venook, A.; Ascher, N.L.; Roberts, J.P. Liver transplantation for hepatocellular carcinoma: Expansion of the tumor size limits does not adversely impact survival. Hepatology 2001, 33, 1394–1403. [Google Scholar] [CrossRef] [PubMed]
- Kaido, T.; Ogawa, K.; Mori, A.; Fujimoto, Y.; Ito, T.; Tomiyama, K.; Takada, Y.; Uemoto, S. Usefulness of the Kyoto criteria as expanded selection criteria for liver transplantation for hepatocellular carcinoma. Surgery 2013, 154, 1053–1060. [Google Scholar] [CrossRef]
- Halazun, K.J.; Rosenblatt, R.E.; Mehta, N.; Lai, Q.; Hajifathalian, K.; Gorgen, A.; Brar, G.; Sasaki, K.; Doyle, M.B.M.; Tabrizian, P.; et al. Dynamic α-Fetoprotein Response and Outcomes After Liver Transplant for Hepatocellular Carcinoma. JAMA Surg. 2021, 156, 559–567. [Google Scholar] [CrossRef] [PubMed]
- Razumilava, N.; Gores, G.J. Cholangiocarcinoma. Lancet 2014, 383, 2168–2179. [Google Scholar] [CrossRef] [Green Version]
- De Vreede, I.; Steers, J.L.; Burch, P.A.; Rosen, C.B.; Gunderson, L.L.; Haddock, M.G.; Burgart, L.; Gores, G.J. Prolonged disease-free survival after orthotopic liver transplantation plus adjuvant chemoirradiation for cholangiocarcinoma. Liver Transplant. 2000, 6, 309–316. [Google Scholar] [CrossRef] [PubMed]
- Darwish Murad, S.; Kim, W.R.; Therneau, T.; Gores, G.J.; Rosen, C.B.; Martenson, J.A.; Alberts, S.R.; Heimbach, J.K. Predictors of pretransplant dropout and posttransplant recurrence in patients with perihilar cholangiocarcinoma. Hepatology 2012, 56, 972–981. [Google Scholar] [CrossRef] [Green Version]
- Sapisochin, G.; Rodríguez de Lope, C.; Gastaca, M.; Ortiz de Urbina, J.; Suarez, M.A.; Santoyo, J.; Castroagudín, J.F.; Varo, E.; López-Andujar, R.; Palacios, F.; et al. “Very early” intrahepatic cholangiocarcinoma in cirrhotic patients: Should liver transplantation be reconsidered in these patients? Am. J. Transplant. 2014, 14, 660–667. [Google Scholar] [CrossRef]
- Jones, D.E. Autoantigens in primary biliary cirrhosis. J. Clin. Pathol. 2000, 53, 813–821. [Google Scholar] [CrossRef]
- Chalifoux, S.L.; Konyn, P.G.; Choi, G.; Saab, S. Extrahepatic Manifestations of Primary Biliary Cholangitis. Gut Liver 2017, 11, 771–780. [Google Scholar] [CrossRef] [Green Version]
- Nakanuma, Y. Distribution of B lymphocytes in nonsuppurative cholangitis in primary biliary cirrhosis. Hepatology 1993, 18, 570–575. [Google Scholar] [CrossRef]
- Corpechot, C.; Carrat, F.; Bahr, A.; Chrétien, Y.; Poupon, R.E.; Poupon, R. The effect of ursodeoxycholic acid therapy on the natural course of primary biliary cirrhosis. Gastroenterology 2005, 128, 297–303. [Google Scholar] [CrossRef]
- Adam, R.; Karam, V.; Delvart, V.; O’Grady, J.; Mirza, D.; Klempnauer, J.; Castaing, D.; Neuhaus, P.; Jamieson, N.; Salizzoni, M.; et al. Evolution of indications and results of liver transplantation in Europe. A report from the European Liver Transplant Registry (ELTR). J. Hepatol. 2012, 57, 675–688. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singal, A.K.; Guturu, P.; Hmoud, B.; Kuo, Y.F.; Salameh, H.; Wiesner, R.H. Evolving frequency and outcomes of liver transplantation based on etiology of liver disease. Transplantation 2013, 95, 755–760. [Google Scholar] [CrossRef] [PubMed]
- Kashyap, R.; Safadjou, S.; Chen, R.; Mantry, P.; Sharma, R.; Patil, V.; Maloo, M.; Ryan, C.; Marroquin, C.; Barry, C.; et al. Living donor and deceased donor liver transplantation for autoimmune and cholestatic liver diseases--an analysis of the UNOS database. J. Gastrointest. Surg. 2010, 14, 1362–1369. [Google Scholar] [CrossRef] [PubMed]
- Bosch, A.; Dumortier, J.; Maucort-Boulch, D.; Scoazec, J.Y.; Wendum, D.; Conti, F.; Morard, I.; Rubbia-Brandt, L.; Terris, B.; Radenne, S.; et al. Preventive administration of UDCA after liver transplantation for primary biliary cirrhosis is associated with a lower risk of disease recurrence. J. Hepatol. 2015, 63, 1449–1458. [Google Scholar] [CrossRef] [PubMed]
- Kogiso, T.; Egawa, H.; Teramukai, S.; Taniai, M.; Hashimoto, E.; Tokushige, K.; Sakisaka, S.; Sakabayashi, S.; Yamamoto, M.; Umeshita, K.; et al. Risk factors for recurrence of primary biliary cholangitis after liver transplantation in female patients: A Japanese multicenter retrospective study. Hepatol. Commun. 2017, 1, 394–405. [Google Scholar] [CrossRef]
- Manousou, P.; Arvaniti, V.; Tsochatzis, E.; Isgro, G.; Jones, K.; Shirling, G.; Dhillon, A.P.; O’Beirne, J.; Patch, D.; Burroughs, A.K. Primary biliary cirrhosis after liver transplantation: Influence of immunosuppression and human leukocyte antigen locus disparity. Liver Transplant. 2010, 16, 64–73. [Google Scholar] [CrossRef] [PubMed]
- Charatcharoenwitthaya, P.; Pimentel, S.; Talwalkar, J.A.; Enders, F.T.; Lindor, K.D.; Krom, R.A.; Wiesner, R.H. Long-term survival and impact of ursodeoxycholic acid treatment for recurrent primary biliary cirrhosis after liver transplantation. Liver Transplant. 2007, 13, 1236–1245. [Google Scholar] [CrossRef]
- Neuberger, J. Recurrent primary biliary cirrhosis. Liver Transplant. 2003, 9, 539–546. [Google Scholar] [CrossRef] [PubMed]
- Egawa, H.; Sakisaka, S.; Teramukai, S.; Sakabayashi, S.; Yamamoto, M.; Umeshita, K.; Uemoto, S. Long-Term Outcomes of Living-Donor Liver Transplantation for Primary Biliary Cirrhosis: A Japanese Multicenter Study. Am. J. Transplant. 2016, 16, 1248–1257. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Peng, J.; Ouyang, R.; Yang, Y.; Yu, C.; Lin, H. Risk factors for recurrent primary biliary cirrhosis after liver transplantation: A systematic review and meta-analysis. Dig. Liver Dis. 2021, 53, 309–317. [Google Scholar] [CrossRef]
- Egawa, H.; Nakanuma, Y.; Maehara, Y.; Uemoto, S.; Eguchi, S.; Sato, Y.; Shirabe, K.; Takatsuki, M.; Mori, A.; Yamamoto, M.; et al. Disease recurrence plays a minor role as a cause for retransplantation after living-donor liver transplantation for primary biliary cirrhosis: A multicenter study in Japan. Hepatol. Res. 2013, 43, 502–507. [Google Scholar] [CrossRef]
- Chapman, R.; Fevery, J.; Kalloo, A.; Nagorney, D.M.; Boberg, K.M.; Shneider, B.; Gores, G.J. Diagnosis and management of primary sclerosing cholangitis. Hepatology 2010, 51, 660–678. [Google Scholar] [CrossRef]
- Burak, K.; Angulo, P.; Pasha, T.M.; Egan, K.; Petz, J.; Lindor, K.D. Incidence and risk factors for cholangiocarcinoma in primary sclerosing cholangitis. Am. J. Gastroenterol. 2004, 99, 523–526. [Google Scholar] [CrossRef]
- Boonstra, K.; Weersma, R.K.; van Erpecum, K.J.; Rauws, E.A.; Spanier, B.W.; Poen, A.C.; van Nieuwkerk, K.M.; Drenth, J.P.; Witteman, B.J.; Tuynman, H.A.; et al. Population-based epidemiology, malignancy risk, and outcome of primary sclerosing cholangitis. Hepatology 2013, 58, 2045–2055. [Google Scholar] [CrossRef]
- Graziadei, I.W.; Wiesner, R.H.; Marotta, P.J.; Porayko, M.K.; Hay, J.E.; Charlton, M.R.; Poterucha, J.J.; Rosen, C.B.; Gores, G.J.; LaRusso, N.F.; et al. Long-term results of patients undergoing liver transplantation for primary sclerosing cholangitis. Hepatology 1999, 30, 1121–1127. [Google Scholar] [CrossRef] [PubMed]
- Hildebrand, T.; Pannicke, N.; Dechene, A.; Gotthardt, D.N.; Kirchner, G.; Reiter, F.P.; Sterneck, M.; Herzer, K.; Lenzen, H.; Rupp, C.; et al. Biliary strictures and recurrence after liver transplantation for primary sclerosing cholangitis: A retrospective multicenter analysis. Liver Transplant. 2016, 22, 42–52. [Google Scholar] [CrossRef] [PubMed]
- Alabraba, E.; Nightingale, P.; Gunson, B.; Hubscher, S.; Olliff, S.; Mirza, D.; Neuberger, J. A re-evaluation of the risk factors for the recurrence of primary sclerosing cholangitis in liver allografts. Liver Transplant. 2009, 15, 330–340. [Google Scholar] [CrossRef] [PubMed]
- Campsen, J.; Zimmerman, M.A.; Trotter, J.F.; Wachs, M.; Bak, T.; Steinberg, T.; Kam, I. Clinically recurrent primary sclerosing cholangitis following liver transplantation: A time course. Liver Transplant. 2008, 14, 181–185. [Google Scholar] [CrossRef]
- Egawa, H.; Ueda, Y.; Ichida, T.; Teramukai, S.; Nakanuma, Y.; Onishi, S.; Tsubouchi, H. Risk factors for recurrence of primary sclerosing cholangitis after living donor liver transplantation in Japanese registry. Am. J. Transplant 2011, 11, 518–527. [Google Scholar] [CrossRef] [PubMed]
- Kashyap, R.; Mantry, P.; Sharma, R.; Maloo, M.K.; Safadjou, S.; Qi, Y.; Jain, A.; Maliakkal, B.; Ryan, C.; Orloff, M. Comparative analysis of outcomes in living and deceased donor liver transplants for primary sclerosing cholangitis. J. Gastrointest. Surg. 2009, 13, 1480–1486. [Google Scholar] [CrossRef]
- Gordon, F.D.; Goldberg, D.S.; Goodrich, N.P.; Lok, A.S.; Verna, E.C.; Selzner, N.; Stravitz, R.T.; Merion, R.M. Recurrent primary sclerosing cholangitis in the Adult-to-Adult Living Donor Liver Transplantation Cohort Study: Comparison of risk factors between living and deceased donor recipients. Liver Transplant. 2016, 22, 1214–1222. [Google Scholar] [CrossRef] [Green Version]
- Dhillon, A.K.; Kummen, M.; Trøseid, M.; Åkra, S.; Liaskou, E.; Moum, B.; Vesterhus, M.; Karlsen, T.H.; Seljeflot, I.; Hov, J.R. Circulating markers of gut barrier function associated with disease severity in primary sclerosing cholangitis. Liver Int. 2019, 39, 371–381. [Google Scholar] [CrossRef] [Green Version]
- Martinez, M.; Perito, E.R.; Valentino, P.; Mack, C.L.; Aumar, M.; Broderick, A.; Draijer, L.G.; Fagundes, E.D.T.; Furuya, K.N.; Gupta, N.; et al. Recurrence of Primary Sclerosing Cholangitis after Liver Transplant in Children: An International Observational Study. Hepatology 2021, 74, 2047–2057. [Google Scholar] [CrossRef] [PubMed]
- Krawitt, E.L. Autoimmune hepatitis. N. Engl. J. Med. 2006, 354, 54–66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- EASL Clinical Practice Guidelines: Autoimmune hepatitis. J. Hepatol. 2015, 63, 971–1004. [CrossRef]
- Manns, M.; Gerken, G.; Kyriatsoulis, A.; Staritz, M.; Meyer zum Büschenfelde, K.H. Characterisation of a new subgroup of autoimmune chronic active hepatitis by autoantibodies against a soluble liver antigen. Lancet 1987, 1, 292–294. [Google Scholar] [CrossRef]
- Tanaka, A. Autoimmune Hepatitis: 2019 Update. Gut Liver 2020, 14, 430–438. [Google Scholar] [CrossRef] [PubMed]
- Czaja, A.J. Rapidity of treatment response and outcome in type 1 autoimmune hepatitis. J. Hepatol. 2009, 51, 161–167. [Google Scholar] [CrossRef]
- Wright, H.L.; Bou-Abboud, C.F.; Hassanein, T.; Block, G.D.; Demetris, A.J.; Starzl, T.E.; Van Thiel, D.H. Disease recurrence and rejection following liver transplantation for autoimmune chronic active liver disease. Transplantation 1992, 53, 136–139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Narumi, S.; Hakamada, K.; Sasaki, M.; Freise, C.E.; Stock, P.G.; Roberts, J.P.; Ascher, N.L. Liver transplantation for autoimmune hepatitis: Rejection and recurrence. Transplant. Proc. 1999, 31, 1955–1956. [Google Scholar] [CrossRef]
- Milkiewicz, P.; Hubscher, S.G.; Skiba, G.; Hathaway, M.; Elias, E. Recurrence of autoimmune hepatitis after liver transplantation. Transplantation 1999, 68, 253–256. [Google Scholar] [CrossRef] [PubMed]
- Montano-Loza, A.J.; Bhanji, R.A.; Wasilenko, S.; Mason, A.L. Systematic review: Recurrent autoimmune liver diseases after liver transplantation. Aliment. Pharm. 2017, 45, 485–500. [Google Scholar] [CrossRef] [PubMed]
- Milkiewicz, P.; Gunson, B.; Saksena, S.; Hathaway, M.; Hubscher, S.G.; Elias, E. Increased incidence of chronic rejection in adult patients transplanted for autoimmune hepatitis: Assessment of risk factors. Transplantation 2000, 70, 477–480. [Google Scholar] [CrossRef] [PubMed]
- McCabe, M.; Rush, N.; Lammert, C.; Patidar, K.R.; Nephew, L.; Saxena, R.; Ekser, B.; Salven, J.; Kubal, C.; Ghabril, M. HLA-DR Mismatch and Black Race Are Associated With Recurrent Autoimmune Hepatitis After Liver Transplantation. Transpl. Direct 2021, 7, e714. [Google Scholar] [CrossRef]
- Montano-Loza, A.J.; Mason, A.L.; Ma, M.; Bastiampillai, R.J.; Bain, V.G.; Tandon, P. Risk factors for recurrence of autoimmune hepatitis after liver transplantation. Liver Transplant. 2009, 15, 1254–1261. [Google Scholar] [CrossRef]
- Cattan, P.; Berney, T.; Conti, F.; Calmus, Y.; Homberg, J.C.; Houssin, D.; Soubrane, O. Outcome of orthotopic liver transplantation in autoimmune hepatitis according to subtypes. Transpl. Int. 2002, 15, 34–38. [Google Scholar] [CrossRef]
- De Quadros Onofrio, F.; Neong, E.; Adebayo, D.; Kollmann, D.; Adeyi, O.A.; Fischer, S.; Hirschfield, G.M.; Hansen, B.E.; Bhat, M.; Galvin, Z.; et al. Single-Center North American Experience of Liver Transplantation in Autoimmune Hepatitis: Infrequent Indication but Good Outcomes for Patients. J. Can. Assoc. Gastroenterol. 2021, 4, 137–144. [Google Scholar] [CrossRef] [PubMed]
- Montano-Loza, A.J.; Wasilenko, S.; Bintner, J.; Mason, A.L. Cyclosporine A protects against primary biliary cirrhosis recurrence after liver transplantation. Am. J. Transplant. 2010, 10, 852–858. [Google Scholar] [CrossRef]
- Ravikumar, R.; Tsochatzis, E.; Jose, S.; Allison, M.; Athale, A.; Creamer, F.; Gunson, B.; Iyer, V.; Madanur, M.; Manas, D.; et al. Risk factors for recurrent primary sclerosing cholangitis after liver transplantation. J. Hepatol. 2015, 63, 1139–1146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cholongitas, E.; Shusang, V.; Papatheodoridis, G.V.; Marelli, L.; Manousou, P.; Rolando, N.; Patch, D.; Rolles, K.; Davidson, B.; Burroughs, A.K. Risk factors for recurrence of primary sclerosing cholangitis after liver transplantation. Liver Transplant. 2008, 14, 138–143. [Google Scholar] [CrossRef]
- Reich, D.J.; Fiel, I.; Guarrera, J.V.; Emre, S.; Guy, S.R.; Schwartz, M.E.; Miller, C.M.; Sheiner, P.A. Liver transplantation for autoimmune hepatitis. Hepatology 2000, 32, 693–700. [Google Scholar] [CrossRef] [PubMed]
- Sørgjerd, E.P. Type 1 Diabetes-related Autoantibodies in Different Forms of Diabetes. Curr. Diabetes Rev. 2019, 15, 199–204. [Google Scholar] [CrossRef]
- Bottazzo, G.F.; Florin-Christensen, A.; Doniach, D. Islet-cell antibodies in diabetes mellitus with autoimmune polyendocrine deficiencies. Lancet 1974, 2, 1279–1283. [Google Scholar] [CrossRef]
- Månsson, L.; Törn, C.; Landin-Olsson, M. Islet cell antibodies represent autoimmune response against several antigens. Int. J. Exp. Diabetes Res. 2001, 2, 85–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sutherland, D.E.; Goetz, F.C.; Sibley, R.K. Recurrence of disease in pancreas transplants. Diabetes 1989, 38 (Suppl. S1), 85–87. [Google Scholar] [CrossRef] [PubMed]
- Sutherland, D.E.; Sibley, R.; Xu, X.Z.; Michael, A.; Srikanta, A.M.; Taub, F.; Najarian, J.; Goetz, F.C. Twin-to-twin pancreas transplantation: Reversal and reenactment of the pathogenesis of type I diabetes. Trans. Assoc. Am. Physicians 1984, 97, 80–87. [Google Scholar] [PubMed]
- Vendrame, F.; Hopfner, Y.Y.; Diamantopoulos, S.; Virdi, S.K.; Allende, G.; Snowhite, I.V.; Reijonen, H.K.; Chen, L.; Ruiz, P.; Ciancio, G.; et al. Risk Factors for Type 1 Diabetes Recurrence in Immunosuppressed Recipients of Simultaneous Pancreas-Kidney Transplants. Am. J. Transpl. 2016, 16, 235–245. [Google Scholar] [CrossRef] [Green Version]
- Esmatjes, E.; Rodríguez-Villar, C.; Ricart, M.J.; Casamitjana, R.; Martorell, J.; Sabater, L.; Astudillo, E.; Fernández-Cruz, L. Recurrence of immunological markers for type 1 (insulin-dependent) diabetes mellitus in immunosuppressed patients after pancreas transplantation. Transplantation 1998, 66, 128–131. [Google Scholar] [CrossRef]
Renal Transplant | Study Design, Number of ABMR Patients (Number of Treated Patients) | Treatment | Median (or Mean) Post-Transplant/Post-Treatment Follow-Up Period (Months) | Major Outcomes | Reference |
---|---|---|---|---|---|
RCT, 25(12) | Rituximab + IVIG vs. placebo | (118)/12 | Treatment group eGFR decline was slightly smaller but not significant. | Moreso 2018 [49] | |
RCT, 20(10) | Eculizumab vs. control | N/A/6 | Slight stabilization was noted in renal function while on treatment. | Kulkarni 2017 [20] | |
Prospective, 36(36) | Tocilizumab | N/A/39.1 | Significant reduction in DSA and stabilization of renal function. | Choi 2017 [21] | |
RCT, 20 | Clazakizumab vs. placebo | 10.6 (4.4–16.2) years post-op to inclusion in the trial/52 weeks | The mean eGFR decline during treatment was notably slower. | Doberer 2020 [23] | |
RCT, 44(21) | Bortezomib vs. placebo | N/A/24 | No significant improvement in GFR decline in the treatment group despite significant toxicity. | Eskandary 2018 [19] | |
Retrospective, 123 (108 at least steroid + IVIG) | Steroid pulse+IVIG(+rituximab, PP, thymoglobulin) | 9.5 (2.7–20.3)/4.3 (0–8.8) from diagnosis of ABMR | The combination of steroid pulse and IVIG demonstrated a reduced risk of graft loss. | Redfield 2016 [50] | |
RCT, all patients: 660 (219/226/215) | Belatacept more intense vs. Belatacept less intense vs. cyclosporine treated | Up to 7 years follow-up from randomization | Belatacept-based immunosuppression effectively suppressed DSA production. | Bray 2018 [24] | |
Liver Transplant | |||||
Retrospective, 9(9) (dnDSA + acute ABMR patients) | Steroid, IVIG, PP, rituximab, ATG, retransplantation | 44(13–66)/36 (3–65) | Seven out of nine recipients demonstrated stable liver enzyme tests. | Del Bello 2015 [38] | |
Retrospective, 4(3 pediatric) | IVIG | N/A/N/A | IVIG had minimal effects on MFI of DSA. | Guerra 2017 [51] | |
Retrospective, 9(9, pediatric 4, adult 5) | Rituximab + α(IVIG, Bortezomib) | 104(17–245)/60(5–65) | The administration of rituximab for chronic ABMR may be feasible. | Sakamoto 2021 [39] | |
PancreasTransplant | |||||
* Retrospective, various treatments, 9(4) | (nonstandard treatment for 4 patients) ATG, IVIG, PP, alemtuzumab, pancreatectomy | 21.7(range 0.1–169.5) months/N/A | Three patients received pharmacological treatments and 4 out of 9 patients lost their graft. | de Kort 2010 [40] | |
* Retrospective, various treatments, 4(4) | Steroids, IVIG, PP | 55.2/N/A | A quarter had graft failure approximately 2 years after treatment. | Parajuli 2019 [43] | |
* Retrospective, various treatments, 8(N/A) | Steroid pulse, IVIG, PP(five sessions), Belatacept | N/A/N/A | Beyond the scope of this study to discuss the optimal treatment. | Uva 2020 [46] |
IgA Nephropathy | Focal Segmental Glomerulosclerosis | Membranoproliferative Glomerulonephritis | Membranous Nephropathy | |
---|---|---|---|---|
Recurrence Rate | About 30%/50–120 months (28.6%/121 ± 69 months [52], 34.9%/median 49 (range 4–213) months [53]) | Differ widely between reports (10.4%/median 6.1 years (follow-up) [66], 46.7%/2.2 ± 1.8 years [92], 57.6%/median 1.25 (1 day to 30 months) months [67]) | Differ widely between reports (11.8%, 15.6%, and 18.9% at 5, 10, and 15 years [70], 84.2%/76 months follow-up (C3 glomerulopathy) [82]) | Differ widely between reports (10%, 16%, and 18% at 5, 10, and 15 years [70], 11.4%/median 3.6 (1.0–4.7) years [93], 44%/13.6 months [88]) |
Graft loss due to clinical recurrence (%) | 10.8% at 10 years [53], 21.4%/130.8 ± 10.6 months follow up periods [94], 58% at 5 years [70] | Differ widely between reports (43% at 5 years [70], 39%/median 5 years [69], 9%/median 29.5 months [67]) | About 50–70%/~5 years (56.3%/median 42 months (C3 glomerulopathy) [82], 70% at 5 years [70]) | About 50–60%/~5 years (47.4% allograft loss/median 3.6 (1.0–4.7) years [93], 59% at 5 years [70]) |
Pathogenesis | Galactose-deficient IgA1, anti- galactose-deficient IgA1 IgG, immunocomplex | Circulating permeability factors, such as suPAR | Alternative complement pathway activation or immunoglobulin deposition | Anti-phospholipase A2 receptor, or thrombospondin type-1 domain-containing 7A antibodies, etc. |
Risk factors of recurrence based on donor type/factors | HLA match, related donor | Related donor | Related donor (controversial) | Related donor (controversial) |
Prophylaxis (Induction Therapy) | Tonsilectomy | Plasma exchange, apheresis, rituximab | Plasma exchange, rituximab | N/A |
Treatments | Steroid pulse, rituximab, tonsilectomy | Plasma exchange, apheresis, rituximab | plasma exchange, rituximab, steroid pulse, or eculizumab | Steroid pulse, Rituximab |
Lupus Nephritis | ANCA Related Nephritis | Anti-GBM Abs Related Nephritis | |
---|---|---|---|
Recurrence Rate | Vary between reports due to the frequency of biopsies, 30%/6.8 ± 4.9 (range, 3 months-20 years) [101], 4.3%/74.2 ± 72.2 months [100] | 2.8% per patient year, 10%/the first 5 years post-op [105], 4.7%/median 5.5 years [106] | 3.9%/median 6.4 years [109], 2.7% [110] |
Graft loss due to clinical recurrence (%) | 2%/6.8–4.9 (range, 3 months-20 years) [101], 1/31(3%) graft losses among 80 lupus transplant was caused by recurrence [112] | Four out of 11 recurrent cases lost theirgrafts within 5 years of transplantation [105], 2.8%/median 5.5 years [106] | 3.9%/median 6.4 years [109], 0.9% [110] |
Pathogenesis | Type III allergy | Neutrophil activation due to proteinase 3/myeloperoxidase-ANCA etc. [113] | Anti-GBM Abs(type II allergy) |
Recommendation | Better to perform kidney transplant after introduction of dialysis therapy for several months, and being able to reduce prednisolone < 10 mg/day | Wait for renal transplant at least 12 months after the disease activity becomes under control. | Confirm a decrease in anti-GBM Abs for at least consecutive 12 months |
Primary Biliary Cholangitis | Primary Sclerosing Cholangitis | Autoimmune Hepatitis | |
---|---|---|---|
Patient Survival after liver transplantation | About 80–90%, and 70–80% at 5 and 10 years (86% and 76% at 5 and 10 years [200], 90% and 79% at 5 and 10 years [169], 80% and 71% at 5 and 10 years [163], 84.4% and 79% at 5 and 10 years [164]) | About 80–90%, and 70–80% at 5 and 10 years (78% and 70% at 5 and 10 years [163], 87.4% and 83.2% at 5 and 10 years [164], 89% and 79% at 5 and 10 years [201]) | About 75% at 5 years (76–78% at 5 years [197]) |
Patient Survival in the recurrent group | About 95% and 80–90% at 5 and 10 years (96% and 83% at 5 and 10 years [200], 88.5%/10.1 ± 4.3 years (follow-up period) [169]) | About 80%, and 50% at 5 and 10 years (84% and 56% at 5 and 10 years [201]) | About 75% at 5 years (76% at 5 years [197]) |
Recurrence Rate | About 10% and 20–30% at 5 and 10 years(9.6% and 20.6% at 5 and 10 years [171], 13% and 29% at 5 and 10 years [200]) | About 10–20% and 10–30% at 5 and 10 years (13% at 5 years [202], 14.3% at 9 years [201], 18.1% and 36% at 5 and 10 years [178], 23%/median 4.6 years [179]) | About 10–20%, and 30% at 5 and 10 years (18%, and 32% at 5 and 10 years [197], 25%/15 ± 2 months (follow-up period) [203]) |
Pathological vs. clinical recurrence | Pathological recurrence predominant | High clinical recurrence rates (30–70%) | Pathological recurrence predominant |
Prophylaxis | Ursodeoxycholic acid | N/A | N/A |
Treatments | Ursodeoxycholic acid | N/A | Steroid, Azathioprine, mycophenolate mofetil |
Risk factors based on donor type/factors | Gender mismatch | A first degree relative donor | HLA-DR locus mismatching, recipient DR3+/donor DR3- |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nakamura, T.; Shirouzu, T. Antibody-Mediated Rejection and Recurrent Primary Disease: Two Main Obstacles in Abdominal Kidney, Liver, and Pancreas Transplants. J. Clin. Med. 2021, 10, 5417. https://doi.org/10.3390/jcm10225417
Nakamura T, Shirouzu T. Antibody-Mediated Rejection and Recurrent Primary Disease: Two Main Obstacles in Abdominal Kidney, Liver, and Pancreas Transplants. Journal of Clinical Medicine. 2021; 10(22):5417. https://doi.org/10.3390/jcm10225417
Chicago/Turabian StyleNakamura, Tsukasa, and Takayuki Shirouzu. 2021. "Antibody-Mediated Rejection and Recurrent Primary Disease: Two Main Obstacles in Abdominal Kidney, Liver, and Pancreas Transplants" Journal of Clinical Medicine 10, no. 22: 5417. https://doi.org/10.3390/jcm10225417