Genetics Variants in the Epoxygenase Pathway of Arachidonic Metabolism Are Associated with Eicosanoids Levels and the Risk of Diabetic Nephropathy
Abstract
:1. Introduction
2. Patients and Methods
2.1. Study Subjects
2.2. Genetic Analysis
2.3. Determination of Plasma and Urinary Levels of Eicosanoids
2.4. Statistical Analyses
3. Results
3.1. Case-Control Study
3.2. Effect of SNPs on Renal Parameters of DKD Patients
3.3. Analysis of Cardiovascular Risk in the DKD Cohort
3.4. Association between Eicosanoids Levels and Epoxygenases Polymorphisms
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Foreman, K.J.; Marquez, N.; Dolgert, A.; Fukutaki, K.; Fullman, N.; McGaughey, M.; Pletcher, M.A.; Smith, A.E.; Tang, K.; Yuan, C.-W.; et al. Forecasting life expectancy, years of life lost, and all-Cause and cause-Specific mortality for 250 causes of death: Reference and alternative scenarios for 2016-40 for 195 countries and territories. Lancet 2018, 392, 2052–2090. [Google Scholar] [CrossRef] [Green Version]
- Pugliese, G.; Penno, G.; Natali, A.; Barutta, F.; Di Paolo, S.; Reboldi, G.; Gesualdo, L.; De Nicola, L. Diabetic kidney disease: New clinical and therapeutic issues. Joint position statement of the Italian Diabetes Society and the Italian Society of Nephrology on “The natural history of diabetic kidney disease and treatment of hyperglycemia in patients with type 2 diabetes and impaired renal function”. J. Nephrol. 2020, 33, 9–35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Warren, A.; Knudsen, S.T.; Cooper, M.E. Diabetic nephropathy: An insight into molecular mechanisms and emerging therapies. Expert Opin. Ther. Targets 2019, 23, 579–591. [Google Scholar] [CrossRef] [PubMed]
- Furuichi, K.; Shimizu, M.; Hara, A.; Toyama, T.; Wada, T. Diabetic Nephropathy: A Comparison of the Clinical and Pathological Features between the CKD Risk Classification and the Classification of Diabetic Nephropathy 2014 in Japan. Intern. Med. 2018, 57, 3345–3350. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, J. Management of diabetic nephropathy: Recent progress and future perspective. Diabetes Metab. Syndr. Clin. Res. Rev. 2015, 9, 343–358. [Google Scholar] [CrossRef]
- Zoccali, C.; Mallamaci, F. Nonproteinuric progressive diabetic kidney disease. Curr. Opin. Nephrol. Hypertens. 2019, 28, 227–232. [Google Scholar] [CrossRef]
- Yamanouchi, M.; Furuichi, K.; Hoshino, J.; Toyama, T.; Hara, A.; Shimizu, M.; Kinowaki, K.; Fujii, T.; Ohashi, K.; Yuzawa, Y.; et al. Nonproteinuric Versus Proteinuric Phenotypes in Diabetic Kidney Disease: A Propensity Score–Matched Analysis of a Nationwide, Biopsy-Based Cohort Study. Diabetes Care 2019, 42, 891–902. [Google Scholar] [CrossRef] [Green Version]
- Currie, G.; McKay, G.; Delles, C. Biomarkers in diabetic nephropathy: Present and future. World J. Diabetes 2014, 5, 763–776. [Google Scholar] [CrossRef]
- Robles, N.R.; Villa, J.; Gallego, R.H. Non-Proteinuric Diabetic Nephropathy. J. Clin. Med. 2015, 4, 1761–1773. [Google Scholar] [CrossRef]
- Eid, A.A.; Gorin, Y.; Fagg, B.M.; Maalouf, R.; Barnes, J.L.; Block, K.; Abboud, H.E. Mechanisms of Podocyte Injury in Diabetes: Role of Cytochrome P450 and NADPH Oxidases. Diabetes 2009, 58, 1201–1211. [Google Scholar] [CrossRef] [Green Version]
- Eid, S.; Abou-Kheir, W.; Sabra, R.; Daoud, G.; Jaffa, A.; Ziyadeh, F.N.; Roman, L.; A Eid, A. Involvement of renal cytochromes P450 and arachidonic acid metabolites in diabetic nephropathy. J. Biol. Regul. Homeost. Agents 2013, 27, 693–703. [Google Scholar]
- Eid, S.; Maalouf, R.; Jaffa, A.A.; Nassif, J.; Hamdy, A.; Rashid, A.; Ziyadeh, F.N.; Eid, A.A. 20-HETE and EETs in Diabetic Nephropathy: A Novel Mechanistic Pathway. PLoS ONE 2013, 8, e70029. [Google Scholar] [CrossRef] [Green Version]
- Mota-Zamorano, S.; Robles, N.R.; López-Gómez, J.; Cancho, B.; González, L.M.; García-Pino, G.; Navarro-Pérez, M.L.; Gervasini, G. Plasma and urinary concentrations of arachidonic acid-derived eicosanoids are associated with diabetic kidney disease. Excli. J. 2021, 20, 698. [Google Scholar]
- Lazaro-Guevara, J.; Fierro-Morales, J.; Wright, A.H.; Gunville, R.; Simeone, C.; Frodsham, S.G.; Pezzolesi, M.H.; Zaffino, C.A.; Al-Rabadi, L.; Ramkumar, N.; et al. Targeted Next-Generation Sequencing Identifies Pathogenic Variants in Diabetic Kidney Disease. Am. J. Nephrol. 2021, 52, 239–249. [Google Scholar] [CrossRef]
- Gervasini, G.; Luna, E.; García-Cerrada, M.; García-Pino, G.; Cubero, J.J. Risk factors for post-transplant diabetes mellitus in renal transplant: Role of genetic variability in the CYP450-mediated arachidonic acid metabolism. Mol. Cell. Endocrinol. 2016, 419, 158–164. [Google Scholar] [CrossRef]
- Deng, R.; Liao, Y.; Li, Y.; Tang, J. Association of CYP3A5, CYP2C8, and ABCB1 Polymorphisms with Early Renal Injury in Chinese Liver Transplant Recipients Receiving Tacrolimus. Transplant. Proc. 2018, 50, 3258–3265. [Google Scholar] [CrossRef]
- Shuey, M.M.; Billings, F.T.T.; Wei, S.; Milne, G.L.; Nian, H.; Yu, C.; Brown, N.J. Association of gain-of-function EPHX2 poly-morphism Lys55Arg with acute kidney injury following cardiac surgery. PLoS ONE 2017, 12, e0175292. [Google Scholar] [CrossRef]
- Gervasini, G.; Luna, E.; Garcia-Pino, G.; Azevedo, L.; Mota-Zamorano, S.; Jose Cubero, J. Polymorphisms in genes in-volved in vasoactive eicosanoid synthesis affect cardiovascular risk in renal transplant recipients. Curr. Med. Res. Opin. 2018, 34, 247–253. [Google Scholar] [CrossRef]
- Arroyo, D.; Betriu, A.; Martinez-Alonso, M.; Vidal, T.; Valdivielso, J.M.; Fernández, E. Observational multicenter study to evaluate the prevalence and prognosis of subclinical atheromatosis in a Spanish chronic kidney disease cohort: Baseline data from the NEFRONA study. BMC Nephrol. 2014, 15, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Rostoker, G.; Andrivet, P.; Pham, I.; Griuncelli, M.; Adnot, S. Accuracy and limitations of equations for predicting the glomerular filtration rate during follow-up of patients with non-diabetic nephropathies. BMC Nephrol. 2009, 10, 16. [Google Scholar] [CrossRef] [Green Version]
- Calleros-Basilio, L.; Cortés, M.A.; García-Jerez, A.; Luengo-Rodríguez, A.; Orozco-Agudo, A.; Valdivielso, J.M.; Rodríguez-Puyol, D.; Rodríguez-Puyol, M. Quality Assurance of Samples and Processes in the Spanish Renal Research Network (REDinREN) Biobank. Biopreserv. Biobanking 2016, 14, 499–510. [Google Scholar] [CrossRef] [PubMed]
- Fava, C.; Ricci, M.; Melander, O.; Minuz, P. Hypertension, cardiovascular risk and polymorphisms in genes controlling the cytochrome P450 pathway of arachidonic acid: A sex-specific relation? Prostaglandins Other Lipid Mediat. 2012, 98, 75–85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fu, Z.; Ma, Y.; Xie, X.; Huang, D.; Yang, H.; Nakayama, T.; Sato, N. A novel polymorphism of the CYP4A11 gene is associa-ted with coronary artery disease. Clin. Appl. Thromb. Hemost. 2013, 19, 60–65. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.-Y.; Li, Y.-H.; Chao, T.-H.; Wu, H.-L.; Lin, L.-J.; Tsai, L.-M.; Chen, J.-H. Synergistic effect of cytochrome P450 epoxygenase CYP2J2*7 polymorphism with smoking on the onset of premature myocardial infarction. Atherosclerosis 2007, 195, 199–206. [Google Scholar] [CrossRef]
- Spiecker, M.; Darius, H.; Hankeln, T.; Soufi, M.; Sattler, A.M.; Schaefer, J.R.; Node, K.; Börgel, J.; Mügge, A.; Lindpaintner, K.; et al. Risk of coronary artery disease associated with polymorphism of the cytochrome P450 epoxygenase CYP2J2. Circulation 2004, 110, 2132–2136. [Google Scholar] [CrossRef] [Green Version]
- Gervasini, G.; Garcia-Cerrada, M.; Vergara, E.; Garcia-Pino, G.; Alvarado, R.; Fernandez-Cavada, M.J.; Barroso, S.; Doblaré, E.; Cubero, J.J. Polymorp-hisms in CYP-mediated arachidonic acid routes affect the outcome of renal transplantation. Eur. J. Clin. Investig. 2015, 45, 1060–1068. [Google Scholar] [CrossRef]
- Minuz, P.; Jiang, H.; Fava, C.; Turolo, L.; Tacconelli, S.; Ricci, M.; Patrignani, P.; Morganti, A.; Lechi, A.; McGiff, J.C. Altered Release of Cytochrome P450 Metabolites of Arachidonic Acid in Renovascular Disease. Hypertension 2008, 51, 1379–1385. [Google Scholar] [CrossRef] [Green Version]
- Nithipatikom, K.; Isbell, M.A.; See, W.A.; Campbell, W.B. Elevated 12- and 20-hydroxyeicosatetraenoic acid in urine of patients with prostatic diseases. Cancer Lett. 2006, 233, 219–225. [Google Scholar] [CrossRef]
- Yang, T.; Peng, R.; Guo, Y.; Shen, L.; Zhao, S.; Xu, D. The role of 14,15-dihydroxyeicosatrienoic acid levels in inflammation and its relationship to lipoproteins. Lipids Health Dis. 2013, 12, 151. [Google Scholar] [CrossRef] [Green Version]
- Orozco, L.D.; Liu, H.; Perkins, E.; Johnson, D.A.; Chen, B.B.; Fan, F.; Baker, R.C.; Roman, R.J. 20-Hydroxyeicosatetraenoic acid inhibition at-tenuates balloon injury-induced neointima formation and vascular remodeling in rat carotid arteries. J. Pharmacol. Exp. Ther. 2013, 346, 67–74. [Google Scholar] [CrossRef] [Green Version]
- Gervasini, G.; García-Cerrada, M.; Coto, E.; Vergara, E.; García-Pino, G.; Alvarado, R.; Fernández-Cavada, M.J.; Suárez-Álvarez, B.; Barroso, S.; Doblaré, E.; et al. A 3′-UTR Polymorphism in Soluble Epoxide Hydrolase Gene Is Associated with Acute Rejection in Renal Transplant Recipients. PLoS ONE 2015, 10, e0133563. [Google Scholar] [CrossRef] [Green Version]
- Mota-Zamorano, S.; González, L.M.; Luna, E.; Fernández, J.J.; Gómez, Á.; Nieto-Fernández, A.; Robles, N.R.; Gervasini, G. Polymorphisms in vasoactive eicosanoid genes of kidney donors affect biopsy scores and clinical outcomes in renal transplantation. PLoS ONE 2019, 14, e0224129. [Google Scholar] [CrossRef] [Green Version]
- Imig, J.D. Epoxide hydrolase and epoxygenase metabolites as therapeutic targets for renal diseases. Am. J. Physiol. Physiol. 2005, 289, F496–F503. [Google Scholar] [CrossRef] [Green Version]
- Fang, Q.; Chen, G.Z.; Wang, Y.; Wang, D.W. Role of cytochrome P450 epoxygenase-dependent arachidonic acid metabo-lites in kidney physiology and diseases. Sheng Li Xue Bao 2018, 70, 591–599. [Google Scholar]
- Luo, P.; Zhou, Y.; Chang, H.H.; Zhang, J.; Seki, T.; Wang, C.Y.; Inscho, E.W.; Wang, M.H. Glomerular 20-HETE, EETs, and TGF-beta1 in dia-betic nephropathy. Am. J. Physiol. Renal. Physiol. 2009, 296, F556–F563. [Google Scholar] [CrossRef] [Green Version]
- Certikova Chabova, V.; Kujal, P.; Skaroupkova, P.; Varnourkova, Z.; Vackova, S.; Huskova, Z.; Kikerlová, S.; Sadowski, J.; Kompanowska-Jezierska, E.; Baranowska, I.; et al. Combined Inhibi-tion of Soluble Epoxide Hydrolase and Renin-Angiotensin System Exhibits Superior Renoprotection to Renin-Angiotensin System Blockade in 5/6 Nephrectomized Ren-2 Transgenic Hypertensive Rats with Established Chronic Kidney Disease. Kidney Blood Press Res. 2018, 43, 329–349. [Google Scholar] [CrossRef]
- Lasker, J.M.; Chen, W.B.; Wolf, I.; Bloswick, B.P.; Wilson, P.D.; Powell, P.K. Formation of 20-hydroxyeicosatetraenoic ac-id, a vasoactive and natriuretic eicosanoid, in human kidney. Role of Cyp4F2 and Cyp4A11. J. Biol. Chem. 2000, 275, 4118–4126. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Zhao, G.; Ma, B.; Li, R.; Hong, J.; Liu, S.; Wang, D.W. 20-Hydroxyeicosatetraenoic acid impairs endothelial insulin signal-ing by inducing phosphorylation of the insulin receptor substrate-1 at Ser616. PLoS ONE 2014, 9, e95841. [Google Scholar]
- Gilani, A.; Agostinucci, K.; Hossain, S.; Pascale, J.V.; Garcia, V.; Adebesin, A.M.; Falck, J.R.; Schwartzman, M.L. 20-HETE interferes with insulin signaling and contributes to obesity-driven insulin resistance. Prostaglandins Other Lipid Mediat. 2021, 152, 106485. [Google Scholar] [CrossRef]
- Gangadhariah, M.H.; Luther, J.M.; Garcia, V.; Paueksakon, P.; Zhang, M.Z.; Hayward, S.W.; Love, H.D.; Falck, J.R.; Manthati, V.L.; Imig, J.D.; et al. Hypertension is a ma-jor contributor to 20-hydroxyeicosatetraenoic acid-mediated kidney injury in diabetic nephropathy. J. Am. Soc. Nephrol. 2015, 26, 597–610. [Google Scholar] [CrossRef] [Green Version]
- Kim, W.Y.; Lee, S.J.; Min, J.; Oh, K.S.; Kim, D.H.; Kim, H.S.; Shin, J.G. Identification of novel CYP4F2 genetic variants exhibi-ting decreased catalytic activity in the conversion of arachidonic acid to 20-hydroxyeicosatetraenoic acid (20-HETE). Prostaglandins Leukot. Essent. Fatty Acids 2018, 131, 6–13. [Google Scholar] [CrossRef] [PubMed]
- Stec, D.E.; Roman, R.J.; Flasch, A.; Rieder, M.J. Functional polymorphism in human CYP4F2 decreases 20-HETE produc-tion. Physiol. Genom. 2007, 30, 74–81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoopes, S.L.; Garcia, V.; Edin, M.L.; Schwartzman, M.L.; Zeldin, D.C. Vascular actions of 20-HETE. Prostaglandins Other Lipid Mediat. 2015, 120, 9–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anderson, S.; Rennke, H.G.; Brenner, B.M. Therapeutic advantage of converting enzyme inhibitors in arresting progres-sive renal disease associated with systemic hypertension in the rat. J. Clin. Invest 1986, 77, 1993–2000. [Google Scholar] [CrossRef] [Green Version]
- Ferrannini, E.; Baldi, S.; Frascerra, S.; Astiarraga, B.; Heise, T.; Bizzotto, R.; Mari, A.; Pieber, T.R.; Muscelli, E. Shift to Fatty Substrate Utilization in Response to Sodium–Glucose Cotransporter 2 Inhibition in Subjects without Diabetes and Patients with Type 2 Diabetes. Diabetes 2016, 65, 1190–1195. [Google Scholar] [CrossRef] [Green Version]
- Satirapoj, B.; Korkiatpitak, P.; Supasyndh, O. Effect of sodium-glucose cotransporter 2 inhibitor on proximal tubular function and injury in patients with type 2 diabetes: A randomized controlled trial. Clin. Kidney J. 2019, 12, 326–332. [Google Scholar] [CrossRef]
- Dai, D.; Zeldin, D.; Blaisdell, J.A.; Chanas, B.; Coulter, S.; Ghanayem, B.I.; Goldstein, J.A. Polymorphisms in human CYP2C8 decrease metabolism of the anticancer drug paclitaxel and arachidonic acid. Pharmacogenetics 2001, 11, 597–607. [Google Scholar] [CrossRef]
- Duflot, T.; Laurent, C.; Soudey, A.; Fonrose, X.; Hamzaoui, M.; Iacob, M.; Bertrand, D.; Favre, J.; Etienne, I.; Roche, C.; et al. Preservation of epoxyeicosatrienoic acid bioavailability prevents renal allograft dysfunction and cardiovascular alterations in kidney transplant recipients. Sci. Rep. 2021, 11, 1–13. [Google Scholar] [CrossRef]
- Lee, C.R.; Imig, J.D.; Edin, M.L.; Foley, J.; DeGraff, L.M.; Bradbury, J.A.; Graves, J.P.; Lih, F.B.; Clark, J.; Myers, P.; et al. Endothelial expression of human cytoch-rome P450 epoxygenases lowers blood pressure and attenuates hypertension-induced renal injury in mice. FASEB J. 2010, 24, 3770–3781. [Google Scholar] [CrossRef] [Green Version]
- Sharma, M.; McCarthy, E.T.; Reddy, D.S.; Patel, P.K.; Savin, V.J.; Medhora, M.; Falck, J.R. 8,9-Epoxyeicosatrienoic acid pro-tects the glomerular filtration barrier. Prostaglandins Other Lipid Mediat 2009, 89, 43–51. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Maki-Petaja, K.; Cheriyan, J.; McEniery, C.; Wilkinson, I.B. The role of epoxyeicosatrienoic acids in the cardio-vascular system. Br. J. Clin. Pharmacol. 2015, 80, 28–44. [Google Scholar] [CrossRef] [Green Version]
- Przybyla-Zawislak, B.D.; Srivastava, P.K.; Vázquez-Matías, J.; Mohrenweiser, H.W.; Maxwell, J.E.; Hammock, B.D.; Bradbury, J.A.; EnayetAllah, A.E.; Zeldin, D.C.; Grant, D.F. Polymorphisms in Human Soluble Epoxide Hydrolase. Mol. Pharmacol. 2003, 64, 482–490. [Google Scholar] [CrossRef] [Green Version]
- Morisseau, C.; Wecksler, A.T.; Deng, C.; Dong, H.; Yang, J.; Lee, K.S.; Kodani, S.D.; Hammock, B.D. Effect of soluble epoxide hydrolase polymorp-hism on substrate and inhibitor selectivity and dimer formation. J. Lipid. Res. 2014, 55, 1131–1138. [Google Scholar] [CrossRef] [Green Version]
- Fava, C.; Bonafini, S. Eicosanoids via CYP450 and cardiovascular disease: Hints from genetic and nutrition studies. Prostaglandins Other Lipid Mediat. 2018, 139, 41–47. [Google Scholar] [CrossRef]
- Fava, C.; Montagnana, M.; Melander, O. Overexpression of cytochrome P450 4F2 in mice increases 20-hydroxyeicosatetraenoic acid production and arterial blood pressure. Kidney Int. 2009, 76, 913–914. [Google Scholar] [CrossRef] [Green Version]
Control | CKD 3 | CKD 4–5 | CKD 5D | Total | p-Value Control vs. CKD | p-Value between CKD Groups | |
---|---|---|---|---|---|---|---|
N | 658 | 161 | 140 | 129 | 1088 | ||
Age (yrs) | 57 (17) | 65 (13) | 63.5 (17) | 65 (19) | 59 (18) | 4.51 × 10−21 | 0.123 |
Males (%) | 359 (54.6) | 112 (69.6) | 91 (65.0) | 88 (68.2) | 650 (59.7) | 1.0 × 10−5 | 0.691 |
Weight (kg) | 76.8 (21) | 80 (22.6) | 79 (18.1) | 72.5 (21.5) | 77 (20.40) | 0.060 | 0.001 |
Hypertension | 297 (45.1) | 154 (95.7) | 136 (97.1) | 123 (95.3) | 710 (65.3) | 5.50 × 10−79 | 0.714 |
Hyperlipidemia | 199 (30.2) | 121 (75.2) | 109 (77.9) | 83 (64.3) | 512 (47.1) | 4.08 × 10−44 | 0.031 |
Creatinine (mg/dL) | 0.7 (0.5) | 0.6 (0.4) | 0.5 (0.1) | - | 0.7 (0.4) | 0.017 | 0.030 |
Albumin/Creatinine (mg/g) | 7.2 (27.8) | 152.4 (583.3) | 283.6 (1052.1) | - | 24.3 (173.5) | 7.24 × 10−31 | 0.046 |
Cardiovascular events | 9 (1.8) | 28 (17.4) | 25 (17.9) | 39 (30.2) | 101 (10.8) | 5.05 × 10−24 | 0.014 |
eGFR (mL/min/1.73 m²) | 5.91 × 10−253 | 0.285 | |||||
<60 | - | 159 (98.8) | 140 (100.0) | - | 299 (31.2) | ||
>60 | 658 (100.0) | 2 (1.2) | - | - | 658 (68.8) |
Polymorphism | rs Number | Alleles | Missing (%) | HWE | MAF (%) | MAF IBS (%) | ap-Value |
---|---|---|---|---|---|---|---|
CYP2C8 *1/*3 | rs10509681 | A/G | 1.3 | 1.0 | 14.8 | 15.0 | 0.965 |
CYP2J2 *1/*7 | rs890293 | G/T | 1.0 | 0.387 | 5.7 | 6.1 | 0.729 |
CYP4F2 V433M | rs2108622 | C/T | 1.7 | 0.057 | 36.9 | 35.5 | 0.475 |
CYP4A11 F433S | rs1126742 | A/G | 2.1 | 0.400 | 14.9 | 13.6 | 0.806 |
EPHX2 R287Q | rs751141 | G/A | 1.0 | 0.424 | 6.1 | 7.5 | 0.806 |
EPHX2 3′UTR | rs1042032 | A/G | 1.6 | 0.358 | 24.0 | 18.7 | 0.548 |
EPHX2 K55R | rs41507953 | A/G | 1.0 | 0.730 | 9.7 | 7.0 | 0.420 |
Dominant Model | Recessive Model | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Polymorphism | Genotype | Controls | % | DKD | % | OR | CI | p | OR | CI | p |
CYP2C8 *1/*3 | *1/*1 | 457 | 70.3 | 323 | 76.2 | 0.81 | (0.57–1.14) | 0.225 | 3.21 | (1.05–9.87) | 0.036 |
*1/*3 | 182 | 28 | 89 | 21 | |||||||
*3/*3 | 11 | 1.7 | 12 | 2.8 | |||||||
CYP2J2*7 *1/*7 | *1/*1 | 579 | 89.1 | 380 | 89 | 1.01 | (0.60–1.68) | 0.975 | - | - | - |
*1/*7 | 66 | 10.2 | 47 | 11 | |||||||
*7/*7 | 5 | 0.8 | 0 | 0 | |||||||
CYP4F2 V433M | V/V | 249 | 38.6 | 192 | 45.2 | 0.65 | (0.48–0.91) | 0.008 | 0.7 | (0.46–1.07) | 0.097 |
V/M | 299 | 46.4 | 170 | 40 | |||||||
M/M | 97 | 15 | 63 | 14.8 | |||||||
CYP4A11 F434S | F/F | 463 | 71.9 | 311 | 73.9 | 0.8 | (0.57–1.13) | 0.198 | 1.54 | (0.61–3.88) | 0.354 |
F/S | 167 | 25.9 | 97 | 23 | |||||||
S/S | 14 | 2.2 | 13 | 3.1 | |||||||
EPHX2 R287Q | R/R | 570 | 87.7 | 377 | 88.3 | 0.75 | (0.47–1.18) | 0.216 | 0.79 | (0.04–1.19) | 0.22 |
R/Q | 79 | 12.2 | 49 | 11.5 | |||||||
Q/Q | 1 | 0.2 | 1 | 0.2 | |||||||
EPHX2 3′UTR A>G | A/A | 382 | 59 | 242 | 57.1 | 0.97 | (0.71–1.33) | 0.845 | 1.05 | (0.57–1.95) | 0.87 |
A/G | 226 | 34.9 | 154 | 36.3 | |||||||
G/G | 39 | 6 | 28 | 6.6 | |||||||
EPHX2 K55R | K/K | 532 | 81.7 | 346 | 81.2 | 0.82 | (0.56–1.21) | 0.319 | 1.32 | (0.31–5.69) | 0.709 |
K/R | 113 | 17.4 | 75 | 17.6 | |||||||
R/R | 6 | 0.9 | 5 | 1.2 |
Polymorphism | Genotype | Diabetics without DKD (n = 65) | % | DKD (n = 430) | % | OR | CI | p-Value |
---|---|---|---|---|---|---|---|---|
CYP2C8 *1/*3 | *1/*1 | 47 | 72.3 | 323 | 76.2 | Ref. | ||
*1/*3-*3/*3 | 18 | 27.7 | 101 | 23.8 | 0.95 | (0.49–1.85) | 0.883 | |
CYP2J2 *1/*7 | *1/*1 | 59 | 90.8 | 380 | 89 | Ref. | ||
*1/*7-*7/*7 | 6 | 9.2 | 47 | 11 | 1.19 | (0.45–3.15) | 0.724 | |
CYP4F2 V433M | VV | 18 | 27.7 | 192 | 45.2 | Ref. | ||
VM-MM | 47 | 72.3 | 233 | 54.8 | 0.42 | (0.22–0.80) | 0.005 | |
CYP4A11 F433S | FF | 44 | 67.7 | 311 | 73.9 | Ref. | ||
FS-SS | 21 | 32.3 | 110 | 26.1 | 0.39 | (0.39–1.37) | 0.330 | |
EPHX2 R287Q | RR | 56 | 86.2 | 377 | 88.3 | Ref. | ||
RQ-QQ | 9 | 13.8 | 50 | 11.7 | 0.77 | (0.33–1.81) | 0.561 | |
EPHX2 3′UTR (A/G) | AA | 37 | 56.9 | 242 | 57.1 | Ref. | ||
AG-GG | 28 | 43.1 | 182 | 42.9 | 0.92 | (0.51–1.65) | 0.773 | |
EPHX2 K55R | KK | 44 | 67.7 | 346 | 81.2 | Ref. | ||
KR-RR | 21 | 32.3 | 80 | 18.8 | 0.39 | (0.21–0.76) | 0.006 |
eGFR (mL/min/1.73 m2) | ACR (mg/g) | ||||||
---|---|---|---|---|---|---|---|
Polymorphism | Genotype | Median | IQR | p-Value | Median | IQR | p-Value |
CYP2C8 *1/*3 | *1/*1 | 32.14 | 22 | 0.208 | 195.12 | 853.21 | 0.787 |
*1/*3-*3/*3 | 30.61 | 22 | 199.05 | 425.67 | |||
CYP2J2 *1/*7 | *1/*1 | 31.31 | 22 | 0.247 | 199.56 | 646.66 | 0.231 |
*1/*7-*7/*7 | 34.43 | 23 | 131.0 | 1261.20 | |||
CYP4F2 V433M | VV | 33.0 | 23 | 0.037 | 165.28 | 911.65 | 0.982 |
VM-MM | 30.80 | 20 | 231.95 | 679.33 | |||
CYP4A11 F433S | FF | 31.24 | 22 | 0.823 | 186.94 | 659.79 | 0.387 |
FS-SS | 33.0 | 22 | 228.60 | 855.30 | |||
EPHX2 R287Q | RR | 32.47 | 22 | 0.286 | 199.56 | 828.48 | 0.861 |
RQ-QQ | 27.90 | 23 | 131.0 | 489.27 | |||
EPHX2 3′UTR (A/G) | AA | 30.41 | 24 | 0.284 | 152.43 | 597.33 | 0.435 |
AG-GG | 33.0 | 21 | 299.12 | 835.90 | |||
EPHX2 K55R | KK | 30.90 | 22 | 0.051 | 167.74 | 653.37 | 0.136 |
KR-RR | 35.85 | 23 | 386.0 | 846.14 |
14,15-DHET (ng/L) | 11,12-DHET (ng/L) | 20-HETE (ng/L) | 20-HETE ng/mg Cr | ||||||
---|---|---|---|---|---|---|---|---|---|
Polymorphism | Genotype | Mean | SE | Mean | SE | Mean | SE | Mean | SE |
CYP2C8 *1/*3 | *1/*1 | 397.35 | 26.68 | 237.65 | 18.79 | 306.96 | 19.89 | 6.09 | 2.41 |
*1/*3-3*/*3 | 409.80 | 54.44 | 238.86 | 42.53 | 322.93 | 57.51 | 4.76 | 1.74 | |
CYP2J2 *1/*7 | *1/*1 | 409.40 | 25.91 | 239.56 | 19.04 | 315.41 | 22.4 | 5.85 | 2.03 |
*1/*7-*7/*7 | 288.78 | 34.69 | 206.75 | 35.48 | 268.22 | 57.32 | 4.92 | 1.55 | |
CYP4F2 V433M | VV | 393.73 | 36.59 | 226.16 | 26.39 | 309.75 | 35.58 | 8.45 | 3.69 |
VM-MM | 401.42 | 31.91 | 246.15 | 23.67 | 310.68 | 24.43 | *3.14 | 0.86 | |
CYP4A11 F433S | FF | 409.32 | 26.88 | 246.43 | 18.88 | 306.21 | 19.85 | 6.0 | 2.53 |
FS-SS | 370.85 | 50.07 | 212.58 | 39.33 | 319.82 | 53.04 | 5.19 | 1.63 | |
EPHX2 R287Q | RR | 396.03 | 23.93 | 233.66 | 17.15 | 312.08 | 22.32 | 5.8 | 2.10 |
RQ-QQ | 421.75 | 133.57 | 275.29 | 117.82 | 286.75 | 42.62 | 5.76 | 3.48 | |
EPHX2 3′UTR (A/G) | A/A | 373.74 | 18.8 | 219.20 | 13.14 | 308.3 | 21.07 | 6.74 | 2.77 |
A/G-G/G | 446.16 | 61.15 | 269.47 | 44.72 | 314.16 | 47.0 | 3.78 | 0.95 | |
EPHX2 K55R | KK | 392.65 | 24.35 | 231.07 | 18.47 | 322.41 | 23.58 | 6.02 | 2.21 |
KR-RR | 439.07 | 93.22 | 272.93 | 59.05 | 222.64 | 28.36 | 4.41 | 1.73 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mota-Zamorano, S.; Robles, N.R.; González, L.M.; Valdivielso, J.M.; Lopez-Gomez, J.; Cancho, B.; García-Pino, G.; Gervasini, G. Genetics Variants in the Epoxygenase Pathway of Arachidonic Metabolism Are Associated with Eicosanoids Levels and the Risk of Diabetic Nephropathy. J. Clin. Med. 2021, 10, 3980. https://doi.org/10.3390/jcm10173980
Mota-Zamorano S, Robles NR, González LM, Valdivielso JM, Lopez-Gomez J, Cancho B, García-Pino G, Gervasini G. Genetics Variants in the Epoxygenase Pathway of Arachidonic Metabolism Are Associated with Eicosanoids Levels and the Risk of Diabetic Nephropathy. Journal of Clinical Medicine. 2021; 10(17):3980. https://doi.org/10.3390/jcm10173980
Chicago/Turabian StyleMota-Zamorano, Sonia, Nicolás R. Robles, Luz M. González, José M. Valdivielso, Juan Lopez-Gomez, Bárbara Cancho, Guadalupe García-Pino, and Guillermo Gervasini. 2021. "Genetics Variants in the Epoxygenase Pathway of Arachidonic Metabolism Are Associated with Eicosanoids Levels and the Risk of Diabetic Nephropathy" Journal of Clinical Medicine 10, no. 17: 3980. https://doi.org/10.3390/jcm10173980
APA StyleMota-Zamorano, S., Robles, N. R., González, L. M., Valdivielso, J. M., Lopez-Gomez, J., Cancho, B., García-Pino, G., & Gervasini, G. (2021). Genetics Variants in the Epoxygenase Pathway of Arachidonic Metabolism Are Associated with Eicosanoids Levels and the Risk of Diabetic Nephropathy. Journal of Clinical Medicine, 10(17), 3980. https://doi.org/10.3390/jcm10173980