Impact of Cluster B Personality Disorders in Drugs Therapeutic Community Treatment Outcomes: A Study Based on Real World Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design
2.2. Participants
2.3. Instruments
2.4. Procedure
2.5. Analysis
3. Results
3.1. Sociodemographic Characteristics and Consumption Profile According to Comorbid Mental Disorders
3.2. Association between Patient Characteristics and Type of Discharge
3.3. Survival Analysis
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Torrens, M.; Mestre-Pintó, J.I.; Domingo-Salvany, A. Comorbidity of Susbtance Use and Mental Disorders in Europe: A Review of the Data; EMCDDA Papers; Publication Office of the European Union: Luxembourg, 2015. [Google Scholar]
- Deady, M.; Teeson, M.; Brady, K.T. Impact of substance use on the course of serious mental disorders. In Principles of Addiction: Comprehensive Addictive Behaviours and Disorders; Academic Press: San Diego, CA, USA, 2013; pp. 525–532. [Google Scholar] [CrossRef]
- Daigre, C.; Grau-López, L.; Rodríguez-Cintas, L.; Ros-Cucurull, E.; Sorribes-Puertas, M.; Esculies, O.; Bones-Rocha, K.; Roncero, C. The role of dual diagnosis in health-related quality of life among treatment-seeking patients in Spain. Qual. Life Res. 2017, 26, 3201–3209. [Google Scholar] [CrossRef]
- Lozano, O.M.; Rojas, A.J.; Fernández-Calderón, F. Psychiatric comorbidity and severity of dependence on substance users: How it impacts on their health-related quality of life? J. Ment. Health 2017, 26, 119–126. [Google Scholar] [CrossRef]
- Morisano, D.; Babor, T.; Robaina, K. Co-ocurrence of substance use disorders with other psychiatric disorders: Implications for treatment services. Nord. Stud. Alcohol Drugs 2014, 31, 5–25. [Google Scholar] [CrossRef]
- Malivert, M.; Fatséas, M.; Denis, C.; Langlois, E.; Auriacombe, M. Effectiveness of therapeutic communities: A systematic review. Eur. Addict. Res. 2012, 18, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Vergara-Moragues, E.; González-Saiz, F.; Lozano, O.M.; García, A.V. Psychiatric profile of three-month retention in cocaine-dependent patients treated in a therapeutic community. J. Stud. Alcohol Drugs 2013, 74, 452–459. [Google Scholar] [CrossRef] [PubMed]
- Samuel, D.B.; LaPaglia, D.M.; Maccarelli, L.M.; Moore, B.A.; Ball, S.A. Personality disorders and retention in a therapeutic community for substance dependence. Am. J. Addict. 2011, 20, 555–562. [Google Scholar] [CrossRef] [Green Version]
- Tull, M.T.; Gratz, K.L. The impact of borderline personality disorder on residential substance abuse treatment dropout among men. Drug Alcohol Depend. 2012, 121, 97–102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daigre, C.; Perea-Ortueta, M.; Berenguer, M.; Esculies, O.; Sorribes-Puertas, M.; Palma-Alvarez, R.; Martínez-Luna, N.; Ramos-Quiroga, J.A.; Grau-López, L. Psychiatric factors affecting recovery after a long term treatment program for substance use disorder. Psychiatry Res. 2019, 276, 283–289. [Google Scholar] [CrossRef]
- Broome, K.M.; Flynn, P.M.; Simpson, D.D. Psychiatric comorbidity measures as predictors of retention in drug abuse treatment programs. Health Serv. Res. 1999, 34, 791–806. [Google Scholar]
- Vergara-Moragues, E.; González-Saiz, F. Predictive Outcome Validity of General Health Questionnaire (GHQ-28) in Substance Abuse Patients Treated in Therapeutic Communities. J. Dual Diagn. 2020, 16, 218–227. [Google Scholar] [CrossRef] [PubMed]
- Darke, S.; Campbell, G.; Popple, G. Retention, early dropout and treatment completion among therapeutic community admissions. Drug Alcohol Rev. 2012, 31, 64–71. [Google Scholar] [CrossRef]
- Maremmani, A.G.I.; Pani, P.P.; Trogu, E.; Vigna-Taglianti, F.; Mathis, F.; Diecidue, R.; Kirchmayer, U.; Amato, L.; Ghibaudi, J.; Camposeragna, A.; et al. The impact of psychopathological subtypes on retention rate of patients with substance use disorder entering residential therapeutic community treatment. Ann. Gen. Psychiatry 2016, 15, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andersson, H.W.; Steinsbekk, A.; Walderhaug, E.; Otterholt, E.; Nordfjærn, T. Predictors of dropout from inpatient substance use treatment: A prospective cohort study. Subst. Abus. Res. Treat. 2018, 12, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Syan, S.K.; Minhas, M.; Oshri, A.; Costello, J.; Sousa, S.; Samokhvalov, A.V.; Rush, B.; MacKillop, J. Predictors of premature treatment termination in a large residential addiction medicine program. J. Subst. Abus. Treat. 2020, 117, 108077. [Google Scholar] [CrossRef]
- Reske, M.; Paulus, M.P. Predicting treatment outcome in stimulant dependence. Ann. N. Y. Acad. Sci. 2008, 1141, 270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greenland, S. Invited commentary: Variable selection versus shrinkage in the control of multiple confounders. Am. J. Epidemiol. 2008, 167, 523–529. [Google Scholar] [CrossRef] [Green Version]
- Kahlert, J.; Gribsholt, S.B.; Gammelager, H.; Dekkers, O.M.; Luta, G. Control of confounding in the analysis phase—An overview for clinicians. Clin. Epidemiol. 2017, 9, 195. [Google Scholar] [CrossRef] [Green Version]
- US Food and Drug Administration. Framework for FDA’s Real World Evidence Program. Updated December 2018. Available online: https://www.fda.gov/media/120060/download (accessed on 23 April 2021).
- Sherman, R.E.; Anderson, S.A.; Dal Pan, G.J.; Gray, G.W.; Gross, T.; Hunter, N.L.; LaVange, L.; Marinac-Dabic, D.; Marks, P.W.; Robb, M.A.; et al. Real-world evidence—What is it and what can it tell us. N. Engl. J. Med. 2016, 375, 2293–2297. [Google Scholar] [CrossRef] [Green Version]
- Corrigan-Curay, J.; Sacks, L.; Woodcock, J. Real-world evidence and real-world data for evaluating drug safety and effectiveness. JAMA 2018, 320, 867–868. [Google Scholar] [CrossRef]
- Campanella, P.; Lovato, E.; Marone, C.; Fallacara, L.; Mancuso, A.; Ricciardi, W.; Specchia, M.L. The impact of electronic health records on healthcare quality: A systematic review and meta-analysis. Eur. J. Public Health 2016, 26, 60–64. [Google Scholar] [CrossRef] [Green Version]
- Plantier, M.; Havet, N.; Durand, T.; Caquot, N.; Amaz, C.; Biron, P.; Philip, I.; Perrier, L. Does adoption of electronic health records improve the quality of care management in France? Results from the French e-SI (PREPS-SIPS) study. Int. J. Med Inform. 2017, 102, 156–165. [Google Scholar] [CrossRef]
- Spivak, S.; Strain, E.C.; Cullen, B.; Ruble, A.A.E.; Antoine, D.G.; Mojtabai, R. Electronic health record adoption among US substance use disorder and other mental health treatment facilities. Drug Alcohol Depend. 2021, 220, 108515. [Google Scholar] [CrossRef]
- Marsch, L.A.; Campbell, A.; Campbell, C.; Chen, C.-H.; Ertin, E.; Ghitza, U.; Lambert-Harris, C.; Hassanpour, S.; Holtyn, A.F.; Hser, Y.-I.; et al. The application of digital health to the assessment and treatment of substance use disorders: The past, current, and future role of the National Drug Abuse Treatment Clinical Trials Network. J. Subst. Abus. Treat. 2020, 112, 4–11. [Google Scholar] [CrossRef] [PubMed]
- Friesen, E.L.; Kurdyak, P. The impact of psychiatric comorbidity on treatment discontinuation among individuals receiving medications for opioid use disorder. Drug Alcohol Depend. 2020, 216, 108244. [Google Scholar] [CrossRef]
- Krawczyk, N.; Feder, K.A.; Saloner, B.; Crum, R.M.; Kealhofer, M.; Mojtabai, R. The association of psychiatric comorbidity with treatment completion among clients admitted to substance use treatment programs in a US national sample. Drug Alcohol Depend. 2017, 175, 157–163. [Google Scholar] [CrossRef]
- Loree, A.M.; Yeh, H.-H.; Satre, D.D.; Kline-Simon, A.H.; Yarborough, B.J.H.; Haller, I.V.; Campbell, C.I.; Lapham, G.T.; Hechter, R.C.; Binswanger, I.A.; et al. Psychiatric comorbidity and Healthcare Effectiveness Data and Information Set (HEDIS) measures of alcohol and other drug treatment initiation and engagement across 7 health care systems. Subst. Abus. 2019, 40, 311–317. [Google Scholar] [CrossRef] [Green Version]
- Nasir, M.; Summerfield, N.S.; Oztekin, A.; Knight, M.; Ackerson, L.K.; Carreiro, S. Machine learning–based outcome prediction and novel hypotheses generation for substance use disorder treatment. J. Am. Med. Inform. Assoc. 2021, 1–9. [Google Scholar] [CrossRef]
- Baker, D.E.; Edmonds, K.A.; Calvert, M.L.; Sanders, S.M.; Bridges, A.J.; Rhea, M.A.; Kosloff, S. Predicting attrition in long-term residential substance use disorder treatment: A modifiable risk factors perspective. Psychol. Serv. 2020, 17, 472–482. [Google Scholar] [CrossRef] [PubMed]
- European Monitoring Centre for Drugs and Drug Addiction—EMCDDA. Treatment Demand Indicator (TDI) Standard Protocol 3.0: Guidelines for Reporting Data on People Entering Drug Treatment in European Countries; Publications Office of the European Union: Luxembourg, 2012. [Google Scholar]
- Observatorio Español de la Droga y las Toxicomanías—OEDT. Indicador: Admisiones a Tratamiento por Consumo de Sustancais Psicoactivas; Ministerio de Sanidad, Servicios Sociales e Igualdad: Madrid, Spain, 2013.
- World Health Organization. The ICD-10 Classification of Mental and Behavioural Disorders: Clinical Descriptions and Diagnostic Guidelines; WHO: Geneva, Switzerland, 1992. [Google Scholar]
- Arenas, F.; del Valle, M.; López, R.; Martín, J.; Tirado, P. Programa de Intervención en Comunidad Terapéutica en Andalucía; Consejería de Asuntos Sociales; Junta de Andalucía: Sevilla, Spain, 2003. [Google Scholar]
- Brorson, H.H.; Arnevik, E.A.; Rand-Hendriksen, K.; Duckert, F. Drop-out from addiction treatment: A systematic review of risk factors. Clin. Psychol. Rev. 2013, 33, 1010–1024. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Calderón, D.; Fernández, F.; Ruiz-Curado, S.; Verdejo-García, A.; Lozano, Ó.M. Profiles of substance use disorders in patients of therapeutic communities: Link to social, medical and psychiatric characteristics. Drug Alcohol Depend. 2015, 149, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Hagen, E.; Erga, A.H.; Hagen, K.P.; Nesvåg, S.M.; McKay, J.R.; Lundervold, A.J.; Walderhaug, E. One-year sobriety improves satisfaction with life, executive functions and psychological distress among patients with polysubstance use disorder. J. Subst. Abus. Treat. 2017, 76, 81–87. [Google Scholar] [CrossRef] [Green Version]
- Cave, J.; Godfrey, C. Economics of addiction and drugs. In Drugs and the Future; Academic Press: Cambridge, MA, USA, 2007; pp. 389–416. [Google Scholar] [CrossRef]
- Gónzalez-Saiz, F.; Vergara-Moragues, E.; Verdejo-García, A.; Fernández-Calderón, F.; Lozano, O.M. Impact of psychiatric comorbidity on the in-treatment outcomes of cocaine dependent patients in therapeutic communities. Subst. Abus. 2014, 35, 133–140. [Google Scholar] [CrossRef]
- Preti, E.; Rottoli, C.; Dainese, S.; Di Pierro, R.; Rancati, F.; Madeddu, F. Personality structure features associated with early dropout in patients with substance-related disorders and comorbid personality disorders. Int. J. Ment. Health Addict. 2015, 13, 536–547. [Google Scholar] [CrossRef]
- Moraleda-Barreno, E.; Pachón, M.D.P.C.; Lozano, Ó.M.; Moreno, P.J.P.; Marín, J.A.L.; Fernández-Calderón, F.; Batanero, C.D.; Gómez-Bujedo, J. Impairments in Executive Functioning in Patients with Comorbid Substance Use and Personality Disorders: A Systematic Review. J. Dual Diagn. 2021, 17, 64–79. [Google Scholar] [CrossRef]
- Roberts, C.A.; Lorenzetti, V.; Albein-Urios, N.; Kowalczyk, M.A.; Martinez-Gonzalez, J.M.; Verdejo-Garcia, A. Do comorbid personality disorders in cocaine dependence exacerbate neuroanatomical alterations? A structural neuroimaging study. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2021, 110, 110298. [Google Scholar] [CrossRef]
- Domínguez-Salas, S.; Díaz-Batanero, C.; Lozano-Rojas, O.M.; Verdejo-García, A. Impact of general cognition and executive function deficits on addiction treatment outcomes: Systematic review and discussion of neurocognitive pathways. Neurosci. Biobehav. Rev. 2016, 71, 772–801. [Google Scholar] [CrossRef] [PubMed]
- Wilson, S.; Stroud, C.B.; Durbin, C.E. Interpersonal dysfunction in personality disorders: A meta-analytic review. Psychol. Bull. 2017, 143, 677. [Google Scholar] [CrossRef] [PubMed]
- Olesek, K.L.; Outcalt, J.; Dimaggio, G.; Popolo, R.; George, S.; Lysaker, P.H. Cluster B personality disorder traits as a predictor of therapeutic alliance over time in residential treatment for substance use disorders. J. Nerv. Ment. Dis. 2016, 204, 736–740. [Google Scholar] [CrossRef] [PubMed]
- Levy, K.N.; Beeney, J.E.; Wasserman, R.H.; Clarkin, J.F. Conflict begets conflict: Executive control, mental state vacillations, and the therapeutic alliance in treatment of borderline personality disorder. Psychother. Res. 2010, 20, 413–422. [Google Scholar] [CrossRef] [PubMed]
- Tirado-Muñoz, J.; Farré, A.; Mestre-Pinto, J.; Szerman, N.; Torrens, M. Dual diagnosis in depression: Treatment recommendations. Adicciones 2018, 30, 66–76. [Google Scholar] [CrossRef]
- De Ruysscher, C.; Vandevelde, S.; Vanderplasschen, W.; De Maeyer, J.; Vanheule, S. The Concept of Recovery as Experienced by Persons with Dual Diagnosis: A Systematic Review of Qualitative Research From a First-Person Perspective. J. Dual Diagn. 2017, 13, 264–279. [Google Scholar] [CrossRef] [PubMed]
- McGovern, M.P.; Lambert-Harris, C.; Gotham, H.J.; Claus, R.E.; Xie, H. Dual diagnosis capability in mental health and addiction treatment services: An assessment of programs across multiple state systems. Adm. Policy Ment. Health 2014, 41, 205–214. [Google Scholar] [CrossRef]
- Carrà, G.; Crocamo, C.; Borrelli, P.; Popa, I.; Ornaghi, A.; Montomoli, C.; Clerici, M. Correlates of dependence and treatment for substance use among people with comorbid severe mental and substance use disorders: Findings from the “Psychiatric and Addictive Dual Disorder in Italy (PADDI)” study. Compr. Psychiatry 2015, 58, 152–159. [Google Scholar] [CrossRef] [PubMed]
- Schulte, S.J.; Meier, P.; Stirling, J. Dual diagnosis clients’ treatment satisfaction—A systematic review. BMC Psychiatry 2011, 11, 64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
N (%) | Dropout (n = 1419) | Therapeutic Discharge (n = 1018) | Statistic (χ2 or Student t) | Significance | Effect Size (Cramer’s V or Cohen’s d) | |
---|---|---|---|---|---|---|
Male | 2051 (84.2) | 84.5 | 83.8 | 0.214 | 0.644 | 0.009 |
Age [Mean (SD)] | 2436 | 37.88 (10.21) | 40.35 (10.05) | −5.907 | 0.000 | 0.24 |
Education | ||||||
Primary studies | 1591 (65.3) | 981 (69.1) | 610 (59.9) | 22.194 | 0.000 | 0.095 |
Secondary studies | 799 (32.8) | 413 (29.1) | 386 (37.9) | 20.889 | 0.000 | 0.093 |
Employment status | ||||||
Employed | 487 (20.0) | 259 (18.3) | 228 (22.4) | 6.368 | 0.012 | 0.051 |
Unemployed | 1578 (64.8) | 927 (65.3) | 651 (63.9) | 0.818 | 0.366 | 0.018 |
Pensioners | 318 (13) | 202 (14.2) | 116 (11.4) | 4.215 | 0.040 | 0.042 |
Students | 41 (1.7) | 25 (1.8) | 16 (1.6) | 0.129 | 0.719 | 0.007 |
Harmful drug use/dependence (according to ICD-10) | ||||||
Alcohol | 1265 (51.9) | 703 (49.5) | 562 (55.2) | 7.618 | 0.006 | 0.056 |
Cocaine | 1573 (64.5) | 934 (65.8) | 639 (62.8) | 2.411 | 0.120 | 0.031 |
Opiates | 706 (29.0) | 457 (32.2) | 249 (24.5) | 17.284 | 0.000 | 0.084 |
Cannabis | 773 (31.7) | 519 (36.6) | 254 (25.0) | 36.981 | 0.000 | 0.123 |
Benzodiazepines | 249 (10.2) | 160 (11.3) | 89 (8.7) | 4.146 | 0.042 | 0.041 |
N (%) | Dropout (n = 1419) | Therapeutic Discharge (n = 1018) | Statistic (χ2 or Student t) | Significance | Effect Size (Cramer’s V) | |
---|---|---|---|---|---|---|
Dual pathology patients | 660 (27.1) | 415 (29.2) | 245 (24.1) | 8.051 | 0.005 | 0.057 |
Some Axis I Disorders | 448 (18.4) | 268 (18.9) | 180 (17.7) | 0.573 | 0.449 | 0.015 |
Mood disorders | 154 (6.3) | 86 (6.1) | 68 (6.7) | 0.384 | 0.536 | 0.013 |
Anxiety, dissociative, stress-related, somatoform, and other nonpsychotic mental disorders | 182 (7.5) | 104 (7.3) | 78 (7.7) | 0.095 | 0.758 | 0.006 |
Schizophrenia, schizotypal, delusional, and other non-mood psychotic disorders | 133 (5.5) | 89 (6.3) | 44 (4.3) | 4.368 | 0.037 | 0.042 |
Disorders of adult personality and behavior | 299 (12.3) | 202 (14.2) | 97 (9.5) | 12.200 | 0.000 | 0.071 |
Cluster A personality disorders | 33 (1.4) | 22 (1.6) | 11 (1.1) | 0.980 | 0.322 | 0.02 |
Cluster B personality disorders | 149 (6.1) | 104 (7.3) | 45 (4.4) | 8.736 | 0.003 | 0.06 |
Cluster C personality disorders | 17 (0.7) | 8 (0.6) | 9 (0.9) | 0.878 | 0.349 | 0.019 |
Unspecified personality disorder | 106 (4.3) | 73 (5.1) | 33 (3.2) | 5.159 | 0.023 | 0.046 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dacosta-Sánchez, D.; Díaz-Batanero, C.; Fernandez-Calderon, F.; Lozano, Ó.M. Impact of Cluster B Personality Disorders in Drugs Therapeutic Community Treatment Outcomes: A Study Based on Real World Data. J. Clin. Med. 2021, 10, 2572. https://doi.org/10.3390/jcm10122572
Dacosta-Sánchez D, Díaz-Batanero C, Fernandez-Calderon F, Lozano ÓM. Impact of Cluster B Personality Disorders in Drugs Therapeutic Community Treatment Outcomes: A Study Based on Real World Data. Journal of Clinical Medicine. 2021; 10(12):2572. https://doi.org/10.3390/jcm10122572
Chicago/Turabian StyleDacosta-Sánchez, Daniel, Carmen Díaz-Batanero, Fermin Fernandez-Calderon, and Óscar M. Lozano. 2021. "Impact of Cluster B Personality Disorders in Drugs Therapeutic Community Treatment Outcomes: A Study Based on Real World Data" Journal of Clinical Medicine 10, no. 12: 2572. https://doi.org/10.3390/jcm10122572
APA StyleDacosta-Sánchez, D., Díaz-Batanero, C., Fernandez-Calderon, F., & Lozano, Ó. M. (2021). Impact of Cluster B Personality Disorders in Drugs Therapeutic Community Treatment Outcomes: A Study Based on Real World Data. Journal of Clinical Medicine, 10(12), 2572. https://doi.org/10.3390/jcm10122572