The Influence of State and Trait Anxiety on the Achievement of a Virtual Reality Continuous Performance Test in Children and Adolescents with ADHD Symptoms
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
Inclusion Criteria
2.2. Instruments
- -
- Omissions: These are errors that occur when the participant should respond to the target stimulus but does not do so. It is a measure related to selective and focused attention.
- -
- Commissions: These occur when the participant clicks on the button, even if the target stimulus has not been presented. This measure correlates with a lack of motor control or response inhibition.
- -
- Response time: Average response time is the reaction time in milliseconds, used as a measure for processing speed.
- -
- Motor activity: The 3D glasses used in this test have a motion sensor that records the full motor activity of the participant during the test. In this manner, head movements are captured to record frequency and relevance (i.e., required vs. unnecessary movements).
2.3. Procedure
2.4. Data Analysis
3. Results
3.1. Preliminary Analysis
3.2. Regression Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Areces, D.; García, T.; Cueli, M.; Rodríguez, C. Is a Virtual Reality Test Able to Predict Current and Retrospective ADHD Symptoms in Adulthood and Adolescence? Brain Sci. 2019, 9, 274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- García, T.; Rodríguez, C.; Rodríguez, J.; Fernández-Suárez, A.; Richarte, V.; Ramos-Quiroga, J.A. Psychosocial profiles of adults with ADHD: A comparative study of prison and outpatient psychiatric samples. Eur. J. Psychol. Appl. Leg. Context 2019, 11, 41–49. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez, C.; Núñez, J.C.; Rodríguez, F.J.; Parrales, A.; Bringas, C.; García, T. Attention Deficit Hyperactivity Disorder (ADHD): Prevalence and Sociodemographic Features in Imprisoned Population. Psicol. Refl. Crít. 2015, 28, 698–707. [Google Scholar]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; American Psychiatry Publishing: Washington, DC, USA, 2013. [Google Scholar]
- Smith, K.R.M.; Matson, J.L. Social skills: Differences among adults with intellectual disabilities, co-morbid autism spectrum disorders and epilepsy. Res. Dev. Disabil. 2010, 31, 1366–1372. [Google Scholar] [CrossRef]
- Wilens, T.E.; Adler, L.A.; Weiss, M.D.; Michelson, D.; Ramsey, J.L.; Moore, R.J.; Renard, D.; Brady, K.T.; Trzepacz, P.T.; Schuh, L.M.; et al. Atomoxetine treatment of adults with ADHD and comorbid alcohol use disorders. Drug Alcohol Depend. 2008, 96, 145–154. [Google Scholar] [CrossRef]
- Weimer, B.L.; Kerns, K.A.; Oldenburg, C.M. Adolescents’ interactions with a best friend: Association with attachment style. J. Exp. Child Psychol. 2004, 88, 102–120. [Google Scholar] [CrossRef]
- Nigg, J.T. Attention deficits and hyperactivity-impulsivity: What have we learned, what next? Dev. Psychopathol. 2013, 25, 1489–1503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liebke, L.; Bungert, M.; Thome, J.; Hauschild, S.; Gescher, D.M.; Schmahl, C.; Bohus, M.; Lis, S. Loneliness, social networks, and social functioning in borderline personality disorder. Pers. Disord. Theory Res. Treat. 2017, 8, 349–356. [Google Scholar] [CrossRef] [PubMed]
- Cueli, M.; Rodríguez, C.; Cabaleiro, P.; García, T.; González-Castro, P. Differential efficacy of neurofeedback in children with ADHD presentations. J. Clin. Med. 2019, 8, 204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garner, A.A.; Mrug, S.; Hodgens, B.; Patterson, C.D. Do symptoms of sluggish cognitive tempo in children with ADHD symptoms represent comorbid internalizing difficulties? J. Atten. Disord. 2013, 17, 510–518. [Google Scholar] [CrossRef]
- Thackery, E.; Harris, M. The Gale Encyclopedia of Mental Disorders; Thomson Gale: New York, NY, USA, 2003. [Google Scholar]
- Achenbach, T.M.; Rescorla, L.A. The Manual for ASEBA School Age Forms & Profiles; ASEBA: Vermont, VT, USA, 2001. [Google Scholar]
- Jarrett, M.A.; Ollendick, T.H.A. Conceptual review of the comorbidity of attention-deficit/hyperactivity disorder and anxiety: Implications for future research and practice. Clin. Psychol. Rev. 2008, 28, 1266–1280. [Google Scholar] [CrossRef]
- Reimherr, F.W.; Marchant, B.K.; Gift, T.E.; Steans, T.A. ADHD and anxiety: Clinical significance and treatment implications. Curr. Psychiatry Rep. 2017, 19, e109. [Google Scholar] [CrossRef] [PubMed]
- Moshe, K.; Karni, A.; Tirosh, E. Anxiety and methylphenidate in attention deficit hyperactivity disorder: A double-blind placebo-drug trial. Atten. Defic. Hyperact. Disord. 2012, 4, 152–158. [Google Scholar] [CrossRef] [PubMed]
- Sciberras, E.; Lycett, K.; Efron, D.; Mensah, F.; Gerner, B.; Hiscock, H. Anxiety in children with attention-deficit/hyperactivity disorder. Pediatrics 2014, 133, 801–808. [Google Scholar] [CrossRef] [Green Version]
- Schatz, D.B.; Rostain, A.L. ADHD with comorbid anxiety: A review of the current literature. J. Atten. Disord. 2006, 10, 141–149. [Google Scholar] [CrossRef]
- D’Agati, E.; Curatolo, P.; Mazzone, L. Comorbidity between ADHD and anxiety disorders across the lifespan. Int. J. Psychiatry Clin. Pract. 2019, 23, 238–244. [Google Scholar] [CrossRef] [PubMed]
- González-Castro, P.; Rodríguez, C.; Cueli, M.; García, T.; Alvarez-García, D. State, trait anxiety and selective attention differences in Attention Deficit Hyperactivity Disorder (ADHD) subtypes. Int. J. Clin. Health Psychol. 2015, 15, 105–112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Areces, D.; Rodríguez, C.; García, T.; Cueli, M.; González-Castro, P. Efficacy of a continuous performance test based on virtual reality in the diagnosis of ADHD and its clinical presentations. J. Atten. Disord. 2018, 22, 1081–1091. [Google Scholar] [CrossRef]
- Areces, D.; Rodríguez, C.; García, T.; Cueli, M. Is an ADHD Observation-Scale Based on DSM Criteria Able to Predict Performance in a Virtual Reality Continuous Performance Test? Appl. Sci. 2020, 10, 2409. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez, C.; Areces, D.; García, T.; Cueli, M.; González-Castro, P. Comparison between two continuous performance tests for identifying ADHD: Traditional vs. virtual reality. Int. J. Clin. Health Psychol. 2018, 18, 254–263. [Google Scholar] [CrossRef]
- Rizzo, A.A.; Buckwalter, J.G.; Bowerly, T.; Humhrey, L.A.; Neuman, U.; van Rooyen, A.; Kim, L. The virtual classroom: A virtual reality environment for the assessment and rehabilitation of attention deficits. Rev. Esp. Neuropsicol. 2001, 3, 11–37. [Google Scholar] [CrossRef]
- Blume, F.; Hudak, J.; Dresler, T.; Ehlis, A.C.; Kühnhausen, J.; Renner, T.J.; Gawrilow, C. NIRS-based neurofeedback training in a virtual reality classroom for children with attention-deficit/hyperactivity disorder: Study protocol for a randomized controlled trial. Trials 2017, 18, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ou, Y.K.; Wang, Y.L.; Chang, H.C.; Yen, S.Y.; Zheng, Y.H.; Lee, B.O. Development of virtual reality rehabilitation games for children with attention-deficit hyperactivity disorder. J. Ambient. Intell. Humaniz. Comput. 2020, 11, 5713–5720. [Google Scholar] [CrossRef]
- Wechsler, D. Wechsler Intelligence Scale for Children—Fourth Edition—Spanish, Manual; Harcourt Assessment: San Antonio, TX, USA, 2005. [Google Scholar]
- Climent, G.; Banterla, F.; Iriarte, Y. AULA: Theoretical Manual; Nesplora, Ed: San Sebastian, Spain, 2011. [Google Scholar]
- Spielberger, C.D.; Gorsuch, R.L.; Lushene, R.; Vagg, P.R.; Jacobs, G.A. State-Trait Anxiety Inventory, Theoretical Manual; Consulting Psychologists Press: Palo Alto, CA, USA, 1983. [Google Scholar]
- Kline, R.B. Principles and Practice of Structural Equation Modeling; Guilford Press: New York, NY, USA, 2013. [Google Scholar]
- Arbuckle, J.L. SPSS Manual, 24.0. Version; SPSS Ed: New York, NY, USA, 2016. [Google Scholar]
- Tian, L.; Wang, J.; Yan, C.; He, Y. Hemisphere and gender related differences in small world brain networks: A resting state functional MRI study. Neuroimage 2011, 54, 191–202. [Google Scholar] [CrossRef]
- Agnew-Blais, J.C.; Polanczyk, G.V.; Danese, A.; Wertz, J.; Moffitt, T.E.; Arseneault, L. Are changes in ADHD course reflected in differences in IQ and executive functioning from childhood to young adulthood? Psychol. Med. 2020, 50, 2799–2808. [Google Scholar] [CrossRef] [Green Version]
- Jensen, P.S.; Hinshaw, S.P.; Kraemer, H.C.; Lenora, N.; Newcorn, J.H.; Abikoff, H.B.; March, J.S.; Arnold, L.E.; Cantwell, D.P.; Conners, C.K.; et al. ADHD comorbidity findings from the MTA study: Comparing comorbid subgroups. J. Am. Acad. Child Adolesc. Psychiatry 2001, 40, 147–158. [Google Scholar] [CrossRef]
- Korenblum, C.B.; Chen, S.X.; Manassis, K.; Schachar, R.J. Performance monitoring and response inhibition in anxiety disorders with and without comorbid ADHD, Depress. Anxiety 2007, 24, 227–232. [Google Scholar] [CrossRef] [PubMed]
- Park, M.H.; Kweon, Y.S.; Lee, S.J.; Park, E.J.; Lee, C.; Lee, C.U. Differences in Performance of ADHD Children on a Visual and Auditory Continuous Performance Test according to IQ. Psychiatry Investig. 2011, 8, 227–233. [Google Scholar] [CrossRef]
Variables | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|
Attentional | ||||||
1. Omissions | 1 | 0.422 ** | 0.453 ** | 0.319 ** | 0.267 ** | 0.091 |
2. Commissions | 1 | 0.355 ** | 0.336 ** | 0.433 ** | 0.233 * | |
3. Response Time | 1 | 0.333 ** | 0.302 ** | 0.114 | ||
4. Motor Activity | 1 | 0.183 | 0.057 | |||
Anxiety | ||||||
5. State Anxiety | 1 | 0.304 ** | ||||
6. Trait Anxiety | 1 | |||||
M Girls (SD) | 54.62 (24.39) | 46.71 (31.01) | 48.79 (25.85) | 40.56 (31.92) | 23.64 (26.75) | 42.38 (30.04) |
M Boys (SD) | 60.90 (24.60) | 60.21 (26.42) | 52.29 (31.22) | 49.46 (34.86) | 33.77 (30.04) | 51.54 (32.37) |
Variables | M | SD | Asymmetry | Kurtosis | Age Differences | Sex Differences | ||
---|---|---|---|---|---|---|---|---|
F(1102) | ηp2 | F(1102) | ηp2 | |||||
Attentional | ||||||||
Omissions | 58.80 | 24.59 | −0.258 | −0.992 | 1.741 | 0.161 | 1.485 | 0.050 |
Commissions | 55.71 | 28.60 | −0.260 | −1.056 | 3.010 ** | 0.249 | 5.261 * | 0.001 |
Response Time | 51.13 | 29.45 | 0.066 | −1.240 | 0.914 | 0.091 | 0.088 | 0.015 |
Motor Activity | 46.49 | 34.01 | 0.142 | −1.441 | 2.345 * | 0.205 | 1.559 | 0.050 |
Anxiety | ||||||||
State Anxiety | 30.40 | 29.25 | 0.989 | −0.299 | 1.518 | 0.143 | 2.767 | 0.027 |
Trait Anxiety | 48.49 | 31.76 | 0.042 | −1.262 | 0.687 | 0.070 | 1.902 | 0.019 |
Regression Models | Omissions | Commissions | Response Time | Motor Activity | |
---|---|---|---|---|---|
1 | Constant | 119.191 (4.911 ***) | 142.711 (5.219 ***) | 92.673 (3.120 **) | 82.090 (2.388 *) |
Sex (female) | −5.520 (−1.096) | −11.951 (−2.107 *) | −3.149 (−0.511) | −7.563 (−1.061) | |
Age | −0.544 (−0.539) | −2.867 (−2.521 **) | −1.267 (−1.026) | −2.040 (−1.427) | |
IQ | −0.437 (−2.574 **) | −0.338 (−1.767) | −0.205 (−0.987) | −0.011 (−0.045) | |
R2 | 0.072 | 0.120 | 0.021 | 0.035 | |
F(3, 102) | 2.573 | 4.520 ** | 0.694 | 1.180 | |
2 | Constant | 104.812 (4.325 ***) | 117.886 (4.577 ***) | 80.123 (2.653 **) | 70.424 (2.001 *) |
Sex (female) | −3.144 (−0.630) | −7.611 (−1.436) | −1.007 (−0.167) | −5.729 (−0.797) | |
Age | −0.161 (−0.161) | −2.268 (−2.139 *) | −0.950 (0.446) | −1.705 (−1.177)) | |
IQ | −0.451 (−2.704 **) | −0.377 (−2.128 *) | −0.222 (0.289) | −0.016 (−0.066) | |
State Anxiety | 0.207 (2.412 **) | 0.334 (3.656 ***) | 0.174 (0.107) | 0.178 (1.425) | |
Trait Anxiety | 0.035 (0.447) | 0.118 (1.424) | 0.047 (0.631) | 0.005 (0.046) | |
R2 | 0.137 | 0.273 | 0.056 | 0.057 | |
ΔR2 | 0.065 | 0.153 | 0.035 | 0.022 | |
F(5, 102) | 3.089 ** | 10.144 *** | 1.157 | 1.165 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Areces, D.; Rodríguez, C.; García, T.; Cueli, M.; González-Castro, P. The Influence of State and Trait Anxiety on the Achievement of a Virtual Reality Continuous Performance Test in Children and Adolescents with ADHD Symptoms. J. Clin. Med. 2021, 10, 2534. https://doi.org/10.3390/jcm10122534
Areces D, Rodríguez C, García T, Cueli M, González-Castro P. The Influence of State and Trait Anxiety on the Achievement of a Virtual Reality Continuous Performance Test in Children and Adolescents with ADHD Symptoms. Journal of Clinical Medicine. 2021; 10(12):2534. https://doi.org/10.3390/jcm10122534
Chicago/Turabian StyleAreces, Débora, Celestino Rodríguez, Trinidad García, Marisol Cueli, and Paloma González-Castro. 2021. "The Influence of State and Trait Anxiety on the Achievement of a Virtual Reality Continuous Performance Test in Children and Adolescents with ADHD Symptoms" Journal of Clinical Medicine 10, no. 12: 2534. https://doi.org/10.3390/jcm10122534
APA StyleAreces, D., Rodríguez, C., García, T., Cueli, M., & González-Castro, P. (2021). The Influence of State and Trait Anxiety on the Achievement of a Virtual Reality Continuous Performance Test in Children and Adolescents with ADHD Symptoms. Journal of Clinical Medicine, 10(12), 2534. https://doi.org/10.3390/jcm10122534