Crosslinked PEG and PEBAX Membranes for Concurrent Permeation of Water and Carbon Dioxide
Abstract
:1. Introduction
2. Experimental
3. Results and Discussion
Gas or Vapor | Fundamental Properties | Henry’s Law Constant (cm3/cm3·atm) | ||||
---|---|---|---|---|---|---|
Critical Temperature Tc (K) | Lennard Jones Well Depth (ε/κ) [22] | Crosslinked PEG This Work | Crosslinked PEG [23] | PEBAX 2533 This Work | PEBAX 2533 [17] | |
CO2 | 304.21 | 213.4 | 1.39 ± 0.20 | 1.5 ± 0.1 | 1.39 ± 0.20 | 0.963 |
N2 | 126.2 | 83 | 0.06 ± 0.02 | – | 0.07 ± 0.02 | 0.0334 |
CH4 | 191.05 | 154.7 | 0.14 ± 0.03 | 0.14 ±0.02 | 0.25 ± 0.05 | 0.152 |
H2O | 373.95 | 809.1 | 1100 ± 200 | – | 290 ± 50 | – |
Gas | PEG | PEBAX |
---|---|---|
CO2 | 66 ± 2 | 212 ± 5 |
N2 | 1.6 ± 0.1 | 6.4 ± 0.2 |
CH4 | 4.2 ± 0.1 | 29.5 ± 0.4 |
CO2/N2 Selectivity | 41 | 33 |
CO2/CH4 Selectivity | 16 | 7.2 |
Gas Mixture | Gas | PEG | PEBAX |
---|---|---|---|
90% N2—10% CO2 | CO2 | 59 ± 0.4 | 191 ± 0.8 |
N2 | 1.5 ± 0.1 | 6.2 ± 0.2 | |
CO2/N2 | 39 | 31 | |
90% CH4—10% CO2 | CO2 | 59 ± 0.4 | 191 ± 0.9 |
CH4 | 4.1 ± 0.2 | 28 ± 0.3 | |
CO2/CH4 | 14 | 7 |
Gas Mixture | Gas | PEG | PEBAX |
---|---|---|---|
90% CH4—10% CO2 with 20% RH | CO2 | 60 ± 0.5 | 194 ± 1.0 |
CH4 | 4.2 ± 0.4 | 29.1 ± 0.5 | |
H2O | 42,400 ± 2500 | 36,000 ± 2100 | |
CO2/CH4 | 14 | 7 | |
90% N2—10% CO2 with 500 ppm H2S | CO2 | 58 ± 0.4 | 189 ± 0.8 |
N2 | 1.3 ± 0.2 | 6.0 ± 0.4 | |
CO2/N2 | 45 | 32 |
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Scholes, C.A.; Ho, M.T.; Wiley, D.E.; Stevens, G.W.; Kentish, S.E. Cost competitive membrane—Cryogenic post-combustion carbon capture. Int. J. Greenh. Gas Control 2013, 17, 341–348. [Google Scholar] [CrossRef]
- Merkel, T.C.; Lin, H.; Wei, X.; Baker, R.W. Power plant post-combustion carbon dioxide capture: An opportunity for membranes. J. Membr. Sci. 2010, 359, 126–139. [Google Scholar] [CrossRef]
- Wijmans, J.G.; Merkel, T.C.; Baker, R. Process for Separating Carbon Dioxide from Flue Gas Using Parallel Carbon Dioxide Capture and Sweep-Based Membrane Separation Steps. U.S. Patent 2011005272, 13 January 2011. [Google Scholar]
- Kohl, A.; Nielsen, R. Gas Purification, 5th ed.; Gulf Publishing: Houston, TX, USA, 1997. [Google Scholar]
- Baker, R.W. Vapor and gas separation by membranes. In Advanced Membrane Technology and Applications; Li, N.N., Fane, A.G., Ho, W.S.W., Matsuura, T., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2008; pp. 559–580. [Google Scholar]
- Baker, R.W. Future directions of membrane gas separation technology. Ind. Eng. Chem. Res. 2002, 41, 1393–1411. [Google Scholar] [CrossRef]
- Diaz, Z.; Henrikus, A.G.; van, M.J.E.; Nijmeijer, A.; Eric, J.P. Multi-Stage Membrane Separation Process. U.S. Patent 2011041687, 24 February 2011. [Google Scholar]
- Koros, W.J.; Vu, D.Q. Process for CO2/Natural Gas Separation. U.S. Patent 6299669 B1, 9 October 2001. [Google Scholar]
- Baker, R.W.; Wijmans, J.G.; He, Z.; Pinnau, I. Natural Gas Separation Using Nitrogen-Selective Membranes. U.S. Patent 6565626 B1, 20 May 2003. [Google Scholar]
- Lokhandwala, K.A.; Baker, R.W.; Amo, K.D. Sour Gas Treatment Process. U.S. Patent 5407467 A, 18 April 1995. [Google Scholar]
- Ohlrogge, K.; Brinkmann, T. Natural gas cleanup by means of membranes. Ann. N. Y. Acad. Sci. 2003, 984, 306–317. [Google Scholar] [CrossRef] [PubMed]
- Kentish, S.E. Polymeric membranes for natural gas processing. In Advanced Membrane Science and Technology for Sustainable Energy and Environmental Applications; Basile, A., Nunes, S.P., Eds.; Woodhead Publishing Ltd.: Cambridge, UK, 2011. [Google Scholar]
- Chen, G.Q.; Scholes, C.A.; Qiao, G.G.; Kentish, S.E. Water vapor permeation in polyimide membranes. J. Membr. Sci. 2011, 379, 479–487. [Google Scholar] [CrossRef]
- Shah, V.M.; Hardy, B.J.; Stern, S.A. Solubility of carbon dioxide, methane and propane in silicone polymers: Effect of polymer side chains. J. Polym. Sci. B 1986, 24, 2033–2047. [Google Scholar] [CrossRef]
- Michaels, A.S.; Bixler, H.J. Solubility of gases in polyethylene. J. Polym. Sci. 1961, 50, 393–412. [Google Scholar] [CrossRef]
- Lin, H.; Freeman, B.D. Gas solubility, diffusivity and permeability in poly(ethylene oxide). J. Membr. Sci. 2004, 239, 105–117. [Google Scholar] [CrossRef]
- Bondar, V.; Freeman, B.D.; Pinnau, I. Gas transport properties of poly(ether-b-amide) segmental block copolymers. J. Polym. Sci. B 2000, 38, 2051–2062. [Google Scholar] [CrossRef]
- Lin, H.; Freeman, B.D. Gas and vapor solubility in cross-linked poly(ethylene glycol diacrylate). Macromolecules 2005, 38, 8394–8407. [Google Scholar] [CrossRef]
- Scholes, C.A.; Tao, W.X.; Stevens, G.W.; Kentish, S.E. Sorption of methane, nitrogen, carbon dioxide and water in matrimid 5218. J. Appl. Polym. Sci. 2010, 117, 2284–2289. [Google Scholar] [CrossRef]
- Duthie, X.J.; Kentish, S.E.; Powell, C.E.; Nagai, K.; Qiao, G.G.; Stevens, G.W. Operating temperature effects on the plasticization of polyimide gas separation membranes. J. Membr. Sci. 2007, 294, 40–49. [Google Scholar] [CrossRef]
- Anderson, C.J.; Pas, S.J.; Arora, G.; Kentish, S.E.; Hill, A.J.; Sandler, S.I.; Stevens, G.W. Effect of pyrolysis temperature and operating temperature on the performance of nanoporous carbon membranes. J. Membr. Sci. 2008, 322, 19–27. [Google Scholar] [CrossRef]
- Poling, B.E.; Prausnitz, J.M.; O’Connell, J.P. Properties of Gases and Liquids, 5th ed.; McGraw-Hill: New York, NY, USA, 2001. [Google Scholar]
- Lin, H.; Kai, T.; Freeman, B.D.; Kalakkunnath, S.; Kalika, D.S. The effect of cross-linking on gas permeability in cross-linked poly(ethylene glycol diacrylate). Macromolecules 2005, 38, 8381–8393. [Google Scholar] [CrossRef]
- Singh, A.; Freeman, B.D.; Pinnau, I. Pure and mixed gas acetone/nitrogen permeation properties of polydimethylsiloxane [PDMS]. J. Polym. Sci. B 1998, 36, 289–301. [Google Scholar] [CrossRef]
- Cruise, G.M.; Scharp, D.S.; Hubbell, J.A. Characterization of permeability and network structure of interfacially photopolymerized poly(ethylene glycol) diacrylate hydrogels. Biomaterials 1998, 19, 1287–1294. [Google Scholar] [CrossRef]
- Barbi, V.; Funari, S.S.; Gehrke, R.; Scharnagl, N.; Stribeck, N. Saxs and the gas transport in polyether-block-polyamide copolymer membranes. Macromolecules 2003, 36, 749–758. [Google Scholar] [CrossRef]
- Martin, A.; Pham, H.M.; Kilzer, A.; Kareth, S.; Weidner, E. Phase equilibria of carbon dioxide + poly ethylene glycol + water mixtures at high pressure: Measurements and modelling. Fluid Phase Equilibria 2009, 286, 162–169. [Google Scholar] [CrossRef]
- Wiesmet, V.; Weidner, E.; Behme, S.; Sadowski, G.; Arlt, W. Measurement and modelling of high-pressure phase equilibria in the systems polyethyleneglycol (PEG)-propane, PEG-nitrogen and PEG-carbon dioxide. J. Supercrit. Fluids 2000, 17, 1–12. [Google Scholar] [CrossRef]
- Favre, E.; Nguyen, Q.T.; Clément, R.; Néel, J. The engaged species induced clustering (ENSIC) model: A unified mechanistic approach of sorption phenomena in polymers. J. Membr. Sci. 1996, 117, 227–236. [Google Scholar] [CrossRef]
- Lin, H.; Freeman, B.D. Gas permeation and diffusion in cross-linked poly(ethylene glycol diacrylate). Macromolecules 2006, 39, 3568–3580. [Google Scholar] [CrossRef]
- Tocci, E.; Gugliuzza, A.; de Lorenzo, L.; Macchione, M.; de Luca, G.; Drioli, E. Transport properties of a co-poly(amide-12-b-ethylene oxide) membrane: A comparative study between experimental and molecular modelling results. J. Membr. Sci. 2008, 323, 316–327. [Google Scholar] [CrossRef]
- Robeson, L.M. The upper bound revisited. J. Membr. Sci. 2008, 320, 390–400. [Google Scholar] [CrossRef]
- Sijbesma, H.; Nymeijer, K.; van Marwijk, R.; Heijboer, R.; Potreck, J.; Wessling, M. Flue gas dehydration using polymer membranes. J. Membr. Sci. 2008, 313, 263–276. [Google Scholar] [CrossRef]
- Gugliuzza, A.; Drioli, E. Evaluation of CO2 permeation through functional assembled mono-layers: Relationships between structure and transport. Polymer 2005, 46, 9994–10003. [Google Scholar] [CrossRef]
- Rezac, M.E.; John, T.; Pfromm, P.H. Effect of copolymer composition on the solubility and diffusivity of water and methanol in a series of polyether amides. J. Appl. Polym. Sci. 1997, 65, 1983–1993. [Google Scholar] [CrossRef]
- Reijerkerk, S.R.; Jordana, R.; Nijmeijer, K.; Wessling, M. Highly hydrophilic, rubbery membranes for CO2 capture and dehydration of flue gas. Int. J. Greenh. Gas Control 2011, 5, 26–36. [Google Scholar] [CrossRef]
- Metz, S.J.; van de Ven, W.J.C.; Potreck, J.; Mulder, M.H.V.; Wessling, M. Transport of water vaor and inert gas mixtures through highly selective and highly permeable polymer membranes. J. Membr. Sci. 2005, 251, 29–41. [Google Scholar] [CrossRef]
- Scholes, C.A.; Stevens, G.W.; Kentish, S.E. The effect of hydrogen sulfide, carbon monoxide and water on the performance of a pdms membrane in carbon dioxide/nitrogen separation. J. Membr. Sci. 2010, 350, 189–199. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scholes, C.A.; Chen, G.Q.; Lu, H.T.; Kentish, S.E. Crosslinked PEG and PEBAX Membranes for Concurrent Permeation of Water and Carbon Dioxide. Membranes 2016, 6, 1. https://doi.org/10.3390/membranes6010001
Scholes CA, Chen GQ, Lu HT, Kentish SE. Crosslinked PEG and PEBAX Membranes for Concurrent Permeation of Water and Carbon Dioxide. Membranes. 2016; 6(1):1. https://doi.org/10.3390/membranes6010001
Chicago/Turabian StyleScholes, Colin A., George Q. Chen, Hiep T. Lu, and Sandra E. Kentish. 2016. "Crosslinked PEG and PEBAX Membranes for Concurrent Permeation of Water and Carbon Dioxide" Membranes 6, no. 1: 1. https://doi.org/10.3390/membranes6010001