Development of Chitosan Polymer Membranes with Potential Use in Filtration Processes
Abstract
1. Introduction
2. Materials and Methods
2.1. Chitosan Production
2.2. Chitosan Characterization
2.2.1. Moisture and Ash Content
2.2.2. Molecular Weight and Deacetylation Degree (DD)
2.2.3. Total Nitrogen (Kjeldahl)
2.2.4. FTIR Spectroscopy
2.3. Membrane Preparation
Microporous Formation
2.4. Methods for Characterization
2.4.1. Membrane Thickness
2.4.2. Mechanical Stress–Strain Test
2.4.3. Contact Angle
2.4.4. Scanning Electron Microscopy (SEM) of Membranes
2.4.5. Atomic Force Microscopy (AFM) Analysis
2.4.6. Thermogravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC)
2.4.7. Filtration Tests
3. Results and Discussion
3.1. Characterization of Chitosan: FTIR, Molecular Weight, Total Nitrogen, Moisture, and Ash
3.2. Membrane Characterization
3.2.1. FTIR
3.2.2. Morphology and Topography (SEM and AFM)
3.2.3. Thickness and Hydrophilic Character of the Membranes (Contact Angle)
3.2.4. Mechanical Properties (Maximum Stress, Strain at Break, Young’s Modulus)
3.2.5. Thermal Behavior (TGA and DSC)
3.3. Membrane Performance in Filtration Tests
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| Cs | Chitosan |
| PEG | Polyethylene glycol |
| PVP | Polyvinylpyrrolidone |
| Gly | Glycerol |
| GA | Glutaraldehyde |
| FTIR | Fourier-transform infrared spectroscopy |
| SEM | Scanning electron microscopy |
| AFM | Atomic force microscopy |
| TGA | Thermogravimetric analysis |
| DSC | Differential scanning calorimetry |
| LMH | Liters per square meter per hour (LMH) |
| LMH·bar−1 | Liters per square meter per hour per bar (LMH·bar−1) |
| J | Permeate flux (J) |
| Lp | Water permeance (Lp) |
| R | Total hydraulic resistance (R) |
| kDa | Kilodaltons |
| Mw | Molecular weight (Mw) |
| η | Intrinsic viscosity (η) |
| Mv | Viscosity-average molecular weight (Mv) |
| ηrel | Relative viscosity (ηrel) |
| ηsp | Specific viscosity (ηsp) |
| ηred | Reduced viscosity (ηred) |
| %NT | Total nitrogen percentage (%NT) |
| Tg | Glass transition temperature (Tg) |
| ΔP | Applied pressure (ΔP) |
| Cs-GA | Chitosan–glutaraldehyde |
| B2 | Chitosan–polyethylene glycol |
| B5 | Chitosan–polyvinylpyrrolidone–polyethylene glycol |
| B7 | Chitosan–glycerol |
References
- Omelusuki, A.; Mastcke, V. El agua como recurso y como derecho. In Escribir el Hacer: La Enseñanza en la Escuela Primaria; Hoz, G., Carli, M.C., Eds.; Editorial de la Universidad Nacional de La Plata (EDULP): La Plata, Argentina, 2022; Chapter 6; pp. 83–100. Available online: http://sedici.unlp.edu.ar/handle/10915/140374 (accessed on 9 November 2025).
- Ingrao, C.; Strippoli, R.; Lagioia, G.; Huisingh, D. Water scarcity in agriculture: An overview of causes, impacts and approaches for reducing the risks. Heliyon 2023, 9, e18507. [Google Scholar] [CrossRef]
- Jones, E.R.; Bierkens, M.F.P.; van Vliet, M.T.H. Current and future global water scarcity intensifies when accounting for surface water quality. Nat. Clim. Change 2024, 14, 629–635. [Google Scholar] [CrossRef]
- Yago, Q.T. El sistema de saneamiento convencional y la escasez global de agua: Uso irracional de los recursos versus sistemas secos y circulares. Rev. Iberoam. Cienc. Tecnol. Soc.-CTS 2023, 18, 173–194. [Google Scholar] [CrossRef]
- He, C.; Liu, Z.; Wu, J.; Pan, X.; Fang, Z.; Li, J.; Bryan, B.A. Future global urban water scarcity and potential solutions. Nat. Commun. 2021, 12, 4667. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.; Poonia, T.; Siwal, S.S.; Srivastav, A.L.; Sharma, H.K.; Mittal, S.K. Challenges of water contamination in urban areas. In Current Directions in Water Scarcity Research; Srivastav, A.L., Madhav, S., Bhardwaj, A.K., Valsami-Jones, E., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; Volume 6, pp. 173–202. [Google Scholar] [CrossRef]
- Shemer, H.; Wald, S.; Semiat, R. Challenges and solutions for global water scarcity. Membranes 2023, 13, 612. [Google Scholar] [CrossRef]
- van Vliet, M.T.H.; Jones, E.R.; Flörke, M.; Franssen, W.H.P.; Hanasaki, N.; Wada, Y.; Yearsley, J.R. Global water scarcity including surface water quality and expansions of clean water technologies. Environ. Res. Lett. 2021, 16, 024020. [Google Scholar] [CrossRef]
- Yatawatta, Y.J.M.; Sridarran, P. Need of establishing desalination plants to mitigate water scarcity in dry zones of Sri Lanka. In World Construction Symposium; Ceylon Institute of Builders: Colombo, Sri Lanka, 2023; Volume 1, pp. 833–846. [Google Scholar] [CrossRef]
- Baysak, F.K.; Özcan, C. Desalination of seawater with pervaporation technology by using poly(vinyl alcohol)/chitosan-g-poly(N,N-dimethylacrylamide) membranes. Desalination Water Treat. 2022, 259, 45–53. [Google Scholar] [CrossRef]
- Dhakal, N.; Salinas-Rodriguez, S.G.; Hamdani, J.; Abushaban, A.; Sawalha, H.; Schippers, J.C.; Kennedy, M.D. Is desalination a solution to freshwater scarcity in developing countries? Membranes 2022, 12, 381. [Google Scholar] [CrossRef]
- Kuzminova, A.; Dmitrenko, M.; Dubovenko, R.; Puzikova, M.; Mikulan, A.; Korovina, A.; Koroleva, A.; Selyutin, A.; Semenov, K.; Su, R.; et al. Development and study of novel ultrafiltration membranes based on cellulose acetate. Polymers 2024, 16, 1236. [Google Scholar] [CrossRef]
- Shakeri, A.; Salehi, H.; Rastgar, M. Chitosan-based thin active layer membrane for forward osmosis desalination. Carbohydr. Polym. 2017, 174, 658–668. [Google Scholar] [CrossRef]
- Alshahrani, A.A.; Alsuhybani, M.; Algamdi, M.S.; Alquppani, D.; Mashhour, I.; Alshammari, M.S.; Alsohaimi, I.H.; Alraddadi, T.S. Evaluating the performance of chitosan and chitosan-palm membrane for water treatment: Preparation, characterization and purification study. J. Taibah Univ. Sci. 2021, 15, 77–86. [Google Scholar] [CrossRef]
- Yadav, M.; Kaushik, B.; Rao, G.K.; Srivastava, C.M.; Vaya, D. Advances and challenges in the use of chitosan and its derivatives in biomedical fields: A review. Carbohydr. Polym. Technol. Appl. 2023, 5, 100323. [Google Scholar] [CrossRef]
- Spoială, A.; Ilie, C.I.; Ficai, D.; Ficai, A.; Andronescu, E. Chitosan-based nanocomposite polymeric membranes for water purification—A review. Materials 2021, 14, 2091. [Google Scholar] [CrossRef] [PubMed]
- Widiastuti, N.; Silitonga, R.S.; Dharma, H.N.C.; Jaafar, J.; Widyanto, A.R.; Purwanto, M. Decreasing free fatty acid of crude palm oil with polyvinylidene fluoride hollow fiber membranes using a combination of chitosan and glutaraldehyde. RSC Adv. 2022, 12, 22662–22670. [Google Scholar] [CrossRef]
- Sun, S.; Xu, L.; Li, H.; Du, W.; Zhang, H.; Zuo, D. Effect of chitosan gelation time on the structure and antifouling performance of PVDF membrane. Preprints 2023. [Google Scholar] [CrossRef]
- Sánchez-Duarte, R.G.; Sánchez-Machado, D.I.; López-Cervantes, J.; Correa-Murrieta, M.A. Adsorption of allura red dye by cross-linked chitosan from shrimp waste. Water Sci. Technol. 2012, 65, 618–623. [Google Scholar] [CrossRef]
- AOAC International. Official Methods of Analysis of AOAC International, 22nd ed.; AOAC International: Rockville, MD, USA, 2023; Available online: https://www.aoac.org/official-methods-of-analysis/ (accessed on 16 November 2025).
- Solis, Y.; Peniche, C.; García, R.; Davidenko, N. Un procedimiento biomimético novedoso para obtener composites de quitosana–hidroxiapatita. In VII Congreso de la Sociedad Cubana de Bioingeniería; Sociedad Cubana de Bioingeniería: La Habana, Cuba, 2007. [Google Scholar]
- Brugnerotto, J.; Lizardi, J.; Goycoolea, F.M.; Argüelles-Monal, W.; Desbrières, J.; Rinaudo, M. An infrared investigation in relation with chitin and chitosan characterization. Polymer 2001, 42, 3569–3580. [Google Scholar] [CrossRef]
- Zeng, M.; Fang, Z. Preparation of sub-micrometer porous membrane from chitosan/polyethylene glycol semi-IPN. J. Membr. Sci. 2004, 245, 95–102. [Google Scholar] [CrossRef]
- Salerno, S.; De Santo, M.P.; Drioli, E.; De Bartolo, L. Nano- and micro-porous chitosan membranes for human epidermal stratification and differentiation. Membranes 2021, 11, 394. [Google Scholar] [CrossRef]
- Zeng, M.; Fang, Z.; Xu, C. Effect of compatibility on the structure of the microporous membrane prepared by selective dissolution of chitosan/synthetic polymer blend membrane. J. Membr. Sci. 2004, 230, 175–181. [Google Scholar] [CrossRef]
- Hernández-Gómez, E.; Madera-Santana, T.J.; Quintana-Owen, P.; Ortiz Vázquez, E.; Ramón Sierra, J.M.; Vargas y Vargas, M.L. Propiedades fisicoquímicas y bioactivas de películas comestibles basadas en alginato y miel melipona. Biotecnia 2024, 26, 16–25. [Google Scholar] [CrossRef]
- Ambrož, A.; Yao, Z.; Rojas, C.; Angelova, P.; Gölzhäuser, A.; Petrinić, I. Water flow decrease of track-etched polyethylene terephthalate membranes. J. Membr. Sci. 2025, 733, 124294. [Google Scholar] [CrossRef]
- Hao, F.; Li, X.; Wang, J.; Li, R.; Zou, L.; Wang, K.; Chen, F.; Shi, F.; Yang, H.; Wang, W.; et al. Separation of bioproducts through the integration of cyanobacterial metabolism and membrane filtration: Facilitating cyanobacteria’s industrial application. Membranes 2022, 12, 963. [Google Scholar] [CrossRef] [PubMed]
- Wu, B.; Wang, S.; Wang, J.; Song, X.; Zhou, Y.; Gao, C. Facile fabrication of high-performance thin film nanocomposite desalination membranes imbedded with alkyl group-capped silica nanoparticles. Polymers 2020, 12, 1415. [Google Scholar] [CrossRef] [PubMed]
- Sierakowska-Byczek, A.; Gałuszka, A.; Janus, Ł.; Radwan-Pragłowska, J. Bioactive three-dimensional chitosan-based scaffolds modified with poly(dopamine)/CBD@Pt/Au/PVP nanoparticles as potential NGCs applicable in nervous tissue regeneration—Preparation and characterization. Molecules 2024, 29, 5376. [Google Scholar] [CrossRef]
- Kumirska, J.; Czerwicka, M.; Kaczyński, Z.; Bychowska, A.; Brzozowski, K.; Thöming, J.; Stepnowski, P. Application of spectroscopic methods for structural analysis of chitin and chitosan. Mar. Drugs 2010, 8, 1567–1636. [Google Scholar] [CrossRef]
- Tovar, C.D.G.; Castro, J.I.; Valencia, C.H.; Porras, D.P.N.; Hernandez, J.H.M.; Zapata, M.E.V.; Chaur, M.N. Nanocomposite films of chitosan-grafted carbon nano-onions for biomedical applications. Molecules 2020, 25, 1203. [Google Scholar] [CrossRef]
- Zarif, M.E.; Yehia-Alexe, S.A.; Bita, B.; Negut, I.; Locovei, C.; Groza, A. Calcium phosphates–chitosan composite layers obtained by combining radio-frequency magnetron sputtering and matrix-assisted pulsed laser evaporation techniques. Polymers 2022, 14, 5241. [Google Scholar] [CrossRef]
- Hosney, A.; Ullah, S.; Barčauskaitė, K. A review of the chemical extraction of chitosan from shrimp wastes and prediction of factors affecting chitosan yield by using an artificial neural network. Mar. Drugs 2022, 20, 675. [Google Scholar] [CrossRef]
- Ssekatawa, K.; Byarugaba, D.K.; Wampande, E.M.; Moja, T.N.; Nxumalo, E.; Maaza, M.; Sackey, J.; Ejobi, F.; Kirabira, J.B. Isolation and characterization of chitosan from Ugandan edible mushrooms, Nile perch scales and banana weevils for biomedical applications. Sci. Rep. 2021, 11, 4116. [Google Scholar] [CrossRef]
- Martínez-Robinson, K.; Martínez-Inzunza, A.; Rochín-Wong, S.; Rodríguez-Córdova, R.J.; Vásquez-García, S.R.; Fernández-Quiroz, D. Physicochemical study of chitin and chitosan obtained from California brown shrimp (Farfantepenaeus californiensis) exoskeleton. Biotecnia 2022, 24, 28–35. [Google Scholar] [CrossRef]
- Nemtsev, S.V.; Gamzazade, A.I.; Rogozhin, S.V.; Bykova, V.M.; Bykov, V.P. Deacetylation of chitin under homogeneous conditions. Appl. Biochem. Microbiol. 2002, 38, 521–526. [Google Scholar] [CrossRef]
- Gonçalves, C.; Ferreira, N.; Lourenço, L. Production of low molecular weight chitosan and chitooligosaccharides (COS): A review. Polymers 2021, 13, 2466. [Google Scholar] [CrossRef] [PubMed]
- Santoso, J.; Adiputra, K.C.; Soerdirga, L.C.; Tarman, K. Effect of acetic acid hydrolysis on the characteristics of water soluble chitosan. IOP Conf. Ser. Earth Environ. Sci. 2020, 414, 012021. [Google Scholar] [CrossRef]
- Aranaz, I.; Alcántara, A.R.; Civera, M.C.; Arias, C.; Elorza, B.; Caballero, A.H.; Acosta, N.; Velasco, H.; Mecerreyes, D.; Antonio, R.; et al. Chitosan: An overview of its properties and applications. Polymers 2021, 13, 3256. [Google Scholar] [CrossRef]
- Galan, J.; Trilleras, J.; Zapata, P.A.; Arana, V.A.; Grande-Tovar, C.D. Optimization of chitosan glutaraldehyde-crosslinked beads for Reactive Blue 4 anionic dye removal using a surface response methodology. Life 2021, 11, 85. [Google Scholar] [CrossRef]
- Martins, M.; Veroneze-Júnior, V.; Carvalho, M.; Carvalho, D.T.; Barbosa, S.; Doriguetto, A.C.; Magalhães, P.C.; Ribeiro, C.; Santos, M.H.; De Souza, T.C. Physicochemical characterization of chitosan and its effects on early growth, cell cycle and root anatomy of transgenic and non-transgenic maize hybrids. Aust. J. Crop Sci. 2018, 12, 183–207. [Google Scholar] [CrossRef]
- Koyuncu, D.D.E.; Okur, M.; Temuçin, B.; Şen, S.M.; Şahbaz, E.; Eroğlu, Ş.; Akın, Z.S.; Topaloğlu, G. Evaluation of the nitrogen release properties of chitosan–bentonite beads. J. Turkish Chem. Soc. Sect. B Chem. Eng. 2024, 7, 183–192. [Google Scholar] [CrossRef]
- Romal, J.R.A.; Ong, S.K. Single-step fabrication of a dual-sensitive chitosan hydrogel by C-Mannich reaction: Synthesis, physicochemical properties, and screening of its Cu2+ uptake. Processes 2023, 11, 354. [Google Scholar] [CrossRef]
- Bradu, I.-A.; Vlase, T.; Bunoiu, M.; Grădinaru, M.; Pahomi, A.; Bajas, D.; Budiul, M.M.; Vlase, G. Synthesis and characterization of polymer-based membranes for methotrexate drug delivery. Polymers 2023, 15, 4325. [Google Scholar] [CrossRef]
- Buranachai, T.; Praphairaksit, N.; Muangsin, N. Chitosan/polyethylene glycol beads crosslinked with tripolyphosphate and glutaraldehyde for gastrointestinal drug delivery. Aaps Pharmscitech 2010, 11, 1128–1137. [Google Scholar] [CrossRef] [PubMed]
- Mansur, H.S.; Oréfice, R.L.; Mansur, A.A.P. Characterization of poly(vinyl alcohol)/poly(ethylene glycol) hydrogels and PVA-derived hybrids by small-angle X-ray scattering and FTIR spectroscopy. Polymer 2004, 45, 7193–7202. [Google Scholar] [CrossRef]
- Abednejad, A.S.; Amoabediny, G.; Ghaee, A. Surface Modification of Polypropylene Blood Oxygenator Membrane by Poly Ethylene Glycol Grafting. Adv. Mater. Res. 2013, 816–817, 459–463. [Google Scholar] [CrossRef]
- Feyissa, Z.; Edossa, G.D.; Bedasa, T.B.; Inki, L.G. Fabrication of pH-responsive chitosan/polyvinylpyrrolidone hydrogels for controlled release of metronidazole and antibacterial properties. Int. J. Polym. Sci. 2023, 2023, 1205092. [Google Scholar] [CrossRef]
- Iancu, I.M.; Schröder, V.; Apetroaei, M.-R.; Crețu, R.M.; Mireșan, H.; Honcea, A.; Iancu, V.; Bucur, L.A.; Mitea, G.; Atodiresei-Pavalache, G. Biocompatibility of membranes based on a mixture of chitosan and Lythri herba aqueous extract. Appl. Sci. 2023, 13, 8023. [Google Scholar] [CrossRef]
- Livanovich, K.S.; Sharamet, A.A.; Shimko, A.N.; Shutava, T.G. Layer-by-layer films of polysaccharides modified with poly(N-vinylpyrrolidone) and poly(vinyl alcohol). Heliyon 2021, 7, e08224. [Google Scholar] [CrossRef]
- Doan, L.; Tran, K. Relationship between the polymer blend using chitosan, polyethylene glycol, polyvinyl alcohol, polyvinylpyrrolidone, and antimicrobial activities against Staphylococcus aureus. Pharmaceutics 2023, 15, 2453. [Google Scholar] [CrossRef]
- Mahatmanti, F.W.; Kusumastuti, E.; Wijayati, N. Electrospinning of nanofibers chitosan/PVA–sodium silicate. J. Phys. Conf. Ser. 2021, 1918, 032012. [Google Scholar] [CrossRef]
- Cui, L.; Gao, S.; Song, X.; Huang, L.; Dong, H.; Liu, J.; Chen, F.; Yu, S. Preparation and characterization of chitosan membranes. RSC Adv. 2018, 8, 28433–28439. [Google Scholar] [CrossRef]
- Shirazi, R.H.M.T.; Mohammadi, T.; Asadi, A.A.; Ahmadzadeh Tofighy, M. Electrospun nanofiber affinity membranes for water treatment applications: A review. J. Water Process Eng. 2022, 47, 102795. [Google Scholar] [CrossRef]
- Liu, H.; Adhikari, R.; Guo, Q.; Adhikari, B. Preparation and characterization of glycerol plasticized (high-amylose) starch–chitosan films. J. Food Eng. 2013, 116, 588–597. [Google Scholar] [CrossRef]
- Pinto, E.P.; Tavares, W.D.S.; Matos, R.S.; Ferreira, A.M.; Menezes, R.P.; Da Costa, M.E.H.M.; De Souza, T.M.; Ferreira, I.M.; De Sousa, F.F.O.; Zamora, R.R.M. Influence of low and high glycerol concentrations on wettability and flexibility of chitosan biofilms. Quim. Nova 2018, 41, 1109–1116. [Google Scholar] [CrossRef]
- Galiano, F.; Msahel, A.; Russo, F.; Rovella, N.; Policicchio, A.; Hamouda, S.B.; Hafiane, A.; Castro-Muñoz, R.; Figoli, A. Enhancing the separation performance of chitosan membranes through the blending with deep eutectic solvents for the pervaporation of polar/non-polar organic mixtures. Membranes 2024, 14, 237. [Google Scholar] [CrossRef] [PubMed]
- He, L.H.; Xue, R.; Yang, D.B.; Liu, Y.; Song, R. Effects of blending chitosan with PEG on surface morphology, crystallization and thermal properties. Chin. J. Polym. Sci. 2009, 27, 501–510. [Google Scholar] [CrossRef]
- Rekik, S.B.; Gassara, S.; Deratani, A. Green fabrication of sustainable porous chitosan/kaolin composite membranes using polyethylene glycol as a porogen: Membrane morphology and properties. Membranes 2023, 13, 378. [Google Scholar] [CrossRef]
- Zeng, M.; Fang, Z.; Xu, C. Novel method of preparing microporous membrane by selective dissolution of chitosan/polyethylene glycol blend membrane. J. Appl. Polym. Sci. 2004, 91, 2840–2847. [Google Scholar] [CrossRef]
- Galo, C.; Anaya, P.; Del Rio, R.; Schrebler, R.; Von Plessing, C.; Schneider, M. Scanning electron microscopy and atomic force microscopy of chitosan composite films. J. Chil. Chem. Soc. 2010, 55, 352–354. [Google Scholar] [CrossRef]
- Wanichapichart, P.; Yu, L. Chitosan membrane filtering characteristics modification by N-ion beams. Surf. Coat. Technol. 2007, 201, 8165–8169. [Google Scholar] [CrossRef]
- Mutasher, S.H.; Al-Lami, H.S. The effect of different molecular weight chitosan on the physical and mechanical properties of plasticized films. Eur. J. Chem. 2022, 13, 460–467. [Google Scholar] [CrossRef]
- Zhong, Y.; Zhuang, C.; Gu, W.; Zhao, Y. Effect of molecular weight on the properties of chitosan films prepared using electrostatic spraying technique. Carbohydr. Polym. 2019, 212, 197–205. [Google Scholar] [CrossRef]
- Al-Hobaib, A.S.; Al-Sheetan, K.M.; Shaik, M.R.; Al-Andis, N.M.; Al-Suhybani, M.S. Characterization and evaluation of reverse osmosis membranes modified with Ag2O nanoparticles to improve performance. Nanoscale Res. Lett. 2015, 10, 379. [Google Scholar] [CrossRef]
- Nwaka, E.; Akomah, U.C.; Maduoma, T.U.; Ezeokolie, E.D.; Menankiti, D.T.; Osarenren, E.; Donatus, U.D.; Orji, C.H.; Ekwem, C.H.; Oduaro, I.J. Optimizing the production of biodegradable chitosan–glycerol bioplastics from potato starch. Eur. J. Sustain. Dev. Res. 2025, 9, 16354. [Google Scholar] [CrossRef] [PubMed]
- Rivero, S.; Damonte, L.; García, M.A.; Pinotti, A. An insight into the role of glycerol in chitosan films. Food Biophys. 2016, 11, 117–127. [Google Scholar] [CrossRef]
- Kertész, S.; de Freitas, T.B.; Hodúr, C. Characterization of polymer membranes by contact angle goniometer. Analecta Tech. Szeged. 2014, 8, 18–22. [Google Scholar] [CrossRef]
- Chen, X.; Wang, X.P.; Xu, X. Effective contact angle for rough boundary. Phys. D 2013, 242, 54–64. [Google Scholar] [CrossRef]
- Silva, R.M.; Silva, G.A.; Coutinho, O.P.; Mano, J.F.; Reis, R.L. Preparation and characterisation in simulated body conditions of glutaraldehyde crosslinked chitosan membranes. J. Mater. Sci. Mater. Med. 2004, 15, 1105–1112. [Google Scholar] [CrossRef]
- Sarhan, A. Characterization of chitosan and polyethylene glycol blend film. Egypt. J. Chem. 2019, 62, 405–412. [Google Scholar] [CrossRef]
- Raza, M.A.; Shahzad, K.; Purohit, S.; Park, S.H.; Han, S.S. The fabrication strategies for chitosan/poly(vinyl pyrrolidone) based hydrogels and their biomedical applications: A focused review. Polym.-Plast. Technol. Mater. 2023, 62, 2255–2271. [Google Scholar] [CrossRef]
- Leceta, I.; Guerrero, P.; De la Caba, K. Functional properties of chitosan-based films. Carbohydr. Polym. 2013, 93, 339–346. [Google Scholar] [CrossRef]
- Kotsilkova, R.; Borovanska, I.; Todorov, P.; Ivanov, E.; Menseidov, D.; Chakraborty, S.; Bhattacharjee, C. Combined mechanical fields tensile and surface mechanical properties of polyethersulphone (PES) and polyvinylidene fluoride (PVDF) membranes. J. Theor. Appl. Mech. 2018, 48, 85–99. [Google Scholar] [CrossRef]
- Scaccini, L.; Sensini, A.; Puppi, D.; Gagliardi, M.; Moroni, L.; Cecchini, M.; Wieringa, P.; Tonazzini, I. Chitosan–glycerol blended nanofibers for peripheral nerve regeneration applications. Nanoscale Adv. 2025, 7, 6132–6144. [Google Scholar] [CrossRef] [PubMed]
- Sizílio, R.H.; Galvão, J.G.; Trindade, G.G.G.; Pina, L.T.S.; Andrade, L.N.; Gonsalves, J.K.M.C.; Lira, A.A.M.; Chaud, M.V.; Alves, T.F.R.; Arguelho, M.L.P.M.; et al. Chitosan/PVP-based mucoadhesive membranes as a promising delivery system of betamethasone-17-valerate for aphthous stomatitis. Carbohydr. Polym. 2018, 190, 339–345. [Google Scholar] [CrossRef] [PubMed]
- Afrouz, M.; Ahmadi-Nouraldinvand, F.; Ajirlu, Y.Y.; Arabnejad, F.; Eskanlou, H.; Yaghoubi, H. Preparation and characterization of PLA-PEG/chitosan-FA/DNA for gene transfer to MCF-7 cells. Med. Drug Discov. 2022, 15, 100138. [Google Scholar] [CrossRef]
- Ma, X.; Qiao, C.; Zhang, J.; Xu, J. Effect of sorbitol content on microstructure and thermal properties of chitosan films. Int. J. Biol. Macromol. 2018, 119, 1294–1297. [Google Scholar] [CrossRef]
- Debandi, M.V.; Bernal, C.R.; Francois, N. Development of biodegradable films based on chitosan/glycerol blends suitable for biomedical applications. J. Tissue Sci. Eng. 2016, 7, 1000187. [Google Scholar] [CrossRef]
- Cordier, C.; Eljaddi, T.; Ibouroihim, N.; Stavrakakis, C.; Sauvade, P.; Coelho, F.; Moulin, P. Optimization of air backwash frequency during the ultrafiltration of seawater. Membranes 2020, 10, 78. [Google Scholar] [CrossRef]
- Scelfo, G.; Serrano-Tari, P.; Raffaelli, R.; Vicari, F.; Oller, I.; Cipollina, A.; Tamburini, A.; Micale, G. The operational performance of an ultrafiltration pilot unit for the treatment of ultra-concentrated brines. Membranes 2024, 14, 276. [Google Scholar] [CrossRef]





| Membrane | Cs (g) | PEG (g) | PVP (g) | Gly (g) | Solution GA (mL) |
|---|---|---|---|---|---|
| Cs-GA | 1.50 | — | — | — | 3.850 |
| B2 | 1.50 | 0.75 | — | — | 3.850 |
| B5 | 1.50 | 0.35 | 0.35 | — | 3.850 |
| B7 | 1.50 | — | — | 0.75 | 3.850 |
| Parameters | Results (%) |
|---|---|
| Moisture | 5.02 ± 0.2458 |
| Total Nitrogen | 6.49 ± 0.4197 |
| Ash Content | 0.17 ± 0.0345 |
| Membrane | Thickness (μm) | Contact Angle (°) |
|---|---|---|
| Cs-GA | 300 ± 10.12 1 | 89.39 ± 3.6517 2 |
| B2 | 207 ± 40.40 1 | 56.68 ± 1.4249 2 |
| B5 | 190 ± 26.85 1 | 58.94 ± 4.7231 2 |
| B7 | 123 ± 15.37 1 | 65.20 ± 5.1517 2 |
| Membrane | Maximum Stress (σmax) (MPa) | Strain at Break (εmax) (%) | Young’s Modulus (GPa) |
|---|---|---|---|
| Cs-GA | 2.612 ± 1.479 | 9.10 ± 0.0459 | 0.037 ± 0.028 |
| B2 | 24.589 ± 2.690 | 16.99 ± 9.79 | 0.179 ± 0.070 |
| B5 | 15.478 ± 3.705 | 27.10 ± 8.38 | 0.058 ± 0.006 |
| B7 | 9.361 ± 5.144 | 11.29 ± 3.624 | 0.086 ± 0.031 |
| Membrane | Flux (J) (LMH) | Permeance (Lp) (LMH/bar) | Hydraulic Resistance (R) (m−1) |
|---|---|---|---|
| Cs-GA | 24.0988 | 9.7513 | 4.1481 × 1013 |
| B2 | 2222.70 | 460.187 | 8.7900 × 1011 |
| B5 | 40.4345 | 8.3715 | 4.8317 × 1013 |
| B7 | 24.7701 | 5.1284 | 7.8873 × 1013 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Aguilar-Ruiz, A.L.; Madera-Santana, T.J.; Sánchez-Duarte, R.G.; Villegas-Peralta, Y.; Aguilar-Ruiz, A.A.; Orozco-Carmona, V.M. Development of Chitosan Polymer Membranes with Potential Use in Filtration Processes. Membranes 2026, 16, 31. https://doi.org/10.3390/membranes16010031
Aguilar-Ruiz AL, Madera-Santana TJ, Sánchez-Duarte RG, Villegas-Peralta Y, Aguilar-Ruiz AA, Orozco-Carmona VM. Development of Chitosan Polymer Membranes with Potential Use in Filtration Processes. Membranes. 2026; 16(1):31. https://doi.org/10.3390/membranes16010031
Chicago/Turabian StyleAguilar-Ruiz, Ana Luisa, Tomás Jesús Madera-Santana, Reyna G. Sánchez-Duarte, Yedidia Villegas-Peralta, Ana Alejandra Aguilar-Ruiz, and Víctor Manuel Orozco-Carmona. 2026. "Development of Chitosan Polymer Membranes with Potential Use in Filtration Processes" Membranes 16, no. 1: 31. https://doi.org/10.3390/membranes16010031
APA StyleAguilar-Ruiz, A. L., Madera-Santana, T. J., Sánchez-Duarte, R. G., Villegas-Peralta, Y., Aguilar-Ruiz, A. A., & Orozco-Carmona, V. M. (2026). Development of Chitosan Polymer Membranes with Potential Use in Filtration Processes. Membranes, 16(1), 31. https://doi.org/10.3390/membranes16010031

