Influence of Feed Composition on the Separation Factor during Nanofiltration of Organic Acids
Abstract
:1. Introduction
2. Materials and Methods
2.1. Membrane and Chemicals
2.2. Experimental Set-Up and Procedure
2.3. Analytical Methods
2.4. Data Treatment
3. Results
3.1. Membrane Characterization
3.2. Single Solutions
3.3. Binary Solutions
3.3.1. Effect of Feed Concentration
3.3.2. Effect of Solute Proportions
3.4. Ternary Solutions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Jv | Filtration flux (m·s−1) |
Vp | Volume of permeate (m3) |
t | Time (s) |
Sm | Membrane surface (m2) |
Lp0 | Membrane’s water permeability (m·s−1·Pa−1) |
ΔP | Pressure difference (Pa) |
R | Retention |
C | Concentration (mol·m−3) |
SF | Separation factor (-) |
References
- Magdalena, J.A.; Greses, S.; González-Fernández, C. Impact of Organic Loading Rate in Volatile Fatty Acids Production and Population Dynamics Using Microalgae Biomass as Substrate. Sci. Rep. 2019, 9, 18374. [Google Scholar] [CrossRef]
- Guo, S.; Liu, Y.; Huang, Y.; Wang, H.; Murphy, E.; Delafontaine, L.; Chen, J.; Zenyuk, I.V.; Atanassov, P. Promoting Electrolysis of Carbon Monoxide toward Acetate and 1-Propanol in Flow Electrolyzer. ACS Energy Lett. 2023, 8, 935–942. [Google Scholar] [CrossRef]
- Xing, Y.; Li, Z.; Fan, Y.; Hou, H. Biohydrogen Production from Dairy Manures with Acidification Pretreatment by Anaerobic Fermentation. Environ. Sci. Pollut. Res. 2010, 17, 392–399. [Google Scholar] [CrossRef]
- Noguer, M.C.; Escudié, R.; Bernet, N.; Eric, T. Populational and Metabolic Shifts Induced by Acetate, Butyrate, and Lactate in Dark Fermentation. Int. J. Hydrogen Energy 2022, 47, 28385–28398. [Google Scholar] [CrossRef]
- Zhu, X.; Leininger, A.; Jassby, D.; Tsesmetzis, N.; Ren, Z.J. Will Membranes Break Barriers on Volatile Fatty Acid Recovery from Anaerobic Digestion? ACS EST Eng. 2021, 1, 141–153. [Google Scholar] [CrossRef]
- Yaroshchuk, A.E. Non-Steric Mechanism of Nanofiltration: Superposition of Donnan and Dielectric Exclusion. Sep. Purif. Technol. 2001, 22–23, 143–158. [Google Scholar] [CrossRef]
- Szymczyk, A.; Fievet, P. Investigating Transport Properties of Nanofiltration Membranes by Means of a Steric, Electric and Dielectric Exclusion Model. J. Membr. Sci. 2005, 252, 77–88. [Google Scholar] [CrossRef]
- Noguer, M.C.; Magdalena, J.A.; Bernet, N.; Escudié, R.; Trably, E. Enhanced Fermentative Hydrogen Production from Food Waste in Continuous Reactor after Butyric Acid Treatment. Energies 2022, 15, 4048. [Google Scholar] [CrossRef]
- Li, S.L.; Li, C.; Liu, Y.S.; Wang, X.L.; Cao, Z.A. Separation of L-Glutamine from Fermentation Broth by Nanofiltration. J. Membr. Sci. 2003, 222, 191–201. [Google Scholar] [CrossRef]
- Thuy, N.T.H.; Boontawan, A. Production of Very-High Purity Succinic Acid from Fermentation Broth Using Microfiltration and Nanofiltration-Assisted Crystallization. J. Membr. Sci. 2017, 524, 470–481. [Google Scholar] [CrossRef]
- Nguyen, N.; Fargues, C.; Guiga, W.; Lameloise, M.L. Assessing Nanofiltration and Reverse Osmosis for the Detoxification of Lignocellulosic Hydrolysates. J. Membr. Sci. 2015, 487, 40–50. [Google Scholar] [CrossRef]
- Khunnonkwao, P.; Jantama, K.; Kanchanatawee, S.; Galier, S.; Roux-de Balmann, H. A Two Steps Membrane Process for the Recovery of Succinic Acid from Fermentation Broth. Sep. Purif. Technol. 2018, 207, 451–460. [Google Scholar] [CrossRef]
- Bóna, Á.; Bakonyi, P.; Galambos, I.; Bélafi-Bakó, K.; Nemestóthy, N. Separation of Volatile Fatty Acids from Model Anaerobic Effluents Using Various Membrane Technologies. Membranes 2020, 10, 252. [Google Scholar] [CrossRef]
- Choi, J.H.; Fukushi, K.; Yamamoto, K. A Study on the Removal of Organic Acids from Wastewaters Using Nanofiltration Membranes. Sep. Purif. Technol. 2008, 59, 17–25. [Google Scholar] [CrossRef]
- Sjöman, E.; Mänttäri, M.; Nyström, M.; Koivikko, H.; Heikkilä, H. Separation of Xylose from Glucose by Nanofiltration from Concentrated Monosaccharide Solutions. J. Membr. Sci. 2007, 292, 106–115. [Google Scholar] [CrossRef]
- Zhu, Y.; Galier, S.; Roux-de Balmann, H. Nanofiltration of Solutions Containing Organic and Inorganic Salts: Relationship between Feed and Permeate Proportions. J. Membr. Sci. 2020, 613, 118380. [Google Scholar] [CrossRef]
- Wang, Y.-N.; Tang, C.Y. Fouling of Nanofiltration, Reverse Osmosis, and Ultrafiltration Membranes by Protein Mixtures: The Role of Inter-Foulant-Species Interaction. Environ. Sci. Technol. 2011, 45, 6373–6379. [Google Scholar] [CrossRef] [PubMed]
- Nghiem, L.D.; Schäfer, A.I.; Elimelech, M. Pharmaceutical Retention Mechanisms by Nanofiltration Membranes. Environ. Sci. Technol. 2005, 39, 7698–7705. [Google Scholar] [CrossRef] [PubMed]
- Valtcheva, I.B.; Marchetti, P.; Livingston, A.G. Crosslinked Polybenzimidazole Membranes for Organic Solvent Nanofiltration (OSN): Analysis of Crosslinking Reaction Mechanism and Effects of Reaction Parameters. J. Membr. Sci. 2015, 493, 568–579. [Google Scholar] [CrossRef]
- Epsztein, R.; Cheng, W.; Shaulsky, E.; Dizge, N.; Elimelech, M. Elucidating the Mechanisms Underlying the Difference between Chloride and Nitrate Rejection in Nanofiltration. J. Membr. Sci. 2018, 548, 694–701. [Google Scholar] [CrossRef]
- Staszak, K.; Woźniak, M.; Sottek, M.; Karaś, Z.; Prochaska, K. Removal of Fumaric Acid from Simulated and Real Fermentation Broth. J. Chem. Technol. Biotechnol. 2015, 90, 432–440. [Google Scholar] [CrossRef]
- Xu, L.; Du, L.S.; He, J. Effects of Operating Conditions on Membrane Charge Property and Nanofiltration. Front. Chem. Sci. Eng. 2011, 5, 492–499. [Google Scholar] [CrossRef]
- Lee, E.G.; Kang, S.H.; Kim, H.H.; Chang, Y.K. Recovery of Lactic Acid from Fermentation Broth by the Two-Stage Process of Nanofiltration and Water-Splitting Electrodialysis. Biotechnol. Bioprocess Eng. 2006, 11, 313–318. [Google Scholar] [CrossRef]
- Yang, H.C.; Wu, M.B.; Li, Y.J.; Chen, Y.F.; Wan, L.S.; Xu, Z.K. Effects of Polyethyleneimine Molecular Weight and Proportion on the Membrane Hydrophilization by Codepositing with Dopamine. J. Appl. Polym. Sci. 2016, 133, 43792. [Google Scholar] [CrossRef]
- Laufenberg, G.; Hausmanns, S.; Kunz, B. The Influence of Intermolecular Interactions on the Selectivity of Several Organic Acids in Aqueous Multicomponent Systems during Reverse Osmosis. J. Membr. Sci. 1996, 110, 59–68. [Google Scholar] [CrossRef]
- Teychené, J.; Roux-de Balmann, H.; Galier, S. Advances in the Understanding of the Transfer of Saccharides through NF Membranes in the Presence of Electrolytes by Coupling Quantum Mechanics and Thermodynamic Methods. Membranes 2021, 11, 341. [Google Scholar] [CrossRef]
- Domingos, J.M.B.; Martinez, G.A.; Morselli, E.; Bandini, S.; Bertin, L. Reverse Osmosis and Nanofiltration Opportunities to Concentrate Multicomponent Mixtures of Volatile Fatty Acids. Sep. Purif. Technol. 2022, 290, 120840. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, X.; Yang, H.; Xie, Y. Quantifying the Influence of Solute-Membrane Interactions on Adsorption and Rejection of Pharmaceuticals by NF/RO Membranes. J. Membr. Sci. 2018, 551, 37–46. [Google Scholar] [CrossRef]
Name | Acetate | Butyrate | Lactate |
---|---|---|---|
Structure | |||
Molecular weight (g·mol−1) | 59.04 | 87.09 | 89.07 |
pKa (25 °C) | 4.75 | 4.84 | 3.86 |
Maximum Volume | 500 mL |
Temperature | Room temperature (21–25 °C) |
Pressure | 4–20 bar |
Compressed gas type | N2 |
Magnetic stirring speed | 200 rpm |
Active membrane area | 50.3 cm2 |
Single Solutions | Binary Solutions | Ternary Solutions | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
S1 | S2 | S3 | S4 | S5 | S6 | S7 | S8 | S9 | S10 | S11 | S12 | S13 | S14 | S15 | |
Acetate (%) | 100 | - | - | 50 | 20 | 80 | 50 | 20 | 80 | - | - | - | 33 | 17 | 44 |
Butyrate (%) | - | 100 | - | 50 | 80 | 20 | - | - | - | 50 | 20 | 80 | 33 | 17 | 44 |
Lactate (%) | - | - | 100 | - | - | - | 50 | 80 | 20 | 50 | 80 | 20 | 33 | 66 | 11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tottoli, G.; Galier, S.; Roux-de Balmann, H. Influence of Feed Composition on the Separation Factor during Nanofiltration of Organic Acids. Membranes 2024, 14, 166. https://doi.org/10.3390/membranes14080166
Tottoli G, Galier S, Roux-de Balmann H. Influence of Feed Composition on the Separation Factor during Nanofiltration of Organic Acids. Membranes. 2024; 14(8):166. https://doi.org/10.3390/membranes14080166
Chicago/Turabian StyleTottoli, Gustavo, Sylvain Galier, and Hélène Roux-de Balmann. 2024. "Influence of Feed Composition on the Separation Factor during Nanofiltration of Organic Acids" Membranes 14, no. 8: 166. https://doi.org/10.3390/membranes14080166
APA StyleTottoli, G., Galier, S., & Roux-de Balmann, H. (2024). Influence of Feed Composition on the Separation Factor during Nanofiltration of Organic Acids. Membranes, 14(8), 166. https://doi.org/10.3390/membranes14080166