Copolymer of VDF/TFE as a Promising Polymer Additive for CsH2PO4-Based Composite Electrolytes
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Boysen, D.A.; Uda, T.; Chisholm, C.R.I.; Haile, S.M. High-Performance Solid Acid Fuel Cells Through Humidity Stabilization. Science 2004, 303, 68–70. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Norby, T. Solid-state protonic conductors: Principles, properties, progress and prospects. Solid. State Ion. 1999, 125, 1–11. [Google Scholar] [CrossRef]
- Haile, S.M.; Chisholm, C.R.I.; Sasaki, K.; Boysen, D.A.; Uda, T. Solid acid proton conductors: From laboratory curiosities to fuel cell electrolytes. Faraday Discuss. 2007, 134, 17–39. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Haile, S.; Boysen, D.; Chisholm, C. Solid acids as fuel cell electrolytes. Nature 2001, 410, 910–913. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Uda, T.; Haile, S.M. Thin-membrane solid-acid fuel cell. Electrochem. Lett. 2005, 8, 245–246. [Google Scholar] [CrossRef][Green Version]
- Prykhodko, Y.; Fatyeyeva, K.; Hespel, L.; Marais, S. Progress in hybrid composite Nafion®-based membranes for proton exchange fuel cell application. Chem. Eng. J. 2021, 409, 127329. [Google Scholar] [CrossRef]
- Karimi, M.B.; Mohammadi, F.; Hooshyari, K. Recent approaches to improve Nafion performance for fuel cell applications: A review. Int. J. Hydrogen Energy 2019, 44, 28919–28938. [Google Scholar] [CrossRef]
- Zhu, L.Y.; Li, Y.C.; Liu, J.; He, J.; Wang, L.Y.; Lei, J.D. Recent developments in high-performance Nafion membranes for hydrogen fuel cells applications. Pet. Sci. 2022, 19, 1371–1381. [Google Scholar] [CrossRef]
- Chisholm, C.; Boysen, D.; Papandrew, A.B.; Zecevic, S.; Cha, S.; Sasaki, K.A.; Varga, A.; Giapis, K.P.; Haile, S.M. Electrochem. Soc. Interface 2009, 18, 53–59. [Google Scholar]
- Baranov, A.I.; Merinov, B.V.; Tregubchenko, A.V.; Khiznichenko, V.P.; Shuvalov, L.A.; Schagina, N.M. Fast proton transport in crystals with a dynamically disordered hydrogen bond network. Solid. State Ion. 1989, 36, 279–282. [Google Scholar] [CrossRef]
- Baranov, A.I.; Shuvalov, L.A.; Shchagina, N.M. Superion conductivity and phase transitions in CsHSO4 and CsHSeO4 crystals. JETP Lett. 1982, 36, 459–462. [Google Scholar]
- Lavrova, G.V.; Russkikh, M.V.; Ponomareva, V.G.; Uvarov, N.F. On the Possibility of Using Protonic Solid Electrolyte CsHSO4 in Hydrogen Fuel Cells. Russ. J. Electrochem. 2005, 41, 485–487. [Google Scholar] [CrossRef]
- Ponomareva, V.G.; Lavrova, G.V. Factors affecting the hydrogen reduction kinetics of CsHSO4. Inorg. Mater. 2009, 45, 85–89. [Google Scholar] [CrossRef]
- Baranov, A.I.; Khiznichenko, V.P.; Sandler, V.A.; Shuvalov, L.A. Frequency dielectric dispersion in the ferroelectric and superionic phases of CsH2PO4. Ferroelectrics 1988, 81, 1147–1150. [Google Scholar] [CrossRef]
- Preisinger, A.; Mereiter, K.; Bronowska, W. The phase transition of CsH2PO4(CDP) at 505 K. Mater. Sci. Forum 1994, 166, 511–516. [Google Scholar] [CrossRef]
- Wagner, M.; Lorenz, O.; Lohmann-Richters, F.P.; Varga, A.; Abel, B. On the role of local heating in cathode degradation during the oxygen reduction reaction in solid acid fuel cells. Sustain. Energy Fuels 2020, 4, 5284–5293. [Google Scholar] [CrossRef]
- Lohmann-Richters, F.P.; Abel, B.; Varga, A. In situ determination of the electrochemically active platinum surface area: Key to improvement of solid acid fuel cells. J. Mater. Chem. A 2018, 6, 2700–2707. [Google Scholar] [CrossRef]
- Abdelrahman, A.; Abel, B.; Varga, A. Towards rational electrode design: Quantifying the triplephase boundary activity of Pt in solid acid fuel cell anodes by electrochemical impedance spectroscopy. J. Appl. Electrochem. 2017, 47, 327–334. [Google Scholar] [CrossRef]
- Boysen, D.A.; Halie, S.M.; Liu, H.; Secco, R.A. High-temperature behavior of CsH2PO4 under both ambient and high pressure conditions. Chem. Mater. 2003, 15, 727–736. [Google Scholar] [CrossRef]
- Taninouchi, Y.; Uda, T.; Awakura, Y.; Ikeda, A.; Haile, S.M. Dehydration behavior of the superprotonic conductor CsH2PO4 at moderate temperatures: 230 to 260 °C. J. Mater. Chem. 2007, 17, 3182–3189. [Google Scholar] [CrossRef]
- Chisholm, C.R.I.; Haile, S.M. Superprotonic behavior of CsHSO4—CsH2PO4 system. Solid. State Ionics. 2000, 136–137, 229–241. [Google Scholar] [CrossRef]
- Haile, S.M.; Kreuer, K.-D.; Maier, J. Structure of Cs3(HSO4)2(H2PO4)—a new compound with a superprotonic phase transition. Acta Crystallogr. Sect. B Struct. Sci. 1995, 51, 680–687. [Google Scholar] [CrossRef]
- Martsinkevich, V.V.; Ponomareva, V.G. Double salts Cs1-xMxH2PO4 (M = Na, K, Rb) as proton conductors. Solid. State Ion. 2012, 225, 236–240. [Google Scholar] [CrossRef]
- Ikeda, A.; Kitchaev, D.A.; Haile, S.M. Phase behavior and superprotonic conductivity in the Cs1−xRbxH2PO4 and Cs1−xKxH2PO4 systems. J. Mater. Chem. A 2014, 2, 204–214. [Google Scholar] [CrossRef][Green Version]
- Ponomareva, V.G.; Bagryantseva, I.N. Superprotonic CsH2PO4-CsHSO4 solid solutions. Inorg. Mater. 2012, 48, 187–194. [Google Scholar] [CrossRef]
- Qing, G.; Kikuchi, R.; Takagaki, A.; Sugawara, T.; Oyama, S.T. CsH2PO4/ Polyvinylidene fluoride composite electrolytes for intermediate temperature fuel cells. J. Electrochem. Soc. 2014, 161, 451–457. [Google Scholar] [CrossRef]
- Qing, G.; Kikuchi, R.; Takagaki, A.; Sugawara, T.; Oyama, S.T. CsH2PO4/epoxy composite electrolytes for intermediate temperature fuel cells. Electrochim. Acta 2015, 169, 219–226. [Google Scholar] [CrossRef]
- Bagryantseva, I.N.; Ponomareva, V.G.; Lazareva, N.P. Proton-conductive membranes based on CsH2PO4 and ultra- dispersed polytetrafluoroethylene. Ionics 2019, 329, 61–66. [Google Scholar] [CrossRef]
- Bagryantseva, I.N.; Gaydamaka, A.A.; Ponomareva, V.G. Intermediate temperature proton electrolytes based on cesium dihydrogen phosphate and Butvar polymer. Ionics 2020, 26, 1813–1818. [Google Scholar] [CrossRef]
- Ameduri, B. The Promising Future of Fluoropolymers. Macromol. Chem. Phys. 2020, 221, 1900573. [Google Scholar] [CrossRef][Green Version]
- Ameduri, B. Copolymers of vinylidene fluoride with functional comonomers and applications therefrom: Recent developments, challenges and future trends. Prog. Polym. Sci. 2022, 133, 101591. [Google Scholar] [CrossRef]
- Barbosa, J.C.; Dias, J.P.; Lanceros-Méndez, S.; Costa, C.M. Recent advances in poly (vinylidene fluoride) and its copolymers for lithium-ion battery separators. Membranes 2018, 8, 45. [Google Scholar] [CrossRef][Green Version]
- Bagryantseva, I.N.; Ponomareva, V.G.; Khusnutdinov, V.R. Intermediate temperature proton electrolytes based on cesium dihydrogen phosphate and poly (vinylidene fluoride-co-hexafluoropropylene). J. Mater. Sci. 2021, 56, 14196–14206. [Google Scholar] [CrossRef]
- Bagryantseva, I.N.; Kungurtsev, Y.E.; Ponomareva, V.G. Proton-conducting membranes based on CsH2PO4 and copolymer of tetrafluoroethylene with vinylidene fluoride. Chim. Technol. Acta 2022, 9, 20229303. [Google Scholar] [CrossRef]
- Ameduri, B. From vinylidene fluoride (VDF) to the applications of VDF-containing polymers and copolymers: Recent developments and future trends. Chem. Rev. 2009, 109, 6632–6686. [Google Scholar] [CrossRef][Green Version]
- Nunes-Pereira, J.; Ribeiro, S.; Ribeiro, C.; Gombek, C.J.; Gama, F.M.; Gomes, A.C.; Patterson, D.A.; Lanceros-Mendez, S. Poly(vinylidene fluoride) and copolymers as porous membranes for tissue engineering applications. Polym. Test. 2015, 44, 234–241. [Google Scholar] [CrossRef][Green Version]
- Ruan, L.; Yao, X.; Chang, Y.; Zhou, L.; Qin, G.; Zhang, X. Properties and applications of the β phase poly (vinylidene fluoride). Polymers 2018, 10, 228. [Google Scholar] [CrossRef][Green Version]
- Matsunaga, H.; Itoh, K.; Nakamura, E. X-ray structural study of CDP at room temperature. J. Phys. Soc. Jpn. 1980, 48, 2011–2014. [Google Scholar] [CrossRef]
- Otomo, J.; Minagawa, N.; Wen, C.; Eguchi, K.; Takahashi, H. Protonic conduction of CsH2PO4 and its composite with silica in dry and humid atmospheres. Solid. State Ion. 2003, 156, 357–369. [Google Scholar] [CrossRef]
- Ponomareva, V.G.; Shutova, E.S. Composite electrolytes Cs3(H2PO4)(HSO4)2/SiO2 with high proton conductivity. Ionics 2005, 76, 2905–2908. [Google Scholar] [CrossRef]
- Matsui, T.; Kukino, T.; Kikuchi, R.; Eguchi, K. Intermediate-Temperature Fuel Cell Employing CsH2PO4∕SiP2O7-Based Composite Electrolytes. J. Electrochem. Soc. 2006, 153, A339. [Google Scholar] [CrossRef]
- Marchon, B.; Novak, A. Vibrational study of CsH2PO4 and CsD2PO4 single crystals. J. Chem. Phys. 1983, 78, 2105–2120. [Google Scholar] [CrossRef]
- Martins, P.; Lopes, A.C.; Lanceros-Mendez, S. Electroactive phases of poly (vinylidene fluoride): Determination, processing and applications. Prog. Polym. Sci. 2014, 39, 683–706. [Google Scholar] [CrossRef]
- Benz, M.; Euler, W.B. Determination of the crystalline phases of poly (vinylidene fluoride) under different preparation conditions using differential scanning calorimetry and infrared spectroscopy. J. Appl. Polym. Sci. 2003, 89, 1093–1100. [Google Scholar] [CrossRef]
- Bormashenko, Y.; Pogreb, R.; Stanevsky, O.; Bormashenko, E. Vibrational spectrum of PVDF and its interpretation. Polym. Test. 2004, 23, 791–796. [Google Scholar] [CrossRef]
- Gregorio, R.; Borges, D.S. Effect of crystallization rate on the formation of the polymorphs of solution cast poly (vinylidene fluoride). Polymer 2008, 49, 4009–4016. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kungurtsev, Y.; Bagryantseva, I.; Ponomareva, V. Copolymer of VDF/TFE as a Promising Polymer Additive for CsH2PO4-Based Composite Electrolytes. Membranes 2023, 13, 520. https://doi.org/10.3390/membranes13050520
Kungurtsev Y, Bagryantseva I, Ponomareva V. Copolymer of VDF/TFE as a Promising Polymer Additive for CsH2PO4-Based Composite Electrolytes. Membranes. 2023; 13(5):520. https://doi.org/10.3390/membranes13050520
Chicago/Turabian StyleKungurtsev, Yuri, Irina Bagryantseva, and Valentina Ponomareva. 2023. "Copolymer of VDF/TFE as a Promising Polymer Additive for CsH2PO4-Based Composite Electrolytes" Membranes 13, no. 5: 520. https://doi.org/10.3390/membranes13050520
APA StyleKungurtsev, Y., Bagryantseva, I., & Ponomareva, V. (2023). Copolymer of VDF/TFE as a Promising Polymer Additive for CsH2PO4-Based Composite Electrolytes. Membranes, 13(5), 520. https://doi.org/10.3390/membranes13050520