Seasonal Changes in Qualitative and Quantitative Characteristics of Humic Substances in Waters of Different Genesis: Membrane Technologies and Equilibrium Processes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Objects and Methods
2.2. Membrane Filtration and Ion Exchange Separation of Samples
2.3. Statistical Analysis
3. Results and Discussion
3.1. Basic Hydrochemical Parameters
3.2. Seasonal Physical and Chemical Changes in the Properties of Organic Natural Substances
3.3. Application of Membrane Filtration and Ion Exchange Separation to Evaluate the Properties of Organic Substances
4. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Moiseenko, T.I.; Gashkina, N.A.; Dinu, M.I. Aquatic geochemistry of small lakes: Effects of environment changes. Geochem. Int. 2013, 13, 1031–1148. [Google Scholar] [CrossRef]
- Dinu, M.I. Formation of organic substances of humus nature and their Biospheric properties. Geochem. Intern. 2017, 55, 911–926. [Google Scholar] [CrossRef]
- Orlov, D.S. Soil Humic Acids and the General Theory of Humification; Publishing House of Moscow State University: Moscow, Russia, 1991; 325p. [Google Scholar]
- Orlov, D.S.; Biryukova, O.N.; Sukhanova, N.I. Soil Organic Matter in the Russian Federation; Nauka Publishing House: Moscow, Russia, 1996; 258p. [Google Scholar]
- Linnik, P.N.; Ivanchenko, Y.S.; Linnik, R.P.; Zhezherya, V.A. Humic substances of surface waters and features of their distribution among various fractions. Hydrochemistry 2000, 49, 99–120. [Google Scholar]
- Perminova, I.V. Analysis, Classification and Prediction of the Properties of Humic Substances. Ph.D. Thesis, Chemical Sciences Faculty, Moscow, Russia, 2000; 359p. [Google Scholar]
- Orlov, D.S.; Sadovnikov, L.K.; Lozanovskaya, I.N. Ecology and Protection of the Biosphere in Case of Chemical Pollution; Publisher Higher School: Moscow, Ruassia, 2002; 340p. [Google Scholar]
- Clark, J.M.; Bottrell, S.H.; Evans, C.D.; Monteith, D.T.; Bartlett, R.; Rose, R.; Newton, R.J.; Chapman, P.J. The importance of the relationship between scale and process in understanding long-term DOC dynamics. Sci. Total Environ. 2010, 408, 68–75. [Google Scholar] [CrossRef] [PubMed]
- Wu, D. Fluorescent characteristics and metal binding properties of individual molecular weight fractions in municipal solid waste leachate. Analyt. Meth. 2012, 3, 21–27. [Google Scholar] [CrossRef] [PubMed]
- Wu, D. Speciation analysis of As, Sb and Se Simultaneous speciation analysis of As, Sb and Se redox couples by SF-ICP-MS coupled to HPLC. Analyt. Meth. 2014, 2, 2–17. [Google Scholar]
- Zobkova, M.V.; Efremova, T.A.; Lozovik, P.A.; Sabylina, A.V. Organic matter, and its components in surface waters of the humid zone. Adv. Mod. Nat. Sci. 2015, 15, 115–120. [Google Scholar]
- Klucakova, M. Size and charge eavaluation of standard humic and fulvic acids as crutial factors to determine their environmental behavior and impact. Front. Chem. 2018, 6, 235. [Google Scholar] [CrossRef] [PubMed]
- Tsuda, K.; Mori, H.; Asakawa, D.; Yanagi, Y.; Kodama, H.; Nagao, S.; Yonebayashi, K.; Fujitake, N. Quality of Fulvic acids in Japan lakes. Water Res. 2006, 54, 1234–1250. [Google Scholar]
- Buffle, J. Complexation Reactions in Aquatic Systems: An Analytical Approach; Ellis Horwood Ltd.: New York, NY, USA, 1990; pp. 636–672. [Google Scholar]
- Stevenson, F.J. Humus Chemistry. Genesis, Composition, Reactions; Wiley & Sons, Inc.: New York, NY, USA, 1994; 565p. [Google Scholar]
- Popov, A.I. Humic Substances: Properties, Structure, Formation; S-P. State. University: Saint Petersburg, Russia, 2004; p. 202. [Google Scholar]
- Meng, F.; Huang, G.; Yang, X.; Li, Z.; Li, J.; Cao, J.; Wang, Z.; Sun, L. Identifying the sources and fate of anthropogenically impacted dissolved organic matter (DOM) in urbanized rivers. Water Res. 2013, 3, 75–82. [Google Scholar] [CrossRef] [PubMed]
- Dubinenkov, I.V. Proceedings Book of the Communications. In Proceedings of the 15th Meeting of the International Humic Substances Society Tenerife, Canary Islands, Spain, 27 June–2 July 2010. [Google Scholar]
- Fedotov, G.N.; Shalaev, V.S. Mineral nanoparticles in the humus matrix of soil gels. For. Bull. 2012, 7, 50–57. [Google Scholar]
- Nedogarko, I.V. Valdai Lakes; S-P. State. University: St. Petersburg, Russia, 2021; 250p. [Google Scholar]
- Dinu, M.; Shkinev, V. Complex formation of metal ions with organic substances of humus nature: Research methods and structural features of ligands, distribution of elements by forms. Geochemistry 2020, 65, 165–177. [Google Scholar]
- Sokolov, Y.N. General plan of the municipality Valday urban settlement of the Valday district of the Novgorod region. Natural conditions and environmental assessment. Subst. Mater. 2012, 2, 13–23. [Google Scholar]
- Shkinev, V.M. On-line, multi-stage membrane systems forseparating natural-water components and suspendedsolid materials. Membr. Technol. 2001, 134, 8–10. [Google Scholar] [CrossRef]
- Rodyushkin, I.V. The Main Laws of the Distribution of Metals by Forms in the Surface Waters of the Kola North. Ph.D. Thesis, Institute of Ozerovedeniya, St. Petersburg, Russia, 1995; 125p. [Google Scholar]
- Tsuda, K.; Mori, H.; Asakawa, D.; Yanagi Yu Kodama, H.; Nagao, S.; Yonebayashi, K.; Fujitake, N. Characterization and grouping of aquatic fulvic acid isolated from clear-water rivers and lakes in Japan. Water Res. 2010, 44, 3837–3846. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Chapelle, F.H.; Strom, E.W.; Benner, R. Origin and bioavailability of dissolved organic matter in groundwater. Biogeochemistry 2015, 122, 61–78. [Google Scholar] [CrossRef]
- Li, H.; Shaoxuan, D.; Song, W.; Wang, X.; Ding, J.; Lu, J. The degradation of dissolved organic matter in black and odorous water by humic substance-mediated Fe(II)/Fe(III) cycle under redox fluctuation. J. Environ. Manag. 2022, 321, 115942. [Google Scholar] [CrossRef] [PubMed]
Parameter | Spring | Summer | Autumn |
---|---|---|---|
pH | 6.0 | 5.5 | 4.3 |
5.8–6.6 | 5.2–6.0 | 3.5–4.6 | |
T, °C | 12 | 17 | 6.0 |
8.0–15 | 15–22 | 5.8–8.0 | |
Conductivity, µS/cm | 50 | 21 | 36 |
22–105 | 18–24 | 29–42 | |
Color, ° | 120 | 580 | 290 |
100–300 | 300–670 | 220–340 | |
permanganate oxidizability, mg O/L | 160 | 300 | 20 |
100–200 | 200–700 | 110–220 | |
C org, mg/L | 43 | 80 | 40 |
39–47 | 72–100 | 35–50 | |
Fe tot, mg/L | 0.36 | 0.53 | 0.49 |
0.15–0.90 | 0.32–0.99 | 0.41–0.55 | |
Fe-Org, mg/L | 0.29 | 0.19 | 0.42 |
0.11–0.31 | 0.11–0.33 | 0.39–0.45 | |
Cu tot, µg/L | 516 | 1057 | 256 |
420–568 | 820–1140 | 206–304 | |
Cu-Org, µg/L | 76 | 50 | 64 |
59–88 | 42–84 | 59–76 |
Parameter | Spring Season | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
In the Original Solution | >8 | 8–1.2 | 1.2–0.45 | 0.45–0.2 | <0.2 | In the Original Solution | Suspension | Solution | Organic Complex | |
Size, nm | 820.00 | 810.00 | 650.00 | 599.00 | 560.00 | 395.00 | 818.00 | - | 580.00 | 500.00 |
Zeta potential, mV | −10.00 | −8.00 | −11.00 | −16.00 | −19.00 | −21.00 | −12.00 | − | −18.00 | −25.00 |
Al, mg/L | 1.07 | 0.07 | 0.02 | 0.00 | 0.06 | 0.92 | 1.05 | 0.04 | 0.49 | 0.53 |
Fe, mg/L | 0.39 | 0.02 | 0.01 | 0.01 | 0.00 | 0.34 | 0.39 | 0.01 | 0.30 | 0.08 |
Cu, µg/L | 187.00 | 0.00 | 7.00 | 130.00 | 15.00 | 35.00 | 187.20 | 0.20 | 137.00 | 50.00 |
Ni, µg/L | 0.82 | 0.00 | 0.05 | 0.01 | 0.05 | 0.71 | 1.05 | 0.17 | 0.88 | 0.00 |
Pb, µg/L | 0.05 | 0.00 | 0.01 | 0.00 | 0.00 | 0.04 | 0.49 | 0.13 | 0.12 | 0.24 |
Cd, µg/L | 0.14 | 0.00 | 0.00 | 0.00 | 0.11 | 0.01 | 0.17 | 0.03 | 0.14 | 0.00 |
Zn, µg/L | 257.54 | 7.09 | 10.99 | 11.13 | 7.91 | 220.41 | 254.21 | 102.40 | 137.73 | 14.08 |
Parameter | Summer Season | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
In the Original Solution | >8 | 8–1.2 | 1.2–0.45 | 0.45–0.2 | <0.2 | In the Original Solution | Suspension | Solution | Organic Complex | |
Size, nm | 800.00 | 980.00 | 965.00 | 940.00 | 860.00 | 700.00 | 970.00 | - | 875.00 | 789.00 |
Zeta potential, mV | −24.00 | −20.00 | −23.00 | −26.00 | −28.00 | −35.00 | −18.00 | − | −30.00 | −30.00 |
Al, mg/L | 1.55 | 0.12 | 0.05 | 0.05 | 0.06 | 1.28 | 1.55 | 0.14 | 0.69 | 0.72 |
Fe, mg/L | 0.27 | 0.01 | 0.00 | 0.02 | 0.01 | 0.24 | 0.28 | 0.00 | 0.10 | 0.18 |
Cu, µg/L | 367.7 | 58.90 | 7.26 | 12.86 | 21.59 | 267.05 | 367.00 | 29.90 | 290.60 | 47.10 |
Ni, µg/L | 3.20 | 0.00 | 0.68 | 0.00 | 0.14 | 2.37 | 2.03 | 0.00 | 1.31 | 0.72 |
Pb, µg/L | 3.12 | 0.04 | 0.00 | 0.00 | 0.00 | 3.08 | 1.52 | 0.00 | 1.26 | 0.27 |
Cd, µg/L | 0.22 | 0.00 | 0.00 | 0.00 | 0.00 | 0.22 | 0.22 | 0.00 | 0.19 | 0.02 |
Zn, µg/L | 1039.65 | 224.93 | 20.83 | 18.27 | 0.00 | 775.62 | 977.23 | 183.29 | 736.56 | 57.38 |
Parameter | Autumn | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
In the Original Solution | >8 | 8–1.2 | 1.2–0.45 | 0.45–0.2 | <0.2 | In the Original Solution | Suspension | Solution | Organic Complex | |
Size, nm | 680.00 | 687.00 | 620.00 | 598.00 | 402.00 | 340.00 | 690.00 | - | 396.00 | 345.00 |
Zeta potential, mV | −15.00 | −12.00 | −16.00 | −18.00 | −20.00 | −24.00 | −14.00 | − | −15.00 | −26.00 |
Al, mg/L | 1.71 | 0.07 | 0.04 | 0.05 | 0.05 | 1.50 | 1.71 | 0.09 | 0.59 | 1.03 |
Fe, mg/L | 0.18 | 0.05 | 0.00 | 0.00 | 0.00 | 0.13 | 0.10 | 0.00 | 0.03 | 0.06 |
Cu, µg/L | 256.00 | 7.21 | 10.94 | 556.00 | 8.19 | 223.75 | 256.00 | 1.02 | 190.20 | 64.42 |
Ni, µg/L | 0.70 | 0.04 | 0.01 | 0.02 | 0.02 | 0.61 | 0.70 | 0.06 | 0.58 | 0.06 |
Pb, µg/L | 2.77 | 0.19 | 0.00 | 0.00 | 0.00 | 2.58 | 1.62 | 0.19 | 0.86 | 0.57 |
Cd, µg/L | 1.48 | 0.00 | 0.00 | 0.08 | 0.00 | 1.39 | 0.10 | 0.00 | 0.10 | 0.00 |
Zn, µg/L | 255.63 | 7.20 | 10.94 | 5.56 | 8.19 | 223.75 | 255.63 | 1.02 | 190.20 | 64.42 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dinu, M. Seasonal Changes in Qualitative and Quantitative Characteristics of Humic Substances in Waters of Different Genesis: Membrane Technologies and Equilibrium Processes. Membranes 2023, 13, 340. https://doi.org/10.3390/membranes13030340
Dinu M. Seasonal Changes in Qualitative and Quantitative Characteristics of Humic Substances in Waters of Different Genesis: Membrane Technologies and Equilibrium Processes. Membranes. 2023; 13(3):340. https://doi.org/10.3390/membranes13030340
Chicago/Turabian StyleDinu, Marina. 2023. "Seasonal Changes in Qualitative and Quantitative Characteristics of Humic Substances in Waters of Different Genesis: Membrane Technologies and Equilibrium Processes" Membranes 13, no. 3: 340. https://doi.org/10.3390/membranes13030340
APA StyleDinu, M. (2023). Seasonal Changes in Qualitative and Quantitative Characteristics of Humic Substances in Waters of Different Genesis: Membrane Technologies and Equilibrium Processes. Membranes, 13(3), 340. https://doi.org/10.3390/membranes13030340